

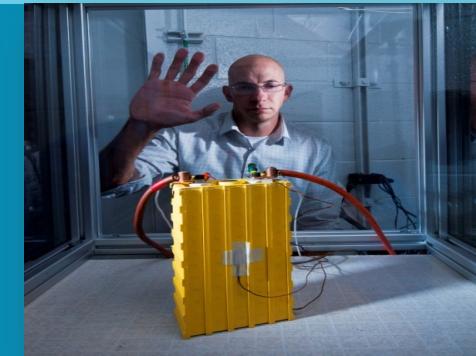
Battery Safety and Reliability: Tools to understand risk in grid-scale energy storage systems

DOE 2021 Lunch & Learn Series

Joshua Lamb

Power Sources R&D

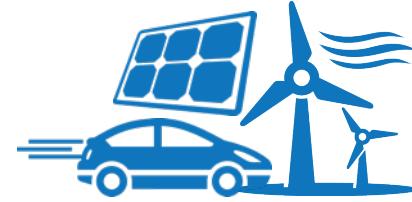
jlamb@sandia.gov


Yuliya Preger

Energy Storage Tech & Systems

ypreger@sandia.gov

SAND2021-6800PE



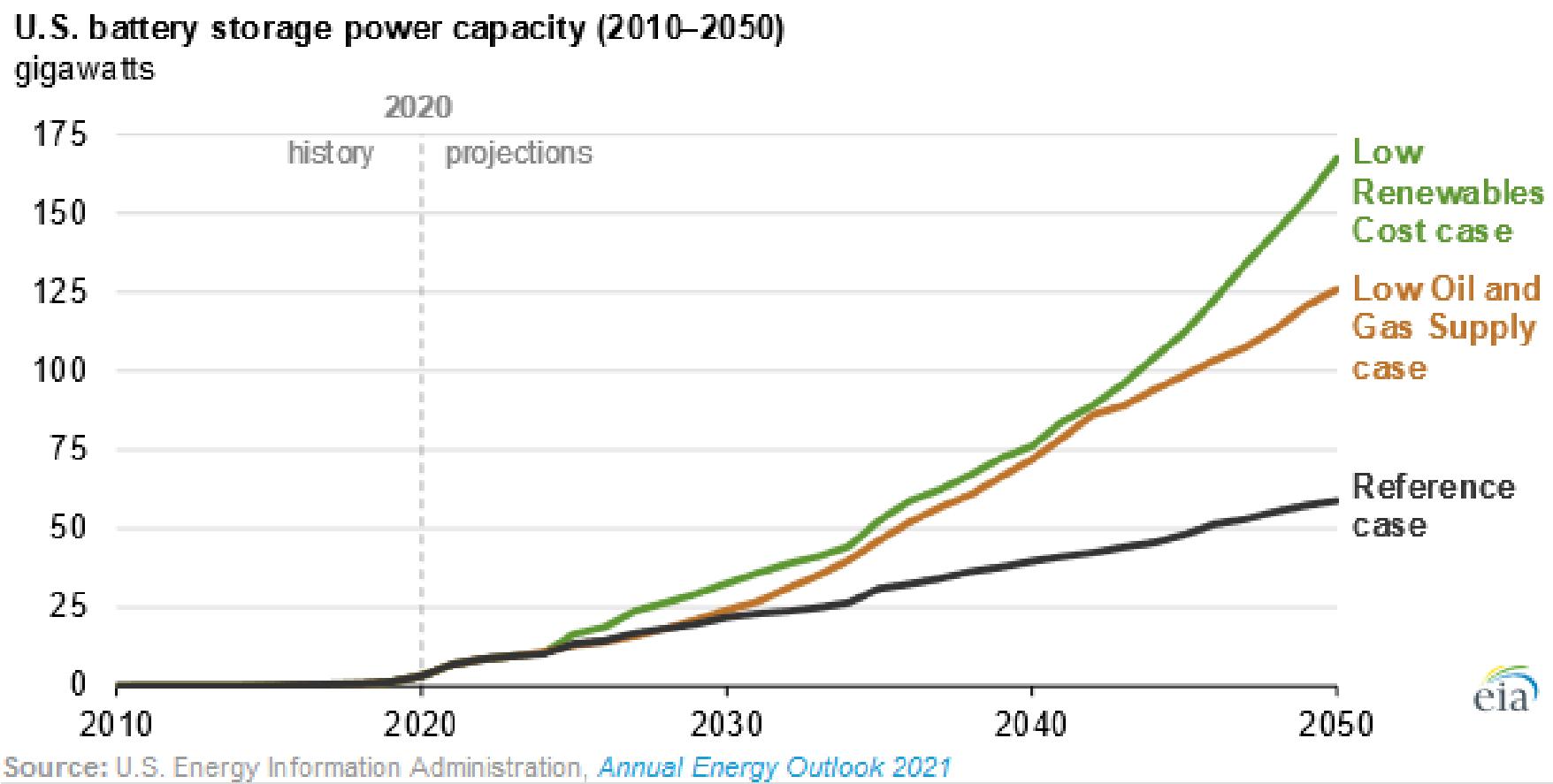
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Role of energy storage in the grid

