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1. INTRODUCTION

The current manuscript is a final report on the activities carried out under the Project LDRD-CIS
#226834. In scientific terms, the work reported in this manuscript is a continuation of the efforts
started with Project LDRD-express #223796 with final report of activities SAND2021-11481, see
[83]. In this section we briefly explain what pre-existing developments motivated the current body
of work and provide an overview of the activities developed with the funds provided.

The overarching goal of the current project LDRD-CIS #226834 and the previous project
LDRD-express #223796 is the development of numerical methods with mathematically
guaranteed properties in order to solve the Euler-Maxwell system of plasma physics and
generalizations thereof. Even though Project #223796 laid out general foundations of space and
time discretization of Euler-Maxwell system, overall, it was focused on the development of
numerical schemes for purely electrostatic fluid-plasma models. In particular, the project
developed a family of schemes with mathematically guaranteed robustness in order to solve the
Euler-Poisson model. This model is an asymptotic limit where only electrostatic response of the
plasma is considered. Its primary feature is the presence of a non-local force, the electrostatic
force, which introduces effects with infinite speed propagation into the problem. Even though
instantaneous propagation of perturbations may be considered nonphysical, there are plenty of
physical regimes of technical interest where such an approximation is perfectly valid.

Within the scope of the proposed targets, project #223796 yielded a successful research
program leading to a family of technically-meaningful mathematically-robust schemes in order to
solve purely electrostatic fluid-plasma models. In the final report [83], the reader can also find
early attempts at solving the Euler-Poisson model with a ‘given’ magnetic field (see [83, Section
8.2]). However, such computational results were only preliminary efforts, that did not have the
same level of mathematical rigour supporting the other computational results presented in such
report. Around the same time, related efforts within our ASCR-OFES project, using the code
DREKAR, were exploring the development of computational capabilities in order to solve
problems with large magnetic fields, low temperature, strong-vacuum, and small electron mass,
see for instance [19, Section 7.5]. These developments aimed at the so-called cold-plasma
E×B-drift limit of plasma physics. Concurrently, the work reported in [55] was also brought to
our attention, pointing directly at the critical importance of E×B-drift limits and its related
physics in the context of SNL applications. These and other factors motivated the developments
of LDRD-CIS #226834 described in the current report.

Given the large number of applications associated to it, understanding the mathematical
behavior of PDE models describing strongly magnetized plasmas and magnetic drift-limits is a
topic of continuous and active scientific interest. The mathematical understanding of
kinetic models and corresponding numerical schemes in the context of E×B-drift limits, and
generally speaking ‘strongly magnetized plasmas’, is a topic that has received significant attention
in the last two decades [40, 41, 38, 10, 71, 2, 57, 56, 39, 29, 58]. However, the body of scientific
literature related to the numerical approximation of E×B-drift limits using plasma fluid-models is
minimal. Two mathematically meaningful references on this topic are [27, 11].

For both, kinetic and fluid models, the problem is hard enough such that a few strong
assumptions are usually made in order to make, at the very least, some partial progress. For
instance, standard assumptions are that the magnetic field B is perfectly perpendicular to the
velocity field. Similarly, it is very common to see that a large number of papers in the scientific
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literature assume that either the electric field E and/or the magnetic field B are ‘given’ (rather than
computed self-consistently from the evolution equations). This approach allows to isolate
difficulties, focus on a number of specific issues, and the development of rigorous analysis.

The fundamental difficulty associated to the numerical approximation of E×B-drift limits is
caused by a change of type of the PDE. For instance, the barotropic Euler-Poisson system with a
self-consistent electric field and a given magnetic field, can be considered to be a hyperbolic
balance law subject to an elliptic constraint (a constraint that propagates at an infinite speed of
propagation) coupling the density, momentum and electric field. The hyperbolic character is
given by Euler’s equation of gas dynamics describing conservation of mass and momentum, while
the elliptic character is given by the electric potential and the electrostatic force. Even though the
notion of hyperbolic characteristics does not really apply to hyperbolic systems in one or more
space dimensions, formally, we could say that the barotropic Euler’s system has three
‘characteristics’ in two space dimensions. In the asymptotic limit of zero electron-mass, the
barotropic Euler-Poisson system with a given magnetic field loses a significant portion of its
hyperbolic character: the original PDE system having four-scalar components collapses into a
single scalar-valued non-local ODE describing the evolution of electron density, see Section 2.2.
Formally, we could say that some hyperbolic characteristics ‘cease to exist’ in the limit of
vanishing electron mass. This pathological PDE-behavior, leading to a radical change of type,
reduction of the number of components of the PDE, and hyperbolic characteristics that ‘cease to
exist’, is a staple of many PDE models of fluid mechanics and plasma physics.

Situations like this one are at the core of what is usually known as asymptotic preserving
schemes [59, 34, 43]. Such schemes are meant to be capable of retaining formal consistency and
stability of the scheme in the context of vanishingly-small parameters that may lead to a change
of type of the original PDE. The usual procedure associated to the development of
asymptotic-preserving schemes follows the pattern:

(i) From the original PDE: write down the formal limit-PDE when the small parameter goes to
zero.

(ii) Develop a stable scheme for the limit-PDE.
(iii) Develop a scheme consistent with the original PDE that is also (formally) a ‘regular

perturbation’ of the scheme developed in (ii).
(iv) Supply rigorous mathematical results (indisputable proofs) showing that the scheme is

indeed asymptotic preserving.
(v) Supply computational evidence comparing the numerical behavior of the scheme developed

in (iii) with any of the so-called ‘standard approaches’.
Bullets (i)-(v) define a computationally, mathematically, and technically sound road map in order
to develop and evaluate numerical concepts. However, early departure from SNL of one the team
members of this LDRD led to a significant reduction of the number of months available in order
to execute such an ambitious plan. The original work plan underwent major restructuring: some
the items associated to the work-plan (i)-(v), described above, where either cut-short, eliminated,
or replaced by other not less important tasks. The work-plan actually executed with the funds
supplied by LDRD-CIS would be much more accurately described by:

(i) Mathematical development of a stable scheme for the limit-PDE (magnetic drift-limit
model). Essentially, all the mathematical work reached full completion. The primary
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motivation to have such a scheme at our disposal was having a reference scheme and
numerical solution to compare with. However, this scheme was not implemented. Primary
focus of the software development efforts were diverted into the isothermal Euler-Poisson
system with a given magnetic field, which is a much more technically relevant model.

(ii) The activities developed in (i) required revisiting the scheme originally developed in [83]
for the Euler-Poisson system. Some new developments in relationship to the preservation of
Gauss-law were advanced. These developments were used for all the computational results
used in this report.

(iii) Mathematical development and implementation of a semi-implicit scheme capable of
preserving positivity of density, internal energy, and boundedness of the total energy
(mechanical + potential) of the system. These activities were dominated by a heavy
workload of software development, evaluation and bench-marking of the proposed ideas.
An unintended, but welcome, consequence of this work is the development of a new
computational technique for the efficient assembly of the electric potential problem that
avoids Schur complements (in their entirety) and is readily compatible with matrix-free
methods, see Section 4.4. The new scheme possesses quite a few provable mathematical
properties that are explained in this report. But given the time constraints at place, we do
not provide a proof of asymptotic preservation at this point in time.

(iv) The activities developed in (iii) required revisiting the pre-existing scientific literature of
Diagonally Implicit Runge-Kutta (DIRK) methods [1, 21]. This activity was started as an
ancillary line of research, however, it proved to be of critical importance for the success of
the activities developed in (iii). The final outcome is an entirely new body of analysis of
DIRK methods [81] that is significantly much more conclusive than any previous notion of
algebraic stability. The results advanced in [81] are of critical importance in order to
guarantee the energy-stability of the numerical scheme used to solve the Euler-Poisson
system with a given magnetic field.

Overall, we believe that the outcomes from the above described activities (i)-(iv) have set the
stage for the final goal of developing unconditionally robust numerical methods for full
Euler-Maxwell system. The results presented in this report will lead to both: a body of scientific
journal publications and improved knowledge that will guide the development of production SNL
plasma codes and enable more advanced DOE computational efforts.

The outline of the current report is as follows: in Section 2 we describe the isothermal
Euler-Poisson model with a given magnetic field. In Section 2.2 we derive the cold-plasma
drift-limit of the isothermal Euler-Poisson system. In Section 2.3 we describe the basic
mathematical properties satisfied by such drift-limit PDE-model. In Section 3 we layout the
elements of the most straightforward scheme we could use in order to solve the drift-limit
PDE-model. In Section 4 we describe a family of numerical schemes in order to solve the
isothermal Euler-Poisson model with a given magnetic field. The choice of source-update scheme
appears to be of critical importance for the overall performance the scheme. That is why in
Section 4.3 we describe three choices of source-update scheme, and in Section 4.4 we explain
how to develop an efficient computational implementation (we avoid Schur complements in their
entirety). In Section 5 we establish, rigorously, the minimal structural conditions required by the
scheme in order to satisfy global entropy-stability properties. Section 6 presents some targeted
computational experiments. These experiments focus on a single critical numerical test: the
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Diocotron instability. The computational setup of the Diocotron instability is thoroughly
described in 6.2. In Sections 6.3-6.7 we provide strong computational evidence showing that the
numerical schemes advanced in this report can indeed approximate and provide efficient solutions
near the magnetic drift-limit without suffering degradation of their robustness or time-step size.

At this point, due to the compressed time-schedule, all the computational experiments provided
in Section 6 offer mostly qualitative information. In other words, we present minimal quantitative
metrics (e.g. convergence rates, growth-rates, etc). In spite of this, we strongly encourage the
reader to take a serious look at the results advanced in Section 6: these computational
experiments supply critical information in relationship to the proper design of schemes which, we
believe, is very hard to challenge. A future follow-up report/paper with primary focus in
quantitative metrics (convergence rates, growth rates, wall-clock time, etc) is planned.

2. ISOTHERMAL EULER-POISSON AND DRIFT-LIMITS

2.1. Euler-Poisson system with ‘given’ magnetic field.

The starting point of our discussion is the isothermal Euler-Poisson model with given magnetic
field:

∂tρ+divp = 0 , (1a)

∂tp+div(ρ−1pp>+ Ip) =− qe
me

ρ∇ϕ+ qe
me

p×B− 1
T p , (1b)

−ε∆∂tϕ =− qe
me

divp , (1c)

where ρ = mene, p = menev and p = θρ, θ is the temperature, T has units of time. Here me is the
specific electron mass, ne is the particle number density, and v denotes the velocity. We assume
that B is ‘given’ or ‘known’, but the electric potential ϕ is part of the unknown fields: it is
computed in a self-consistent manner. We also assume that |B|`2 ≥ B[ > 0 in the entirety of the
domain. In the following remark we describe the primary stability property satisfied by
PDE-system (1).

Remark 2.1 (Global entropy balance). System (1a)-(1b) satisfies the following formal entropy
flux-balance

∂tη(u)+div [vη(u)+vθρ]+ 1
T
|p|2

ρ
=− qe

me
∇ϕ ·p , (2)

where u = [ρ,p]> denotes the state of the hyperbolic subsystem (1a)-(1b), and
η(u) = 1

2
|p|2

ρ
+θρ lnρ is its mathematical entropy, see for instance [77, p. 98]. In addition, (1c)

satisfies the energy identity

∂

∂t

∫
Ω

ε

2 |∇ϕ|2 dxxx− ε

∫
∂Ω

ϕ∇∂tϕ ·ndxxx = qe
me

∫
Ω

p ·∇ϕdxxx− qe
me

∫
∂Ω

ϕp ·ndxxx . (3)

Integrating (2) in space and adding it to (3) we get

∂

∂t

∫
Ω

η(u)+ ε

2 |∇ϕ|2 dxxx+
∫

∂Ω

[ qe
me

ϕp+
(
η(u)+θρ

)
v− εϕ∇∂tϕ

]
·ndsss+

∫
Ω

1
T
|p|2

ρ
dxxx = 0 . (4)

10



We highlight that (4) is just a formal balance, a consequence of assuming smoothness. The
mathematical understanding of hyperbolic conservation laws is at its infancy [22, 3], in particular
in two or more space dimensions. The mathematical understanding of hyperbolic balance laws is
significantly less complete. PDE systems such as (1) should not be understood as ‘physical
models’ per se, but rather as incomplete model descriptions. The most widely accepted consensus
is that such models have to be understood as vanishing-viscosity limits, possibly complemented
with vanishing-dissipation mechanisms. In such context we may replace (4) by

∂

∂t

∫
Ω

η(u)+ ε

2 |∇ϕ|2 dxxx+
∫

∂Ω

[ qe
me

ϕp+
(
η(u)+θρ

)
v− εϕ∇∂tϕ

]
·ndsss+

∫
Ω

1
T
|p|2

ρ
dxxx≤ 0 . (5)

Since
∫

Ω
η(u)+ ε

2 |∇ϕ|2 dxxx is not a norm, a positive definite quadratic functional, or a
generalization of such concept, we say that

∫
Ω

η(u)+ ε

2 |∇ϕ|2 dxxx is the entropy of the system (1),
and that (5) is an entropy-dissipation inequality, see for instance [61].

The goal of this manuscript is the development of schemes that attempt to preserve a discrete
counterpart of (5): we may consider that vanishing-viscosity and vanishing-damping effects are
not only consistent with the nature of the scheme but also desirable. This is just a bold assertion,
that cannot be rigorously justified at this point in time. However, as we will see later in Sections 5
and 6.4, it appears to be correct and have major consequences in relationship to the proper design
of numerical schemes.

2.2. Cold-plasma magnetic drift-limits.

Since ρ = mene and p = menev; where me is the electron mass, ne is the electron number density,
and v is the velocity; we can rewrite (1) as follows:

∂tne +div(nev) = 0 , (6a)

me∂t(nev)+mediv(nevv>)+∇p =−qene∇ϕ+qenev×B− me
T nev , (6b)

−ε∆∂tϕ =−qediv(nev) . (6c)

Now, taking zero electron-mass limit me→ 0+, system (6) reduces to:

∂tne +div(nev) = 0 ,
∇p =−qene∇ϕ+qenev×B− me

T nev , (7a)
−ε∆∂tϕ =−qediv(nev) .

We can see that (7a) has no inertial terms, meaning, the velocity of the electrons can react
instantaneously to any force. We define B̂ = B/|B| and, for the sake of an argument, we neglect
friction/resistive terms by setting T =+∞. Taking the dot product of (7a) with B̂, and taking the
cross of product of (7a) with B̂ we get respectively: B̂:

∇p · B̂ =−qene∇ϕ · B̂ (8)

∇p× B̂ =−qene∇ϕ× B̂+qene(v×B)× B̂ (9)

It is well-known that the difficulties associated to expression (8) are very fast pressure waves
along the magnetic field lines [27, 11, 25]. On the other hand, the nature of (9), at least in the
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‘pressureless’ or ‘cold-plasma’ limit (i.e., θ = 0), is the presence of very high-frequency
oscillatory phenomena. We may be inclined to say that model (1) is a multiscale problem,
containing not only the time-scales associated to hyperbolic waves (material transport and
acoustic waves) but also high-frequency ‘ringing’ associated to the source terms. We may
simplify model (1) in order to eliminate, completely, all high-frequencies and obtain a model
capable of capturing low-frequency transport-like waves that are representative of macroscopic
motions. In order to further delve into this issue, we make the following assumptions on the
entirety of the manuscript:

(A1) Two-dimensional hydrodynamics and electrostatics, combined with perpendicular magnetic
fields, more precisely:

v = [v1,v2,0]> , ∇ϕ = [∂xϕ,∂yϕ,0]> , B = [0,0,B]> .

Therefore, we have the following orthogonality properties

v ·B≡ 0 , ∇ϕ ·B≡ 0 , ∇p ·B≡ 0 .

Although it is not strictly necessary, in order to fix ideas, we will assume that B = const in
time and space. We note however, that the vast majority of the results presented in this
report hold true well beyond the context of such assumption.

(A2) Temperature is negligible, i.e. θ∼= 0, p∼= 0, ∇p∼= 0. Therefore, the presence of fast
pressure waves related to (8) are not of our primary concern in this manuscript1.

Using identity

A× (B×C) = (A ·C)B− (A ·B)C (10)

and assumptions (A1) and (A2), we deduce that (v×B)× B̂ =−|B|v, therefore from (7a) we get
that:

v = vd := B×∇ϕ

|B|2 . (11)

Here vd is the so-called magnetic-drift velocity which, at least in paper, is reached in the
cold-plasma zero-electron mass limit. It is responsible for the ‘spinning or spiraling’ nature of
currents in the cross-section of conductors, magnetically insulated transmission lines, tokamaks,
etc. The drift-velocity is somewhat smooth and does not constitute a major limiting factor of
numerical schemes. What is indeed problematic is that the drift-velocity co-exists with the
cyclotron and plasma frequencies which induce low-amplitude high-frequency motions
superposed on top of the drift-velocities.