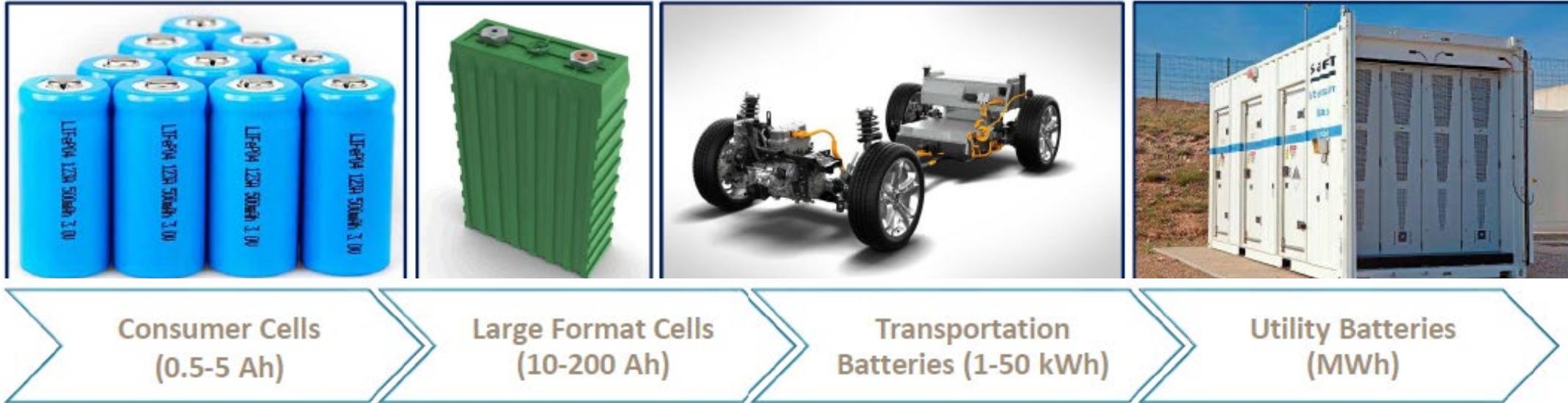
- Renewables integration to address climate change
- Grid resiliency and reliability
- Improving power quality
- Improving the efficiency of existing generation fleet
- Demand management
- Transmission & Distribution upgrade deferral
- Off-grid applications

Balance the variability of 825 GW of new renewable generation while improving grid reliability and efficiency

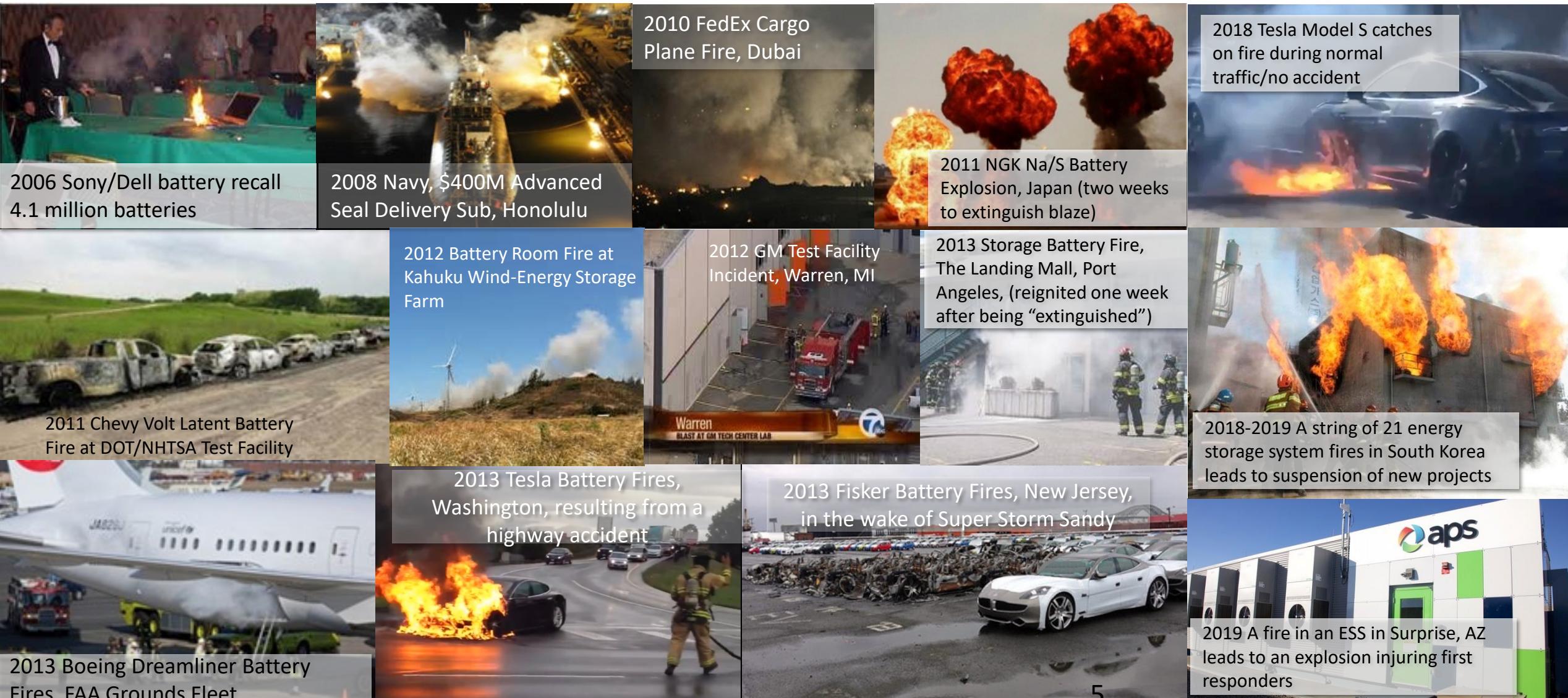
Mitigate \$79B/yr in commercial losses from outages



Reduce commercial and industrial electrical bills through demand charge management. 7.5 million U.S. customers are enrolled in dynamic pricing (EIA 2015)


Batteries will provide substantial grid-scale energy storage

Energy Information Administration Annual Energy Outlook 2021 report projects 59 GW of battery energy storage on the grid by 2050 in the base case, 175 GW if more renewables


Impact and consequence of scale on safety

Safety issues and complexity increase with battery size

Safety research is heavily focused on lithium-ion as the primary application ready technology. However many emerging technologies identified as promising for grid-scale storage are less well studied.

Grid ESS are the new frontier of battery safety

Safety of ESS is getting increasing media coverage

Bloomberg

Hyperdrive

Explosions Threatening Lithium-Ion's Edge in a Battery Race

By Brian Eckhouse and Mark Chediak

April 23, 2019, 4:58 PM MDT Updated on April 24, 2019, 8:24 AM MDT

- Battery exploded at plant in Arizona; two others were shut
- Arizona utility regulator calls for 'thorough investigation'

LISTEN TO ARTICLE

► 4:52

SHARE THIS ARTICLE

Share

Tweet

in Post

Email

Another lithium-ion battery has exploded, this time at an energy-storage complex in the U.S.