Summarizing our findings: under assumptions (A1) and (A2), in the limit of θ→ 0+ and
me→ 0+ the solution [ne,v,ϕ] of system (6) should coincide with the solution of the limiting

1‘Stiff’ pressure waves in the direction of the magnetic field B pose a formidable mathematical and numerical chal-
lenge. However, even in the cold-plasma limit, the effect of electrostatic plasma oscillations and cyclotron motions
are enough to produce catastrophic consequences in many plasma physics codes. Our research plan is to solve
and understand one problem at a time. At the time of this writing, we have decided to focus our efforts on the
high-frequency electromagnetic phenomena caused by electrostatic plasma-oscillation and cyclotron motion.
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system {
qe∂tne =−qediv(nev)
ε∆∂tϕ = qediv(nev)

where v := B×∇ϕ

|B|2 . (12)

We see that:

� As written, system (12) is intentionally redundant: the evolution of the scalar-valued
functions qene and −ε∆ϕ is identical. This means that either ϕ or ne could be eliminated. It
is not difficult to realize that if the initial data of (12) satisfies the relationship
−ε∆ϕ = qene, then it does for all time. Therefore, we have that ∇ϕ = qe

ε
∇(−∆)−1ne for all

time, which allows us to re-write (12) into a single evolutionary PDE:

∂tne =−qe
ε

div
(
ne

B×∇(−∆)−1ne
|B|2

)
. (13)

Note that div
(
ne

B×∇(−∆)−1ne
|B|2

)
is a zero-order differential operator. Magnetic drift-limits are

usually called ‘diffusive-limits’, however we may challenge this terminology since (13)
does not describe a diffusion in any traditional sense. We may claim that (13) is a non-local
ordinary differential equation or zero-order non-local PDE. The PDE-analysis literature has
greatly benefited from non-local formulations such as (13), see for instance [42] and [80].

However, beyond highly specialized audiences, non-local numerical formulations have
found limited popularity in the context or large scale production codes. Therefore, some of
the of the premises of these notes are: (i) Avoiding by all means non-local formulations
such as (13), (ii) Exploiting redundancy to our favor in a numerical context. By using the
redundant formulation (12) we may be able to recast elliptic constraints (e.g. −ε∆ϕ = qene)
as an evolutionary PDEs. Exploiting redundancy and recasting elliptic constraints as an
evolutionary process is not a new idea, at the very least, it was advanced in [83] by the
authors.

� We have that div
(B×∇ϕ

|B|2
)
= 0 whenever curl

( B
|B|2
)
= 000: this follows from identity

div(A×C) = curlA ·C− curlC ·A. In particular, this situation occurs whenever B≡ const.
Or using words: the drift velocity becomes divergence-free in the context of constant
magnetic fields. Whether this situation occurs in actual technical applications is somewhat
debatable. However, a numerical scheme that is meant to work with absolute generality, in
every possible context, should be able to accommodate that situation. By itself,
approximating divergence-free or weakly divergence-free velocities is not an impossible
task. In fact there are plenty of inf-sup compatible finite element pairs capable of doing so
[7]. However, accommodating such constraints may not be trivial if we also want to satisfy
other PDE-properties, in particular, pointwise stability properties (e.g. max-min principles
and invariant sets, see for instance [53]).

Hopefully, this observation is enough to convince the reader that even though we are
neglecting fast pressure waves associated to (8), approximating the cold-plasma drift-limit
of problem (1) is by no means a trivial problem. We mention in passing that short-time
existence as well as blow-up of solutions of system (12) when divvd ≡ 0 has been studied
in [4].
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� It is worth mentioning that the 2d vorticity formulation of the incompressible Euler
equations consist of:

∂tω+div(vω) = 0 and ∆ψ = ω , (14)

where

v := ∇
⊥

ψ :=

−∂yψ

∂xψ

0

=

0
0
1

×
∂xψ

∂yψ

0

 ,

see for instance [68]. Since ∆∂tψ = ∂tω we can rewrite (14) in redundant form{
∂tω+div(vω) = 0

∆∂tψ+div(vω) = 0 .
(15)

If we set B≡ [0,0,1]>, ε = 1, qe = 1, ne := ω, and consider the relabeling ϕ := ψ in (12)
then: systems (15) and (12) are completely equivalent. We might want to call ∆ψ = ω the
“vorticity Gauss-law”.

� PDE model (12) does NOT exhibit plasma-oscillation or cyclotron frequency. Without
inertial effects, such high-frequency phenomena cannot be described by model (12). Model
(12) is not a multiscale problem and it only displays transport-like waves.

� The magnetic drift-limit model (12) alone is primarily of academic interest and it might not
be immediately apparent how such a limiting model aligns with the broader goal of
modeling and simulating fluid models of dense plasmas, which is a cornerstone of the
DOE/SNL/NNSA enterprise. To this end we point out that such fluid models may indeed
degenerate and operate at regimes very close to those satisfied by the magnetic drift-model
(12). The primary goal of this manuscript is thus to advance and and develop numerical
schemes for fluid-plasma models that can operate close the stated drift regime without
suffering severe degradation of time-step size, loss of positivity and/or invariant-set
properties, while also preserving entropy-dissipation properties.

Finally, we mention that system (12) can be found in the literature under various names, such as:
cold-plasma magnetic-drift limit [23], guiding-center drift-limit [74, 75, 16, 35, 89, 86],
E×B-drift limit, gyro-fluid drift-limit [27], 2d-striation model [4], and the vorticity-formulation
of Euler’s equations [68]. In every case, the underlying PDE-model is essentially equivalent. In
the next Section we try to find the simplest numerical discretization for formulation (12) that
attempts to recover some form of stability.

2.3. Basic properties of the magnetic drift-limit model

In this subsection we discuss schemes for the system (12). We highlight, again, that model
described by (12) is meaningless unless we make the assumption |B|`2 ≥ B[ > 0.

Proposition 2.1 (Formal stability properties). Model (12) is such that:

� The particle number density ne remains non-negative provided that the initial data is
non-negative.
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� Total electric energy satisfies the following energy balance

∂

∂t

(
ε

2

∫
Ω

‖∇ϕ‖2 dxxx
)
=

∫
∂Ω

ϕ(ε∇∂tϕ−qene
B×∇ϕ

|B|2 ) ·ndsss . (16)

� Assuming that the initial data satisfies the constraint −ε∆ϕ = qene at time t = 0, and that
‖ne‖L6/5(Ω) is uniformly bounded for all time, then the total electric energy satisfies the
estimate

ε‖∇ϕ‖L2(Ω) . sup
t∈[0,tF ]

‖ne‖L6/5(Ω) ∀t ∈ [0, tF ]. (17)

Proof. The fact that the ∂tne +div(nev) = 0 preserves the sign of the initial data can be found in
several academic references (see for instance [50, Section 3.1]) and we will not discuss it here. In
order to prove that relationship (16) holds true we multiply the PDE for the potential in (12) by a
smooth test function ω and using integration by parts we get

ε

∫
Ω

∇∂tϕ ·∇ωdxxx− ε

∫
∂Ω

ω∇∂tϕ ·ndsss = qe

∫
Ω

nev ·∇ωdxxx−qe

∫
∂Ω

ωnev ·ndsss . (18)

Now, using expression (11) for the velocity v, and setting ω≡ ϕ we get

∂

∂t

(
ε

2

∫
Ω

|∇ϕ|2 dxxx
)
− ε

∫
∂Ω

ϕ∇∂tϕ ·ndsss = qe

∫
Ω

ne
B×∇ϕ

|B|2 ·∇ϕdxxx︸ ︷︷ ︸
=0

−qe

∫
∂Ω

ϕne
(B×∇ϕ

|B|2
)
·ndsss . (19)

The remaining steps are just a matter of reorganization. Finally, estimate (17) is just a direct
consequence of the Gauss-law −ε∆ϕ = qene, which leads to the energy-identity
ε‖∇ϕ‖2

L2(Ω)
= qe〈ne,ϕ〉. Assuming boundedness of 〈ne, ·〉 in dual-norm leads to the requirement

ne ∈ Lp(Ω) with p≥ 6/5 which is a consequence of well-known Sobolev embedding theorems
(see for instance [33, Ch. 5]).

In this context, (16) and (17) are structural properties of the magnetic-drift-limit system (12).
They are the template of properties we might want to preserve at the discrete level. In the
following section we propose a scheme that attempts to strike a balance between property
preservation and practical implementability.

3. A NUMERICAL SCHEME FOR THE DRIFT-LIMIT MODEL.

Let un = [nn
e ,∆ϕn] be the initial data for system (12), we consider the splitting ∂tu = Au+Bu

with the operators A and B defined as

∂t

[
ne

ε∆ϕ

]
=

[
−div(vd�) 0

0 0

]
︸ ︷︷ ︸

:=A

[
ne
∆ϕ

]
+

[
0 0

0 qediv(ne
B(t)×∇∆−1�
|B(t)|2 )

]
︸ ︷︷ ︸

:=B

[
ne
∆ϕ

]
.
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Using this splitting, we define a formally-second order accurate time-integration scheme
Algorithm 1.

Algorithm 1 strang_one_time_step({nn
e ,ϕ

n,B(t)})

��� Stage #1: compute n
n+ 1

2
e , solution of ∂tne + div(nev) = 0, from initial time tn to tn+ 1

2 :=
tn + 1

2τ, where v = B(t)×∇ϕn

|B(t)|2 , with initial data given by nn
e . Note: the potential ϕn does not

evolve in this stage.

��� Stage #2: find ϕn+1, solution of the following non-symmetric elliptic problem

−ε(∆ϕ
n+1−∆ϕ

n)+qeτdiv
(

n
n+ 1

2
e

Bn+ 1
2×∇ϕ

n+ 1
2

h

|Bn+ 1
2 |2

)
= 0 , (20)

where ϕ
n+ 1

2 := 1
2(ϕ

n+1 +ϕn). Note: the density n
n+ 1

2
e , does not evolve in this stage.

��� Stage #3: compute nn+1
e , solution of ∂tne + div(nev) = 0 from initial time tn+ 1

2 to tn+1 :=

tn + τ where v = B(t)×∇ϕn+1

|B(t)|2 with initial data given by n
n+ 1

2
e . Note: the potential ϕn+1 does

not evolve in this stage.

Return: {nn+1
e ,ϕn+1}

Remark 3.1 (Stability of Stage #2). The Stage #2 of the scheme described in Algorithm 1
respects the boundedness of the total electric energy, more precisely, we have that:

ε‖∇ϕ
n+1‖2

L2(Ω) = ε‖∇ϕ
n‖2

L2(Ω)+Boundary Terms , (21)

which follows by multiplying (20) by a test function ω and integration by parts,

ε

∫
Ω

∇ϕ̃
n+1 ·∇ωdxxx− τqe

∫
Ω

n
n+ 1

2
e

(
Bn+ 1

2×∇ϕ
n+ 1

2

|Bn+ 1
2 |2

)
·∇ωdxxx︸ ︷︷ ︸

skew-symmetric term

= ε

∫
Ω

∇ϕ
n ·∇ωdxxx , (22)

and taking ω := ϕ
n+ 1

2 . Up to boundary terms, (21) mimics the time-continuous PDE property
(16).

Remark 3.2 (Gauss-law violation). In principle, Marchuk-Strang splitting scheme is formally
second-order accurate. The expectation is that, Algorithm 1 will return a pair nn+1

e and ϕn+1

satisfying a formal error estimate:

ε‖∇ϕ(tn+1)−∇ϕ
n+1‖L2(Ω)+qe‖ne(tn+1)−nn+1

e ‖L2(Ω) ≤ O(τq) ,

for some q≤ 2, where ϕ(tn+1) and ne(tn+1) represent the exact solutions, while ϕn+1 and nn+1
e

represent the solutions returned by Algorithm 1. However, there is absolutely no good reason to
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expect that the Gauss-law is respected exactly. Meaning that, in general, the property
−ε∆ϕn+1 = qenn+1

e ∈ H−1(Ω) will not be satisfied. The purpose of this project was not the
development of techniques in order to preserve/recover preservation of the Gauss-law. However,
we needed to introduce a mechanism in order to evaluate the sensitivity and robustness of the
numerical scheme described by Algorithm 1 with respect to the preservation (or violation) of the
Gauss-law. In Appendix B we describe a simple procedure and prove that it is necessarily benign:
that is, it cannot reduce the order of convergence of the scheme. The actual scheme that we would
use in practice would follow the steps described in Algorithm 2.

Algorithm 2 strang_with_restart({nn
e ,ϕ

n,B(t)})

{nn+1
e ,ϕn+1} := strang_one_time_step({nn

e ,ϕ
n,B(t)}

κ := ‖∇ϕn+1‖

ϕ̂n+1 := line_search_gauss_law_restart( {nn+1
e ,nn+1

b ,ϕn+1,κ}

Return: {nn+1
e , ϕ̂n+1}

4. NUMERICAL SCHEMES FOR THE EULER-POISSON SYSTEM WITH
GIVEN MAGNETIC FIELD

4.1. Semi-implicit splitting of variables

In this section we follow the same line of thought introduced in Section 2.2 of [83]. The simplest
approach to solve the system of equations (1) consists in considering two asymptotic regimes. In
one of such regimes, the source terms are assumed to negligible. We will call it the
hyperbolic-dominated regime:

∂tρ+divp = 0 , (23a)

∂tp+div(ρ−1pp>+ Ip) = 000 , (23b)
−ε∆∂tϕ = 000 . (23c)

We consider a second regime, where source terms dominate the dynamics and hyperbolic terms
are negligible

∂tρ = 0 , (24a)

∂tp =− qe
me

ρ∇ϕ+ qe
me

p×B− 1
T p , (24b)

−ε∆∂tϕ =− qe
me

divp , (24c)

This structure lends itself naturally to the idea of using operator-splitting in time. The first-order
scheme in this context is usually known as Yanenko operator splitting:
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Algorithm 3 yanenko_one_time_step({ρn,pn,ϕn})

��� Stage #1: given the initial data [ρn,pn]>, compute [ρn+1,pn+ 1
2 ]>, solution of the hyperbolic

system (23), from initial time tn to tn+1 := tn + τ (full time-step increment). Note that the
electric potential does not evolve in this Stage #1, and that the density ρn+1 computed in this
stage is the final density returned by the Yanenko splitting scheme.

��� Stage #2: given the data [ρn+1,pn+ 1
2 ,ϕn]>, compute [pn+1,ϕn+1]>, solution of the coupled

source-system (24b)-(24c), from initial time tn to tn+1 := tn + τ (full time-step increment).
Note that ρn+1 does not evolve in this Stage #1.

Return: {ρn+1,pn+1,ϕn+1}

The second-order of operator splitting is called Marchuk-Strang splitting:

Algorithm 4 strang_one_time_step({ρn,pn,ϕn})

��� Stage #1: given the initial data [ρn,pn]>, compute [ρn+ 1
2 ,pn+ 1

2 ]>, solution of the hyperbolic
system (23), from initial time tn to tn+ 1

2 := tn + 1
2τ (half time-step increment). Note that the

electric potential does not evolve in this Stage #1.

��� Stage #2: given the data [ρn+ 1
2 ,pn+ 1

2 ,ϕn]>, compute [p̃n+1,ϕn+1]>, solution of the coupled
source-system (24b)-(24c), from initial time tn to tn+1 := tn + τ (full time-step increment).
Note that ρ

n+ 1
2 does not evolve in this Stage #1.

��� Stage #3: given the data [ρn+ 1
2 , p̃n+1]>, compute [ρn+1,pn+1]>, solution of the hyperbolic

system (23), from initial time tn to tn+ 1
2 := tn + 1

2τ (half time-step increment). Note that the
electric potential does not evolve in this Stage #1.

Return: {ρn+1,pn+1,ϕn+1}

In practice, Yanenko splitting is rarely ever used. In fact we never implemented it. All the
computations in presented in this manuscript use Marchuk-Strang splitting as described in
Algorithm 4. However, Yanenko splitting is very useful as a pedagogical resource. The
presentation of some mathematical results is greatly benefited by considering the Yanenko
splitting, with such results becoming immediately true for the case of Marchuk-Strang splitting
too, see Section 5.