At least 21 fires had already occurred at battery projects in South Korea, according to BloombergNEF. But this latest one, erupting on Friday at a facility owned by a Pinnacle West Capital Corp. utility in Surprise, Arizona, marked the first time it has happened in America since batteries took off globally.

Greentech Media

APS and Fluence Investigating Explosion at Arizona Energy Storage Facility

The stakes are high for the energy storage sector after an explosion with an unknown cause left several firefighters injured.

KARL-ERIK STROMSTA | APRIL 22, 2019

Earlier this year APS announced plans to build 850 megawatts of battery storage by 2025.

Fluence has dispatched a team of experts to help utility Arizona Public Service determine what caused an explosion at one of its grid-scale battery facilities. The explosion on Friday reportedly left four firefighters injured, including three who were sent to a burn center.

Firefighters responded to a call on April 19 after smoke was seen rising from APS' McMicken Energy Storage facility, one of two identical 2-megawatt/2-megawatt-hour grid-scale batteries the utility [installed in 2017](#) in Phoenix's growing West Valley region.

According to local press reports, the firefighters were inspecting the facility's lithium-ion batteries when they were hit with an explosion. Several of the firefighters received chemical burns, the local fire department told the *Arizona Republic*.

16

TOP ARTICLES

MOST POPULAR

MOST COMMENTS

Generate Capital Raise Draws Global Infrastructure...

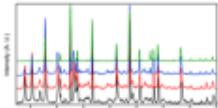
Trump Administ... Lowers Import T... Chinese...

Korea Times

Frequent fire raising concerns over safety of solar energy

A fire erupts in an energy storage system at a cement plant in Ichon, North Chungcheong Province, Monday. / Courtesy of North Chungcheong Province Fire Service Headquarters

By Nam Hyun-woo

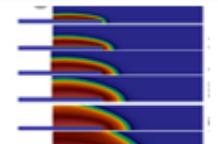
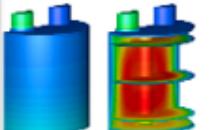

A series of fires in energy storage systems (ESSs) has been raising safety concerns, according to industry analysts, Tuesday.

With ESSs essential for optimizing energy efficiency, further accidents may compromise the feasibility of renewable power and hamper the government's bid to expand the use of cleaner energies.

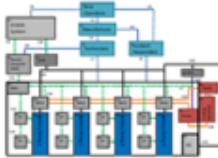
According to the Ministry of Trade, Industry and Energy, it recommended individuals, companies and other organizations to stop using 584 uninspected ESSs across the country.

Safety concerns could serve as a barrier to broader deployment of grid energy storage systems

Sandia addresses all aspects of safety & reliability for battery energy storage



Materials R&D

- Thermal stability and impact of aging on battery components
- Vent gas composition


Cell and Module Testing

- High precision cell cycling and degradation
- Electrical, thermal, mechanical abuse testing
- Failure propagation testing on batteries/systems

Simulations and Modeling

- Multi-scale models for understanding thermal runaway
- Fire Dynamic Simulations to predict the size, scope, and consequences of battery fires

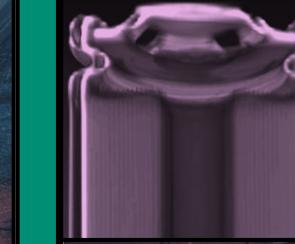
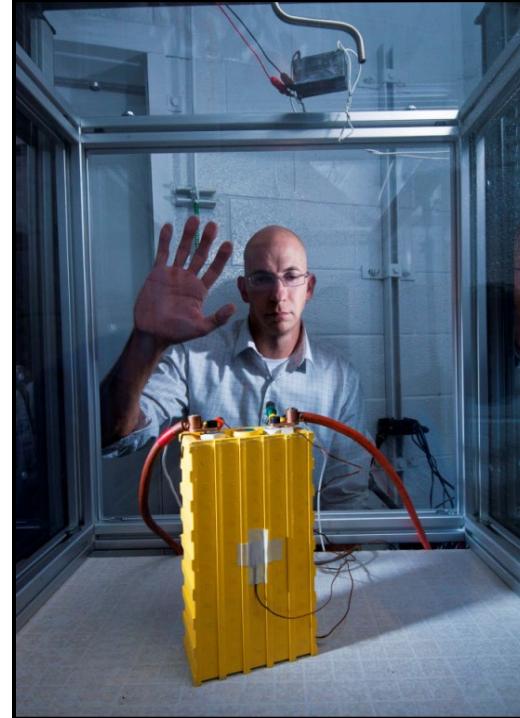
System Level Design and Analysis

- Hazard analysis methods to avoid fire and explosion
- Predictive maintenance

Outreach, Codes, and Standards

- Energy storage safety working group
- IEEE battery management system standard

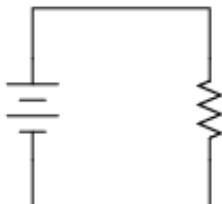
Dedicated facilities for battery testing