We note that the scheme described by Algorithm 4 leaves open pretty much all choices
regarding space and time discretization. Operator-splitting, and generally speaking semi-implicit
time integration, by itself, does not describe a scheme, but rather a loose collection of ideas. For
instance, the choice of explicit-implicit splitting is rarely even unique: some choices of splitting
lead to a stable scheme but other choices may not. In Algorithm 4, the choice of splitting is quite
clear, which is outlined by (23) and (24). Similarly, the choice of space and time discretization for
each stage will in general have a profound effect on the mathematical properties of the resulting
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scheme, in particular, it will affect the well-posedness of the resulting linear algebra system and
energy-stability properties, see for instance [83, 48]. This is why designing an Operator-Splitting
scheme that indeed preserves relevant mathematical properties is a quite technical task while
improvised used of operator splitting is rarely ever a productive enterprise.

The numerical scheme for the hyperbolic subsystem (23) is a graph-based invariant domain
preserving schemes described in [53, 66]. Some of the key ideas of invariant domain preserving
schemes are summarized in Appendix C and shall not discussed them in this manuscript any
further. In Section 4.2 we provide a precise description of the space and time discretization for the
source-system (24b)-(24c). In Section 4.3 we provide three choices for the source-update scheme,
and we discuss their actual implementation in Section 4.4.

4.2. Space discretization

We assume that we have at hand a mesh Th consisting of a set of quadrilateral elements, to be
denoted as K. For the sake of concreteness we assume that the potential is discretized using
continuous Lagrangian first-order quadrilateral space H, more precisely,

H =
{

ωh ∈ C 0(Ω)
∣∣ ωh ◦TTT K ∈ Q1(K̂) ∀K ∈ Th

}
. (25)

Here, TTT K : K̂→ K denotes a diffeomorphism mapping the reference element K̂ to the physical
element K ∈ Th. For each component of the hyperbolic system we use scalar-valued Lagrangian
first-order discontinuous finite element space V, as described by

V =
{

zh ∈ L2(Ω)
∣∣ zh ◦TTT K ∈ Q1(K̂) ∀K ∈ Th

}
. (26)

We assume that we have at hand a basis for the finite element space H denoted as {χi}i∈VP
,

where VP denotes the set of indices for the shape functions. Similarly, we assume that we have at
hand a basis for the finite element space {φi}i∈VH

, where VH denotes the corresponding set of
indices for the shape functions. Since we use Lagrange finite elements, VH can also be used to
identify the set of interpolation points {xxxi}i∈VH

of the finite element space V. The finite element
space for the velocity and/or momentum will be denoted as VVV := [V]d with vector-valued finite
element basis given by {φφφi}i∈VV

where VV is the corresponding set of indices of shape
functions.

In the previous paragraph we defined the global sets of indices VP, VH , and VV . In this
manuscript we will find situations where we are only concerned with a subset of such indices. In
particular, for a given element K ∈ Th, we will be interested only on the indices of shape functions
with support in such cell. For this reason we also define the following notation describing
subsets:

VP(K) = { j ∈ VP |supp(χ j)∩K 6≡ /0} ,
VH(K) = { j ∈ VH |supp(φ j)∩K 6≡ /0} ,
VV (K) = { j ∈ VV |supp(φφφ j)∩K 6≡ /0} .

(27)

Remark 4.1. For all finite element spaces the basis functions are generated using the
reference-to-physical map TTT K . That is, Lagrangian shape functions are defined in the reference
element satisfying the property φ̂k(x̂xx j) = δ jk where {x̂xxk}k∈N are the coordinates of the
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interpolation nodes in the reference element, and N denotes the set of integers used to identify
such nodes (e.g. N = {1 : 4} for Q1(K̂) elements in 2d). In each physical element K, the shape
functions can be defined using a local indexation φK,k(xxx) := φ̂k(TTT−1

K (xxx)) for all k ∈N .

Let C 0(Th) denote the space of scalar-valued piecewise continuous functions on the
triangulation, that is: functions with well-defined point-values on each element. Similarly we
define the space of piecewise continuous vector-valued functions as [C 0(Th)]

d . Let f ,g ∈ C 0(Th):
we define the bilinear form 〈 f ,g〉 : C 0(Th)×C 0(Th)→ R as follows:

〈 f ,g〉 := ∑
K∈Th

∑
k∈N

f (xxxk)g(xxxk)wK,k, (28)

where xxxk = TTT K(x̂xxk) and wK,k :=
∫

K φK,k(xxx)dxxx, and with an obvious extension when
fff ,ggg ∈ [C 0(Th)]

d . Whenever the bilinear form 〈·, ·〉 is applied to finite dimensional spaces V, VVV, H,
or ∇H we will call it a lumped inner-product. Such inner-product is second-order accurate in the
context of affine or asymptotically-affine mesh-sequences but may fail to be second-order
accurate in distorted non-nested mesh-sequences.

4.3. Fully-discrete source-update schemes

In this section we describe three possible schemes for the discretization of (24b)-(24c):
Backward-Euler, Crank-Nicolson, and the Crouzeix’s DIKR23 scheme. Let us start by writing
down a semi-discrete Backward-Euler scheme:

ρ
nvn+1−ρ

nvn =− τqe
me

ρ
n
∇ϕ

n+1 + τqe
me

ρ
nvn+1×B− τ

T ρ
nvn+1 ,

−ε(∆ϕ
n+1−∆ϕ

n) =− τqe
me

div(ρnvn+1)+ τqb
mb

∂tρb(tn+1) ,

where qb is the specific electric charge of the background density, mb is the specific mass, and
∂tρb is the time derivative of the background mass-density ρb. We assume that both ρb and ∂tρb
are given data. The corresponding weak formulation is:

(ρnvn+1−ρ
nvn,z) =− τqe

me
(ρn

∇ϕ
n+1,z)+ qe

me
(ρnvn+1×B,z)− 1

T ρ
nvn+1,z), (29)

(∇ϕ
n+1−∇ϕ

n,∇ω) = qe
me
(ρnvn+1,∇ω)+ τqb

mb
(∂tρb(tn+1),ω) , (30)

for all z and ω in some proper test space. For the time-being, (29)-(30) represent the weak
formulation of a semi discretization. In order to incorporate a space discretization we assume that
ϕ

n+1
h = ∑ j∈VP

Φ jχ j ∈ H and that vn+1
h = ∑ j∈VV

V jφφφ j ∈VVV, which leads to the following
fully-discrete formulation (we ignore boundary conditions in order to provide a cleaner
presentation):

〈ρn
hvn+1

h −ρ
n
hvn

h,zh〉=− τqe
me

(ρn
h∇ϕ

n+1
h ,zh)+

qe
me
(ρn

hvn+1
h ×B,zh)− 1

T (ρn
hvn+1

h ,zh), (31)

(∇ϕ
n+1−∇ϕ

n,∇ωh) =
qe
me
(ρn

hvn+1
h ,∇ωh)+

τqb
mb

(∂tρb(tn+1),ωh) , (32)

for all zh ∈VVV and all ωh ∈ H.
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Proposition 4.1 (Energy-Stability). Note that for the sake of simplicity we neglect the effect of
background charges and damping. The source-update scheme (31)-(32) satisfies the following
energy-identity

∑
i∈VH

mi
2
|pn+1

i |2
ρn

i
+ ε

2‖∇ϕ
n+1
h ‖2

L2(Ω)+Q (un
h,u

n+1
h ) = ∑

i∈VH

mi
2
|pn

i |2
ρn

i
+ ε

2‖∇ϕ
n
h‖

2
L2(Ω)

where un
h = [pn

h,ϕ
n
h]
>, un+1

h = [pn+1
h ,ϕn+1

h ]> and

Q (un
h,u

n+1
h ) := ∑

i∈VH

mi
2
|pn+1

i −pn
i |2

ρn
i

+ ε

2‖∇ϕ
n+1
h −∇ϕ

n
h‖

2
L2(Ω) , (33)

is the artificial-dissipation term associated to Backward-Euler.

Proof. The proof is pretty standard and follows by taking zh = vn+1
h in (31) and ωh = ϕ

n+1
h in

(32). The rest is a consequence of the polarization identity
(a−b,a) = 1

2 |a|
2− 1

2 |b|
2 + 1

2 |a−b|2.

We also consider the θ-scheme:

〈ρn
hvn+1

h −ρ
n
hvn

h,zh〉=− τqe
2me

(ρn
h((1−θ)∇ϕ

n
h +θ∇ϕ

n+1
h ),zh) (34)

+ qe
2me

(ρn
h((1−θ)vn

h +θvn+1
h )×B,zh)

− 1
2T (ρn

h((1−θ)vn
h +θvn+1

h ),zh),

(∇ϕ
n+1−∇ϕ

n,∇ωh) =
qe

2me
(ρn

h((1−θ)vn
h +θvn+1

h ,∇ωh)+
τqb
mb

(∂tρb(tn+θ),ωh) , (35)

where θ ∈ [1
2 ,1] and tn+θ = tn +θτ. As it is well known the case of θ = 1 corresponds with

Backward-Euler, while the case θ = 1
2 is known as Crank-Nicolson.

Proposition 4.2. Note that for the sake of simplicity we neglect the effect of background charges
and damping. The source-update scheme (34)-(35), with θ = 1

2 satisfies the following
energy-identity

∑
i∈VH

mi
2
|pn+1

i |2
ρn

i
+ ε

2‖∇ϕ
n+1
h ‖2

L2(Ω) ,= ∑
i∈VH

mi
2
|pn

i |2
ρn

i
+ ε

2‖∇ϕ
n
h‖

2
L2(Ω) .

The proof of this stability property is pretty standard and follows by taking zh =
1
2(v

n
h +vn+1

h ) in
(34) and ωh =

1
2(ϕ

n
h +ϕ

n+1
h ) in (35). We note that Crank-Nicolson has no artificial dissipation. In

the absence of resistive effects, we note that (24b)-(24c) preserves quadratic invariants. Therefore
Crank-Nicolson’s scheme is, perhaps, the most natural choice of source-update scheme. In
addition, in our previous work pertaining the Euler-Poisson system without magnetic fields, see
[83], Crank-Nicolson’s scheme showed very promising results in the context of the
shock-hydrodynamics regime. However, as we will see later in Section 6.4, this time integration
scheme does not appear to have the right properties that enable neither efficient nor accurate
solution for the new problem at hand.

Finally, we consider Crouzeix’s DIRK23 scheme. In Appendix A we describe the Crouzeix
DIRK23 scheme in a very general setting: we explain how it is implemented in practice (see
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Remark A.1), and describe the energy-stability property satisfied by any evolutionary problem
within the Gelfand-triple Hilbert-space framework (see Lemma A.1). From a practical point of
view, Crouzeix’s scheme is a two-stage method: Stages #1 and #2, as described in (69) and (70),
are computed using Backward-Euler’s method, and the final solution is computed as a linear
extrapolation/combination, as described in (71). The scheme is straightforward to implement
provided we have an implementation of a Backward-Euler method at hand. In this manuscript we
implemented DIRK23 scheme using the fully discrete implementation of Backward-Euler method
described by (31)-(32). The following corollary is just a direct consequence of Lemma A.1 and
the specific structure of the Backward-Euler scheme (31)-(32).

Proposition 4.3 (DIRK23 scheme energy-identity). Note: the sake of simplicity, we neglect the
effect of background charges, and damping. The final solution of DIRK23 scheme, with Stages #1
and #2 computed using Backward-Euler’s implementation (24b)-(24c), satisfies the following
stability estimate:

∑
i∈VH

mi
2
|pn+1

i |2
ρn

i
+ ε

2‖∇ϕ
n+1
h ‖2

L2(Ω)+Q (un
h,u

1
h,u

2
h) = ∑

i∈VH

mi
2
|pn

i |2
ρn

i
+ ε

2‖∇ϕ
n
h‖

2
L2(Ω)

where un
h = [pn

h,ϕ
n
h]
> is the initial state, while u1

h = [p1
h,ϕ

1
h]
> denotes the solution from the Stage

#1, u2
h = [p2

h,ϕ
2
h]
> denotes the solution from the Stage #2, and Q (un

h,u
1
h,u

2
h) is a positive

semi-definite homogeneous of degree-2 quadratic form given by

Q (un
h,u

1
h,u

2
h) := ∑

i∈VH

mi

[
δ1
|p1

i−pn
i |2

ρn
i

+δ2
|p2

i−p1
i |2

ρn
i

+δ12(p1
i −pn

i ) · (p2
i −p1

i )
]

+ εδ1‖∇ϕ
1
h−∇ϕ

n
h‖L2(Ω)+ εδ2‖∇ϕ

2
h−∇ϕ

1
h‖L2(Ω)

+ εδ12(∇ϕ
1
h−∇ϕ

n
h,∇ϕ

2
h−∇ϕ

1
h)L2(Ω)

(36)

is the artificial-dissipation term of Crouzeix’s DIRK23 scheme, with δ1, δ2 and δ12 as defined in
(74).

Here, we highlight that the quadratic form Q (un
h,u

1
h,u

2
h), defined in (36), represents so-called

‘high-frequency artificial damping’, meaning that, it introduces a very subtle form of dissipation
on high order moments (e.g. high-order divided-differences) of the solution. This is very different
from the artificial damping introduced by Backward-Euler that penalizes the first order divided
differences of the solution. We may think of Q (un

h,u
1
h,u

2
h) as ‘high-frequency filter’, but rather

than using ad-hoc filter, we use a filter that is already built-in to the scheme that is capable of
regularizing high-frequencies while also providing mathematically guaranteed energy-stability.

4.4. Efficient assembly/implementation

In this section explain how to implement an efficient assembly of the schemes described by
(31)-(32), (34)-(35), and DIRK23 scheme. With a proper assembly strategy the linear problems
that we have to solve a each time-step are not that different from a scalar Poisson problem. We
explain the primary idea using Backward-Euler’s scheme. We also summarize the respective
assembly for the case of the θ-scheme in Remark 4.5.
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The standard practice, is to break down the assembly into element contributions and add them
into a single large sparse matrix. Let us consider the case of Backward-Euler scheme as described
by (31)-(32):
� The assembly corresponding to the space discretization of the potential (32) will invoke the

following loop on all cells:

∑
K∈Th

∑
j∈VP(K)

Φ
n+1
j

[
ε(∇χ j,∇χi)K

]
+ ∑

K∈Th

∑
j∈VV (K)

V j

[
− τqe

me
(ρeφφφ j,∇χi)K

]
=

= ∑
K∈Th

∑
j∈VP(K)

Φ
n
j

[
ε(∇ϕ

n,∇χi)K

]
+ τqb

mb
(∂tρb(tn+1),χi)K

(37)

where the index-sets VP(K) and VV (K) were defined in (27). Expression (37) can be
rewritten in terms of element-matrix and element-vector contributions:

∑
K∈Th

KKΦ
n+1
K +BKVn+1

K = ∑
K∈Th

KKΦ
n
K +RK , (38)

where

{KK}i j := ε(∇χ j,∇χi)K ,

{BK}i j :=− τqe
me

(ρeφφφ j,∇χi)K,

{RK}i := τqb
mb

(∂tρb(tn+1),χi)K,

(39)

and Φ
n+1
K , Vn+1

K , and Φn
K represent the vector of local degrees of freedom (DOFs) on the

cell K. On the other hand, we have assumed that the time-derivative of the background
density ∂tρb is an analytic function. If that is not the case, we might consider computing RK
as

{RK}i = ∑
j∈VH(K)

Ei j{∂tρb(tn+1)} j ∀i ∈ VP(K) where Ei j =
τqb
mb

(φ j,χi)K ,

where the index-set VH(K) was defined in (27).
� Similarly, (31) can be localized and written in compact form as

CKΦ
n+1
K +(MK +DK +S v

K)V
n+1
K = MKVn

K ∀K ∈ Th , (40)

where {CK}i j, {MK}i j and {S v
K}i j and {DK}i j are matrices associated to each element K

defined as

{CK}i j := τqe
me

(ρe∇χ j,φφφi)K ,

{MK}i j := δi jρi(φφφi,1)K ,

{DK}i j := τ

T {MK}i j ,

{S v
K}i j :=− τqe

me
(ρeφφφ j×B,φφφi)K ,

(41)

for all i, j ∈ VV (K). We note in passing that {MK}i j describes a density-weighted lumped
mass matrix and that CK =−B>K .
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We note that, from (40), we can always solve for Vn+1
K :

Vn+1
K = GKMKVn

K−GKCKΦ
n+1
K with GK :=

[
(1+ τ

T )MK +S v
K.
]−1 (42)

Inserting this identity into (38) and reorganizing the terms we get:

∑
K∈Th

(
KK−BKGKCK

)
Φ

n+1
K = ∑

K∈Th

KKΦ
n
K−BKGKMKVn

K . (43)

In other words: since the local (unknown) velocity DOFs Vn+1
K can be eliminated at

‘assembly-time’ the right hand side of (43) only depends on data from time-step n. Local
elimination of unknowns during assembly is commonly known as static-condensation in the finite
element and numerical linear algebra literature, see Remark 4.4 for some background on the
topic. We summarize the assembly-loop in the following remark.