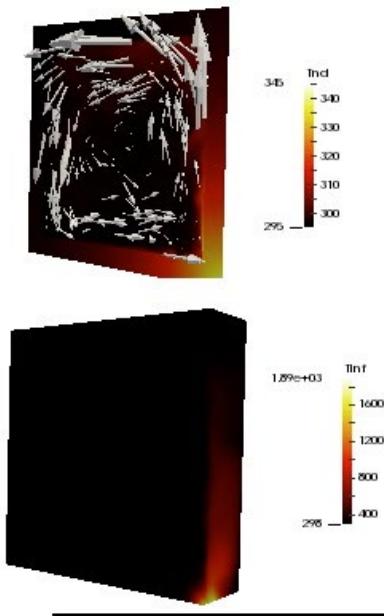
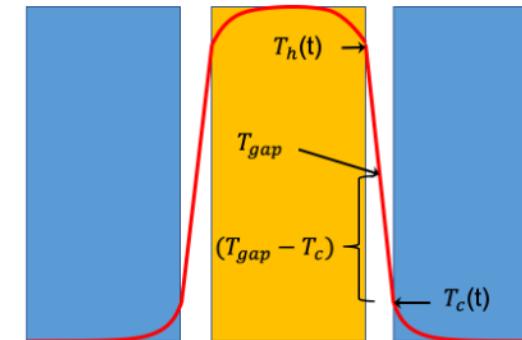
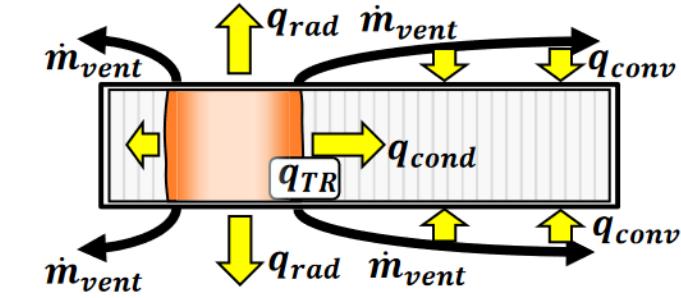
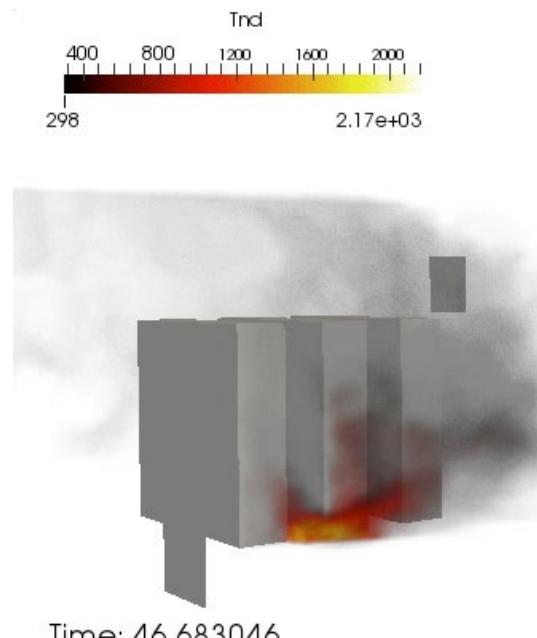
- Hundreds of independent channels for testing, from coin cells to kWh modules
- 150 uA to 2000 A current range capability
- R&D 100 Green Technology-awarded high-precision testers
- 70+ thermal chambers, ranging from 1.2 ft³ to 25 ft³
- -72°C to 95°C temperature capabilities
- Welding capabilities, including resistance, pinch, and spot
- Additional labs for materials characterization and 8000 ft² dry-room space for prototyping

9 World-class battery abuse lab (DOE Core facility)

- Comprehensive abuse testing platforms for safety and reliability of cells, batteries and systems from mWh to kWh
- Mechanical abuse
 - Penetration
 - Crush
 - Impact
 - Immersion
- Thermal abuse
 - Over temperature
 - Flammability measurements
 - Thermal propagation
 - Calorimetry
- Electrical abuse
 - Overvoltage/overcharge
 - Short circuit
 - Overdischarge/voltage reversal
- Characterization/Analytical Tools
 - X-ray computed tomography
 - Gas analysis
 - Surface characterization
 - Optical/electron microscopy


Approaches to designing in safety

The current approach is to test our way into safety:





- Large system (>1MWh) testing is difficult and costly

Supplement testing with predictions of challenging scenarios and optimization of mitigation

- Leverage world-class fire sciences, thermal modeling, and computing resources at SNL
- Develop multi-physics models to predict failure mechanisms and identify mitigation
- Build capabilities with small/medium scale measurements
- Still requires some testing and validation

Simulated short circuit

Advancing energy storage systems

1. Supporting incident investigation
2. Developing informational reports and guides with energy storage safety stakeholders
3. Sharing open source software and data

2Q2020 Highlights

NFPA 855 2020 has been published as a standard and the NFPA 855 Committee has begun deliberations for revisions to be included in NFPA 855 2023.

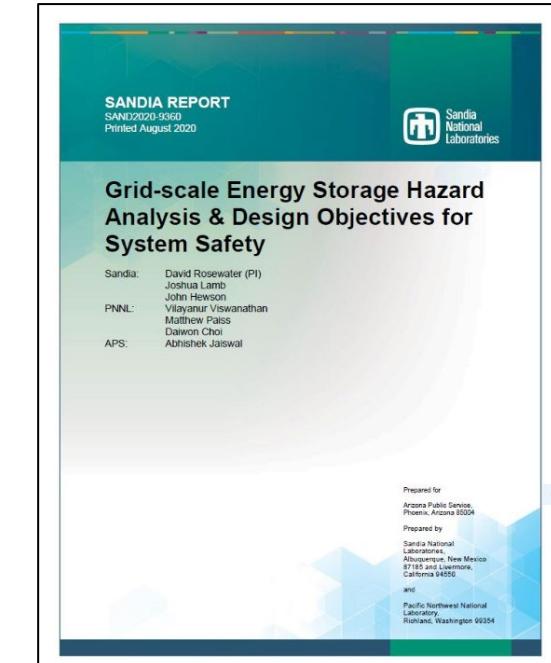
The second draft report on NFPA 791 has closed including the filing of a NITMAM.

The second draft report on NFPA 1 has closed including the filing of a NITMAM.

The 2021 ICC Group B Codes updates are complete and should be published in Summer 2020.

The 2nd edition of UL 9540 was published February 27, 2020.

The 4th Edition of ANSI/CAN/UL 9540A was published on November 12, 2019.