Remark 4.2 (Assembly Loop). Expression (43) means that we have to solve the linear algebra
system AΦn+1 = F for the potential, where the matrix A and the vector F are assembled using the
usual gather-scatter loop:

Clean matrices/vectors: A = 0 ,F = 0
for all K ∈ Th

ρK ← gather_from_vector(ρ)

BK ← gather_from_vector(B)
Assemble: KK , BK , CK , M v

K , Dv
K , S v

K

Assign: GK ←
[
(1+ τ

T )MK +S v
K)
]−1

Assign: AK ←KK−BKGKCK

Assign: FK ←KKΦ
n
K−BKGKMKVn

K

scatter_into_matrix(AK,A)

scatter_into_vector(FK,F)
end for

(44)

Once we compute the new potential Φn+1 we can compute the new velocities Vn+1
K at each cell K

using (42). We note that the matrix A resulting the assembly loop (44) will indeed be a Schur
complement. However, we highlight the following practical merits:
� Optimal sparsity-pattern. This Schur complement will be sparse, in fact, it can be easily

shown that the sparsity pattern of the matrix A is optimal: it will use the exactly the same
sparsity pattern required to assemble the Poisson matrix Ki j =

∫
Ω

∇χi ·∇χ j dxxx. See Remark
4.3 for a concrete example.

� Simple data-structures, simple linear algebra, and inexpensive matrix-vector products. We
avoided all data-structures and DOF-managers usually associated to mixed-formulations.
This allowed us to avoid, among other things, assembly and storage of global block-matrix
and block-vectors. Because of this, solution of the linear algebra system associated to the
potential will not use or invoke matrix-vector products of block-matrix and block-vector
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systems. With proper computational implementation, as detailed in the following
paragraph, this leads to a speed-up of up to an order of magnitude.
As an example, let us assume that we use the finite element spaces proposed in (25) and
(26) and we want to use blocked DOF-manager and blocked linear-algebra. Then, for the
case of d = 2, the finite element space VVV := [V]d used for the momentum/velocity, has eight
times more degrees of freedom (DOFs) than the finite element space H used for the
potential. This is because the velocity has two components and, in two space dimensions,
discontinuous Q1 finite element spaces have four times more DOFs than its continuous
counterpart. Assuming that the cardinality of the finite element space used for the potential
is N, then corresponding blocked-vectors would have approximate size 9N. On the other
hand, the vectors involved in iterative solution of the linear algebra system AΦn+1 = F,
resulting from the static-condensation Algorithm (44) will have size N. Given that the
complexity of matrix-vector products used in Krylov space methods scales like O(N) the
solution of the statically-condensed linear algebra systems is guaranteed to be almost one
order of magnitude faster than that of the corresponding block-vector system. We hope that
this example is enough to convince the reader that statically-condensed elimination of the
Schur complement is a very appealing idea.

� Efficient implementation of Dirichlet boundary conditions. Since A is sparse, we have
explicit access to it. This means that Dirichlet-like boundary conditions of the potential can
be enforced directly into A either during its assembly or once the assembly is done. This is
in general, not true for arbitrary mixed formulations where modifications of the block
off-diagonal terms is required before actually using the Schur-complement action2 in order
to solve the linear system.

� Matrix-free ready. We note in passing that the assembly loop (44) is readily compatible
with matrix-free iterative solution strategies, see for instance [64] and references therein.

Remark 4.3 (Dimensionality example). With the choice of finite element spaces proposed in (25)
and (26), in two space dimensions we have that the element-matrices will have the following
dimensionality:

KK ∈ R4×4 ; BK ∈ R4×8 ; CK ∈ R8×4 ; MK,S v
K,GK ∈ R8×8 ,

and

Φ
n
K,Φ

n+1
K ∈ R4 and Vn

K,V
n+1
K ∈ R8 ,

which shows that scattering the entries of the matrix AK , as defined in the pseudo-code, uses the
same non-zero entries required to scatter the local matrix KK .

Remark 4.4 (Static-condensation for PDE-ODE coupling). We highlight that static condensation
is a fairly old idea, which is well-known in the context of finite elements and mixed formulations,
see for instance [85, 17, 31] and references therein. However, we point-out that here, we are
making use of it in a non-standard context.

2In practice Schur complements are rarely ever sparse. Therefore it’s not possible to construct then, store them, or
even read its individual entries. But none of that is necessary. Usually, we only need have the capability to compute
matrix vector products.

25



Let us start by noting that (24b)-(24c) does not describe two coupled PDEs. System (24b)-(24c)
describes an elliptic PDE, i.e., equation (24c), coupled to an ODE, i.e., equation (24b). The
computational implementation of static-condensation is feasible simply because (24b) is an ODE.
Just like any other ODE, it describes purely local behavior, therefore, it can always be eliminated
from the linear algebra system regardless of the space discretization of choice (continuous finite
elements, discontinuous finite elements, finite volumes, finite differences, etc).

Numerical coupling of an Elliptic PDE to an ODE is a problem that, to the best of our
knowledge, is not covered in any standard textbook of numerical analysis of partial differential
equations, see for instance standard references [32, 78, 70, 46]. Similarly, we are not aware of any
publication advancing the use of static condensation in the context of PDE-ODE coupling.
However, PDE-ODE-coupling is a recurrent motif in the context of computational physics.
Perhaps, the biggest example is particle-in-cell-method (PIC), and generally speaking the
evolution of particle systems subject to forces, with such forces usually being the computed from
the solution of an elliptic/parabolic/hyperbolic PDE. In this very specific context, we think that
our application of static condensation may be an original idea that could have applications beyond
the context of the current report.

For the sake of completeness, in the following remark, we provide the statically-condensed
assembly loop for the case of the θ-scheme as described in (34)-(35).

Remark 4.5 (θ-scheme static condensation assembly). The assembly of the θ-scheme (34)-(35)
can be written as

∑
K∈Th

KKΦ
n+1
K +θBKVn+1

K = ∑
K∈Th

KKΦ
n
K− (1−θ)BKVn

K , (45)

θCKΦ
n+1
K +

[
MK +θ(DK +S v

K)
]
Vn+1

K =
[
MK− (1−θ)(DK +S v

K)
]
Vn

K− (1−θ)CKΦ
n
K. (46)

Here, the element matrices KK , BK , CK , MK , DK , and S v
K follow definitions (39) and (41). From

(46), we can solve for Vn+1
K to get

Vn+1
K = GK

[
MK− (1−θ)(DK +S v

K)
]
Vn

K−GKCK[(1−θ)Φn
K +θΦ

n+1
K ] (47)

where GK :=
[
MK +θ(DK +S v

K)
]−1. Multiplying (47) by θBK and inserting the resulting identity

in (45), after some reorganization we get

KKΦ
n+1
K −θ

2BKGKCKΦ
n+1
K =

=
[
KK +θ(1−θ)BKGKCK

]
Φ

n
K

−
{
(1−θ)BK +θBKGK

[
(1− τ

T (1−θ))MK− (1−θ)S v
K)
]}

Vn
K .
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Therefore, we consider the following gather-scatter loop in order to implement the θ-scheme:

Clean matrices/vectors: A = 0 ,F = 0
for all K ∈ Th

ρK ← gather_from_vector(ρ)

BK ← gather_from_vector(B)
Assemble: KK , BK , CK , M v

K , Dv
K , S v

K

Assign: GK ←
[
(1+ θτ

T )MK +θS v
K)
]−1

Assign: AK ←KK−θ
2BKGKCK

Assign: FK ←
[
KK +θ(1−θ)BKGKCK

]
Φ

n
K

−
{
(1−θ)BK +θBKGK

[
MK− (1−θ)(DK +S v

K)
]}

Vn
K

scatter_into_matrix(AK,A)

scatter_into_vector(FK,F)
end for

(48)

Remark 4.6 (Choice of finite element spaces). When considering the numerical implementation
of any mixed-like formulation, it is fundamental to guarantee that the contribution resulting from
the off-diagonal block-matrices end-up being equivalent to a full-rank matrix. Otherwise, the
linear algebra system may either be non-invertible, exhibit strong degradation of its condition
number when h→ 0+, or severely ill-posed at extreme regimes, in particular, when
q2

e
εm2

e
maxi∈VH

ρi is large (see Section 4.2 of [83]).
On the other hand, an entire body of mathematical theory was developed in order to obtain

well-posed mixed formulations that today we know as the finite element inf-sup theory [7, 32]. In
the context of our problem, the off-diagonal blocks are defined by the elemental matrices BK and
CK defined in (39) and (41) respectively. The finite element spaces VVV := [V]2 for the
velocity/momentum, and H for the potential, as defined in Section 4.2, are only an ‘educated
guess’ based on some acquired experience. We assumed that the finite element pair {VVV,H} was
the best candidate for the satisfaction of inf-sup compatibility conditions and other coding-related
constraints. We made no effort in order to establish that inf-sup compatibility conditions hold
rigorously.