CODES AND STANDARDS UPDATE

Cell list						
Cathode	Capacity (Ah)	Temperature (C)	Min SOC	Max SOC		
LFP X NCA X NMC X	3.2 X 1.1 X 3 X	15 X 25 X 35 X	0 X 20 X 40 X	60 X 80		
Discharge C Rate	0.5 X 1 X 2 X +1 more					
Home > Cell List						
Li-ion cell list						
Cell ID	Cycles	Cathode	Capacity (Ah)	Temperature (C)	DOD	M
SNL_18650_G1_LFP5	3,545	LFP	1.10	25.00	100.00	
SNL_18650_G1_LFP6	3,636	LFP	1.10	25.00	100.00	
SNL_18650_G1_NCA1	654	NCA	3.20	25.00	100.00	
SNL_18650_G1_NCA2	522	NCA	3.20	25.00	100.00	
SNL_18650_G1_NMC1	521	NMC	3.00	25.00	100.00	

Supporting grid energy storage incident investigation

- 2019 battery energy storage system (BESS) fire in Surprise, Arizona – first instance of injury to first responders
- Safety team members provided neutral subject matter expertise to utility and first responders
- Published follow-up report on “Grid-scale Energy Storage Hazard Analysis and Design Objectives for System Safety”

Source: David Rosewater, Joshua Lamb, John Hewson

Leading outreach in energy storage safety

- Energy Storage Safety Collaborative formed in 2014 in response to a series of grid-scale battery fires
- Energy Storage Safety Strategic Plan published (currently undergoing revision)
- Annual Energy Storage Safety and Reliability Forum brings ~150 stakeholders annually to review the latest concerns and research
- Quarterly reports on the status of safety related codes and standards
- Engagement with NFPA, IEEE, and UL on education and standards development

ENERGY STORAGE SAFETY STRATEGIC PLAN

U.S. Department of Energy
Office of Electricity Delivery and Energy Reliability
December 2014

2Q2020 Highlights

NFPA 855 2020 has been published as a standard and the NFPA 855 Committee has begun deliberations for revisions to be included in NFPA 855 2023.

The second draft report on NFPA 791 has closed including the filing of a NITMAM.

The second draft report on NFPA 1 has closed including the filing of a NITMAM.

The 2021 ICC Group B Codes updates are complete and should be published in Summer 2020.

The 2nd edition of UL 9540 was published February 27, 2020.

The 4th Edition of ANSI/CAN/UL 9540A was published on November 12, 2019.

CODES AND STANDARDS UPDATE

Energy Storage Systems Safety and Reliability Forum
April 20-21, 2021

Sponsored by:

U.S. DEPARTMENT OF ENERGY
SANDIA NATIONAL LABORATORIES
PACIFIC NORTHWEST NATIONAL LABORATORY

Collaborating with EPRI on energy storage data and alarm management guide

- Review of energy storage data received from providers has shown that they're inconsistent and incomplete
- Robust data is key to safety & reliability analysis, including evaluation of performance claims
- 2020 EPRI-SNL V1 Guide proposed general guidelines for sampling rates and data points
- 2021 V2 Guide adds an alarm management framework and discussion of data quality/accuracy

Data Point	Units	Sample Rate Minimum	Power Application Report Out Minimum	Energy Application Report Out Minimum	Values
Flicker	Pst	≥500 Samples/Second	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg
System Frequency	Hz	≥1 Sample/Second	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg
THD	dBm	≥500 Samples/Cycle	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg
DC Power	kW	≥1 Sample/Second	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg
DC Voltage	V	≥1 Sample/Second	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg
DC Current	I	≥1 Sample/Second	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg
State of Charge	%	≥1 Sample/Second ⁴	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg
State of Health	%	≥1 Sample/Second	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg
Total DC Discharge Energy	kWh	≥1 Sample/Second	≥1 Sample/Second	≥ 1 Sample/15 minutes	value, max, min, avg

Sharing battery safety tools with the community

Launched heat release calculator based on Li-ion battery materials composition

Composition Case Formula(s)

Name of Layered Metal Oxide	Cathode Mass	Ni Content*	Co Content*	Mn Content*	Al Content*	Total	x = DoL	LMO Formula
Metal Composition 1	Optional	0.00	0.00	0.00	0.00	0.00	0.00	$\text{Li}_0.5\text{Ni}_{0.333}\text{Co}_{0.333}\text{Mn}_{0.333}\text{O}_2$

* Required field

Oxidation Enthalpy (kJ/mol O_2 , for electrolyte solvent, etc.)

-460.5

Ni cut-off for M_3O_4 formation

0.50

Calculate

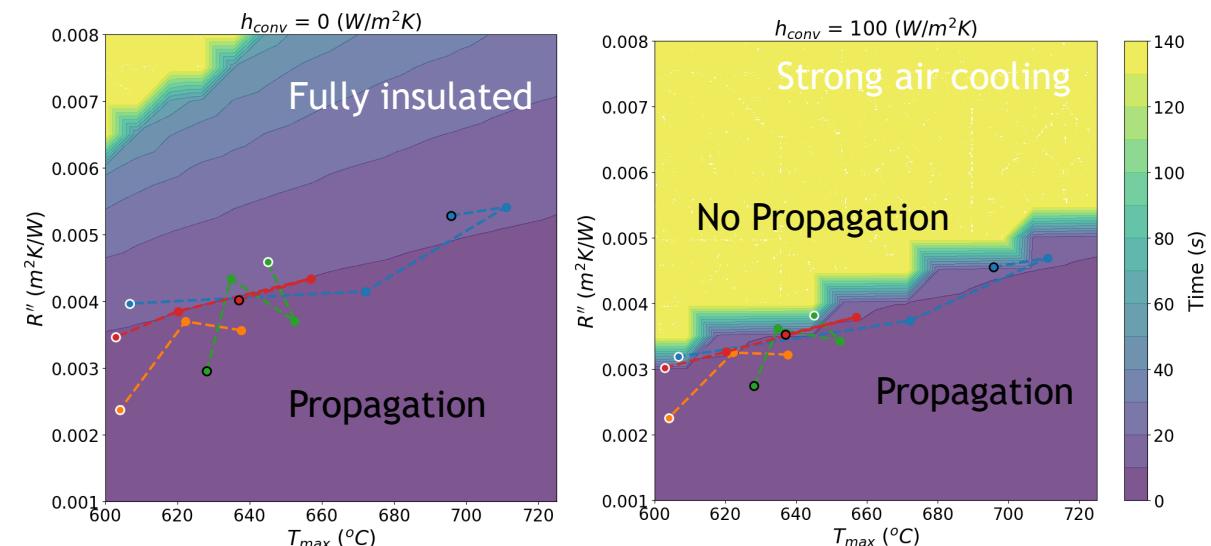
Lithium-ion Battery Thermodynamic Web Calculator

Results for:

Oxidation Enthalpy: -460.5 kJ/mol O_2

Ni Cutoff: 0.5

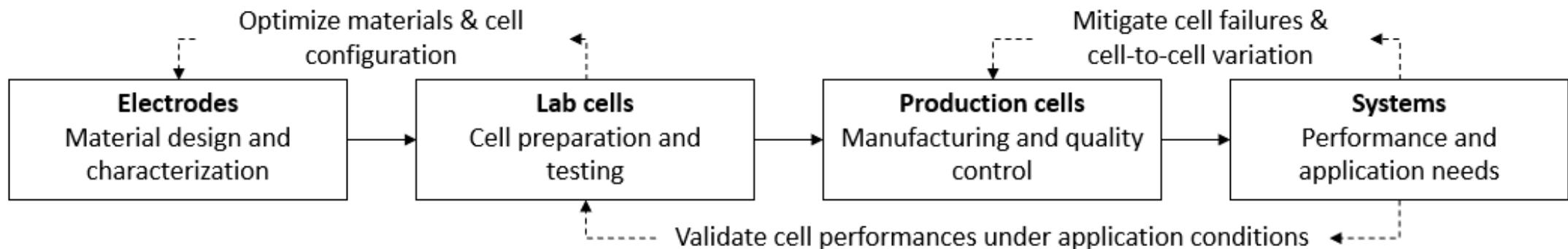
Case 1: Name = "NMC", Composition = $\text{Li}_{0.5}\text{Ni}_{0.333}\text{Co}_{0.333}\text{Mn}_{0.333}\text{O}_2$ ($x = 0.5$, M = $\text{Ni}_{0.333}\text{Co}_{0.333}\text{Mn}_{0.333}$)


Summarized Output:

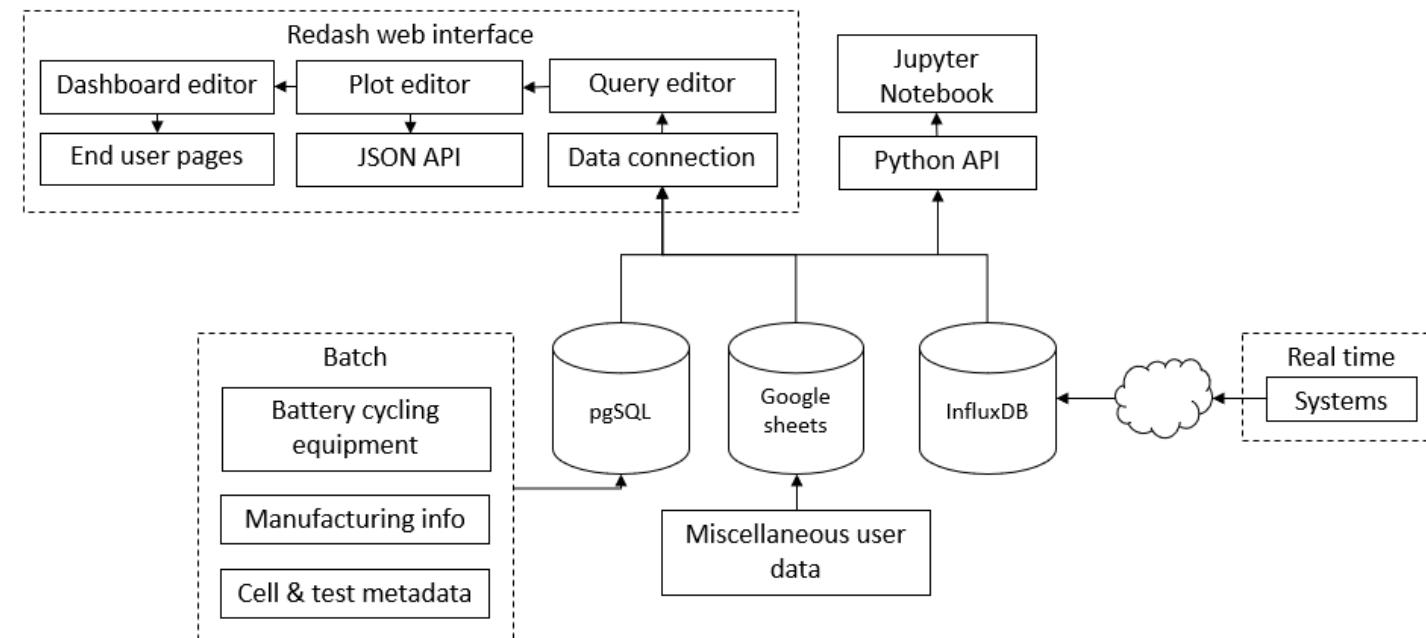
Heat Release Summary with Solvent Oxidation and Increments [ΔH_r (J/g $\text{Li}_0.5\text{MO}_2$)] (Assumes Low Nickel Content)				
$\text{MO}_2 \rightarrow \text{LiM}_2\text{O}_4$	$\text{MO}_2 \rightarrow \text{M}_3\text{O}_4$	$\text{MO}_2 \rightarrow \text{LiM}_2\text{O}_4 + \text{M}_3\text{O}_4$	$\text{LiM}_2\text{O}_4 + \text{M}_3\text{O}_4 \rightarrow \text{MO}$	$\text{MO}_2 \rightarrow \text{MO}$
Initial Reaction 4	Reaction 2	Reaction 9	Reaction 11	Global Reaction 1
Low Temp Increment	Med Temp Increment	Med Temp Cumulative	High Temp Increment	Cumulative Total Heat Release
Case 1: -225.8	0.0	-225.8	-691.7	-917.5

Source: Randy Shurtz

<https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/>


Developing simulator of module-level thermal runaway propagation

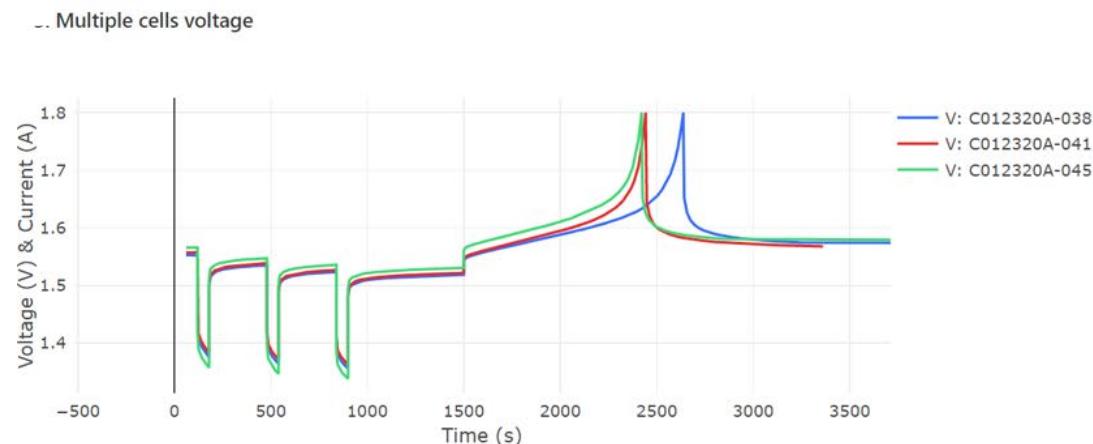
Source: Andrew Kurzawski



- Battery Lifecycle Framework (BLC) is an open-source platform that provides tools to visualize, analyze, and share battery data through the technology development cycle
 - Development began in 2019 with City College of New York
- Linking data across steps key to accelerating development of safe and reliable batteries
- BLC permits linking of multiple data sources, queries, and dashboards to track data from materials to systems

Open-source platform underpinning the Battery Lifecycle Framework

- BLC has four components: (1) data importers, (2) one or more databases, (3) a front-end for querying the data and creating visualizations, (4) an application programming interface to process the data
- Example implementations:
 - Used by a battery company to track data from the lab to the field
 - Online repository of cell testing data at www.BatteryArchive.org


Implementation A: Linking data across a battery's lifetime

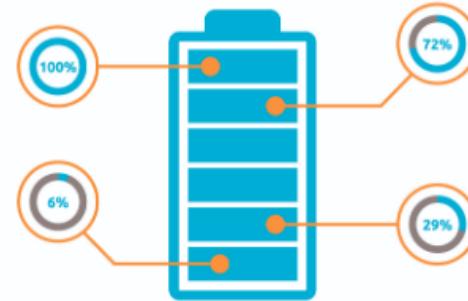
Example dashboard used by battery company to track data from lab cells to fielded systems

1) Manufacturing data for 3 cells imported into pgSQL database from a FileMaker database

cell_id	study	Anode Batch ID	Cathode Batch ID	Anode Weight (kg)	Cathode Weight (kg)
C012320A-038	3-pulse+1-cycle-Battery 1-SBT	A - 011520	C - 110819	0.98	1.80
C012320A-041	3-pulse+1-cycle-Battery 1-SBT	A - 011520	C - 110819	0.98	1.80
C012320A-045	3-pulse+1-cycle-Battery 1-SBT	A - 012120	C - 110819	0.96	1.86

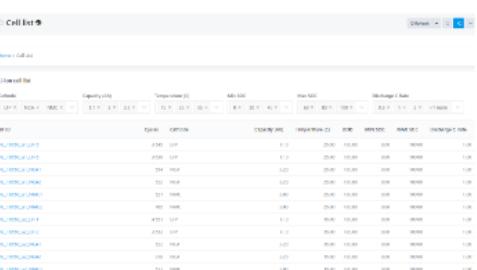
2) Cell-level pulse testing data imported from Arbin testers (MS Access) and a PEC tester (Oracle Database)

3) InfluxDB data from a fielded system



BatteryArchive.org

A repository for easy visualization, analysis, and comparison of battery data across institutions


View Data

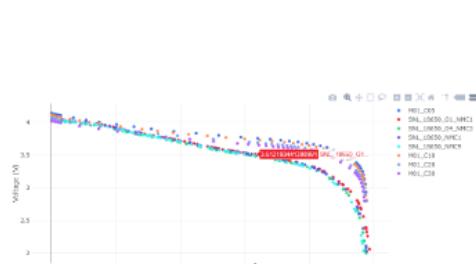
Features

1

Filter battery data

Query and filter for specific experimental conditions.

2


Visualize and compare data

Display battery data, including voltage curves
and capacity fade.

3

Compare data with models

Apply performance and degradation models to battery data.

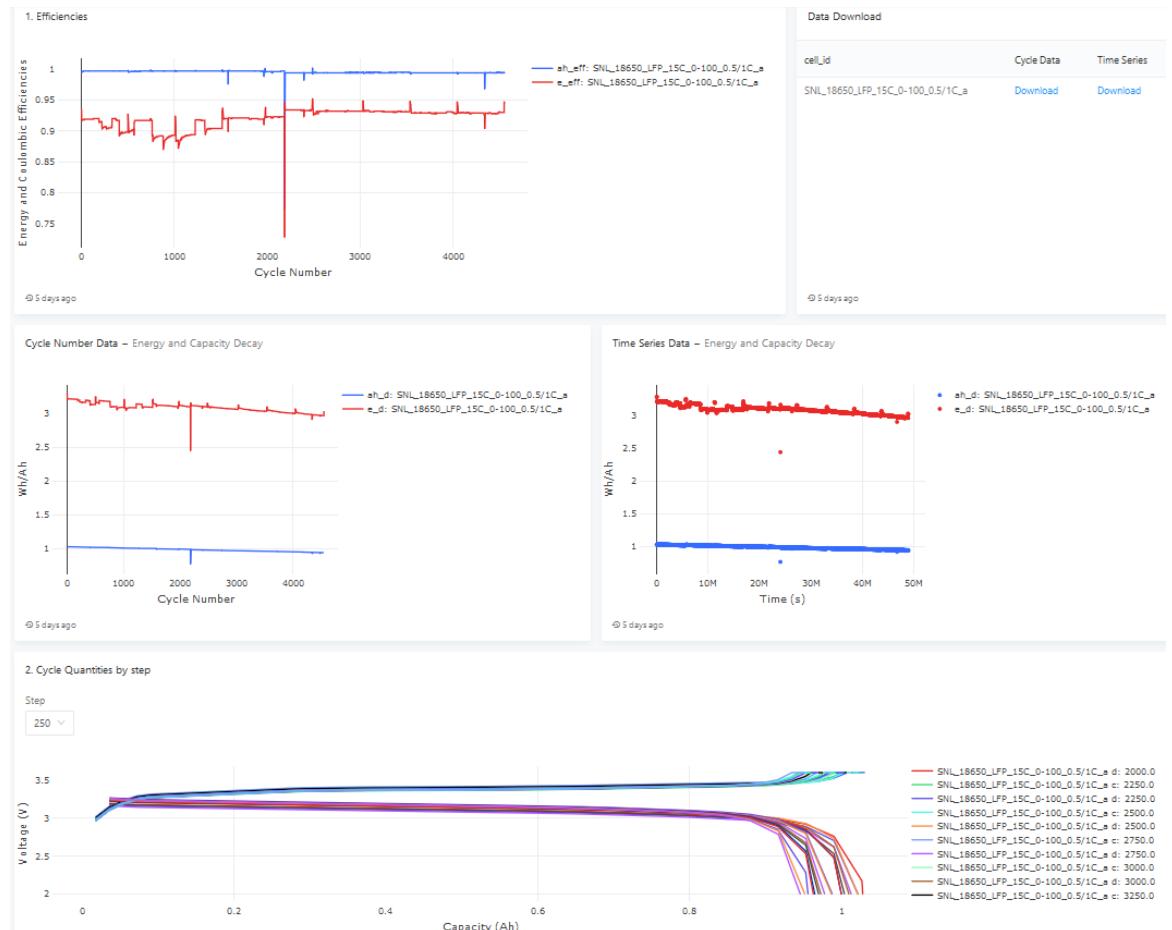
Developing BatteryArchive.org - first multi-institution battery cycling database

Search by metadata related to cell + cycling conditions

Cell list

Cathode	Capacity (Ah)	Temperature (C)	Min SOC	Max SOC
LFP x NCA x NMC x	3.2 x 1.1 x 3 x	15 x 25 x 35 x	0 x 20 x 40 x	60 x 80 x 100 x

Discharge C Rate


0.5 x 1 x 2 x +1 more

Home > Cell List

Li-ion cell list

Cell ID	Cycles	Cathode	Capacity (Ah)	Temperature (C)	DOD	MIN SOC	MAX SOC	Discharge C Rate
SNL_18650_G1_LFP5	3,545	LFP	1.10	25.00	100.00	0.00	100.00	1.00
SNL_18650_G1_LFP6	3,636	LFP	1.10	25.00	100.00	0.00	100.00	1.00
SNL_18650_G1_NCA1	654	NCA	3.20	25.00	100.00	0.00	100.00	1.00
SNL_18650_G1_NCA2	522	NCA	3.20	25.00	100.00	0.00	100.00	1.00
SNL_18650_G1_NMC1	521	NMC	3.00	25.00	100.00	0.00	100.00	1.00

Efficiencies, capacity and energy decay, and voltage curves automatically plotted for selected cells

All data translated to same format to enable easy comparison

Current status of BatteryArchive.org

Nearly 3000 site users, many return visits, from over 40 countries, academia and industry

Sources of datasets & collaborators

- Datasets online
- Datasets in pipeline
- Software interoperability

Future Directions

- Exploring the safety and degradation risks of advanced technologies
 - *Next generation lithium-ion batteries*: Silicon anode + High nickel cathode materials
 - *Advanced high energy batteries*: Solid state batteries
 - *Advanced chemistries for stationary storage*: Advanced alkaline + flow batteries
- Expanding safety testing and thermal modeling capabilities to accommodate rack- and system-level experiments
- Continuing to provide system-level hazard analysis and maintenance guidance
- Adding open-source modules for data analysis and complete examples of cells to systems datasets to the public BLC Framework
- Controlling battery degradation and thermal runaway using power electronics

Acknowledgements

Funded by the U.S. Department of Energy, Office of Electricity, Energy Storage program. Dr. Imre Gyuk, Program Director.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia Battery Safety & Reliability Team

Lorraine Torres-Castro
Jill Langendorf
Chris Grosso
Lucas Gray
Alex Bates
Armando Fresquez
Reed Wittman
David Rosewater
Chris Searles
John Hewson
Andrew Kurzawski
Randy Shurtz
Jacob Mueller

```
graph LR; A[Lorraine Torres-Castro] --- B[Jill Langendorf]; A --- C[Chris Grosso]; A --- D[Lucas Gray]; A --- E[Alex Bates]; A --- F[Armando Fresquez]; A --- G[Reed Wittman]; A --- H[David Rosewater]; A --- I[Chris Searles]; A --- J[John Hewson]; A --- K[Andrew Kurzawski]; A --- L[Randy Shurtz]; A --- M[Jacob Mueller]; B --- Abuse[Abuse]; C --- Abuse; D --- Abuse; E --- Abuse; F --- Testing[Testing]; G --- Testing; H --- Testing; I --- Codes[Codes & Systems]; J --- Codes; K --- Codes; L --- Codes; M --- Codes; N --- Thermal[Thermal modeling]; O --- Thermal; P --- Power[Power electronics]; Q --- Power;
```

Software Development

Valerio De Angelis (SNL)
Early framework testers at CCNY: Sanjoy Banerjee, Jinchao Huang, Andreas Savva, Gautam Yadav
Front end: Sam Roberts-Baca (SNL)
Database: Mark Spoonamore (SNL)
Early site feedback: Matthieu Dubarry (HNEI)

Research Collaborations

Matt Paiss, Charlie Vartanian (PNNL)
Hsin Wang, Michael Starke (ORNL)
Abhishek Jaiswal (Arizona Public Service Electric)
Michael Hargather (New Mexico Tech)
Venkat Subramanian (UT-Austin)
National Institute of Technology and Evaluation, Japan