However, we have fairly strong evidence suggesting that the finite element {VVV,H} is
well-behaved. Even at extreme regimes, while also pushing some parameters well-past the limits
of O(109) or O(10−9), the resulting linear algebra system, preconditioned with one exact
LU-factorization3 of the symmetric homogeneous Laplacian, does not use more than one
BiCgStab iteration. This means that the non-symmetric matrix A , resulting from the assembly
described in Algorithms (44) or (48), is as well-conditioned as the matrix of the Poisson equation.
This can be easily explained from the scaling of the block BKGKCK in the assembly loops. Some
inspection reveals that BKGKCK = O( τ2

h2 ). But since the scheme is bound by the cfl conditions
from the hyperbolics solver, we have that τ

h . O(1), therefore we conclude that
BKGKCK w O( τ2

h2 ) = O(1). Still rigorous analysis and further testing might be needed.

3We used the Sparse Multifrontal solver UMFPACK for such tests.
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5. MINIMAL CONDITIONS FOR ENTROPY-STABILITY

For the sake of simplicity, in this section we assume that we use Yanenko-splitting as described in
Algorithm 3. The proof of stability of Marchuk-Strang splitting is rather similar, but it is lengthier
and conveys no additional intellectual value (details are left to the reader).

Lemma 5.1 (Minimal conditions for entropy/energy stability). We assume a closed bounded
smooth domain, and Euler-Poisson system as described in (1) using: reflecting boundary
conditions for the Euler’s subsystem, meaning p ·n = 0, and either homogeneous Dirichlet ϕ = 0,
or homogeneous Neumann ∇ϕ ·n = 0, boundary conditions on the entirety of the boundary. In
addition, we also assume 1

T ≡ 0, that is, we assume no physical dissipation mechanism. With
such a setup of boundary conditions and no physical dissipation mechanisms, from (1) and (5),
we know that mass and momentum should be conserved, while total entropy should be either
conserved or dissipated. In essence, all energy/entropy fluxes at the boundary vanish: i.e., we
consider an electro-mechanically isolated system.

Now, for Stage #1 of Yanenko’s scheme, as described in Algorithm 3, assume that the numerical
method used to solve Euler’s equation is either entropy-conservative or entropy-dissipative in the
sense that:

∑
i∈VH

miη(u
n+ 1

2
i )≤ ∑

i∈VH

miη(un
i ) , (49)

where VH is the set of all nodes of the finite element space V (see Section 4.2), un = [ρn,pn]>,

un+ 1
2 = [ρn+1,pn+ 1

2 ]>, and η(u) = η([ρ,p]>) = 1
2
|p|2

ρ
+θρ lnρ. Similarly, for the Stage #2 of

Algorithm 3, assume that we use either an energy-conservative or energy-dissipative scheme in
the sense that

∑
i∈VH

mi

2
|pn+1

i |2

ρ
n+1
i

+
ε

2
‖∇ϕ

n+1
h ‖2

L2(Ω) ≤ ∑
i∈VH

mi

2
|pn+ 1

2
i |2

ρ
n+1
i

+
ε

2
‖∇ϕ

n
h‖

2
L2(Ω) , (50)

then we have that

∑
i∈VH

miη(un+1
i )+

ε

2
‖∇ϕ

n+1
h ‖2

L2(Ω) ≤ ∑
i∈VH

miη(un
i )+

ε

2
‖∇ϕ

n
h‖

2
L2(Ω) , (51)

which is a discrete counterpart of the entropy estimate (5).

Proof. The proof is rather trivial, it just follows by using the definition of η(u) = 1
2
|p|2

ρ
+θρ lnρ,

with u = [ρn+1,pn+ 1
2 ]> for the left-hand side of (49), and u = [ρn,pn]> for its right-hand, which

leads to:

∑
i∈VH

mi

(1
2
|pn+ 1

2
i |2

ρ
n+1
i

+θρ
n+1
i lnρ

n+1
i

)
≤ ∑

i∈VH

mi

(1
2
|pn

i |2

ρn
i

+θρ
n
i lnρ

n
i

)
. (52)
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Now, adding (52) and (50) we get

∑
i∈VH

mi

(1
2
|pn+1

i |2

ρ
n+1
i

+θρ
n+1
i lnρ

n+1
i

)
+

ε

2
‖∇ϕ

n+1
h ‖2

L2(Ω) ≤

∑
i∈VH

mi

(1
2
|pn

i |2

ρn
i

+θρ
n
i lnρ

n
i

)
+ ε

2‖∇ϕ
n
h‖

2
L2(Ω) ,

(53)

which is just a re-writing of (51).

We highlight here:
� Extension of this proof for the case of isentropic closure, meaning p = κργ with γ > 1 is

relatively straightforward: the reader only needs to change the definition of entropy η(u).
� Extension of this proof beyond the case of barotropic Euler models (isothermal or

isentropic) into the full-Euler models having an evolution equation for the total mechanical
energy can also be accommodated. See the proof of energy-stability in [83, Lemma 3.3] for
the case of the full Euler-Maxwell system.

In order to study the role of the source-update scheme in relationship to numerical stability and
entropy dissipation, let us consider the following rather trivial proposition:

Proposition 5.1 (Entropy productive source-update schemes). Assume that (49) is satisfied with
an exact equality sign. Assume that (50) is satisfied with a strict inequality sign. Then, (51) will
be satisfied with a strict inequality.

An important consequence of this proposition is that even if the hyperbolic-solver is entropy
conservative, the overall behavior of the operator splitting scheme might still be entropy
dissipative. Without any additional rigorous argument and/or computational evidence, at this
point in time, it is unclear whether using a dissipative source-update scheme is either beneficial or
detrimental the to whole stability of the scheme. Therefore, we define the following
‘classification criteria’ of source-update schemes:
� Non-entropic. For instance the Crank-Nicolson scheme, as described by (34)-(35) with

θ = 1/2, is non-entropic since it cannot contribute to the production of entropy, i.e. it
satisfies (50) with an exact equality.

� Entropic. We say that Backward-Euler scheme, defined in (31)-(32), is entropic, since the
functional Q (un

h,u
n+1
h ), as defined in (33), is non-negative. In fact, unless the numerical

solution happens to be constant in time, Backward-Euler will satisfy (50) with strict
inequality sign. Similarly, the Crouzeix DIRK23 scheme is entropic, since the dissipation
functional Q (un

h,u
1
h,u

2
h), as defined in (36), is non-negative.

Later in the Section 6.4, computational experiments seem to provide a reasonable answer as to
whether the source-update scheme should be entropic or non-entropic.
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6. COMPUTATIONAL EXPERIMENTS

6.1. Target regime of interest

The numerical experiments considered in this report target very specifically the following
regime:

(i) Large Magnetic fields: |B| � 1.
(ii) Small electron mass: me� 1.

(iii) Small electric permittivity ε� 1.
(iv) Large density contrast-ratio: i.e., given an electron mass density ρ(xxx) with xxx ∈Ω, we define

the density contrast-ratio as

rρ :=
maxxxx∈Ω ρ(xxx)
minxxx∈Ω ρ(xxx)

.

We are interested in regimes where rρ� 1.
(v) Strongly non-neutral plasma. We are interested in regimes where the vast majority of the

plasma in the domain is electrically non-neutral. In practice, what this means is that, we
want to consider an electron-gas with minimal to no screening from the background
charges.

(vi) Low pressure/temperature: in the context of isothermal Euler-Poisson model we assume
θ� 1.

The regime described by (i)− (vi) is indeed problematic, even in the absence of shocks or strong
expansions, most shock-hydrodynamics fluid-plasma codes will struggle to bring simulations to
completion. This regime is strongly dominated by very high-frequency phenomena ‘superposed’
on top of macroscopic transport, strong source terms leading to quite violent accelerations, and
the formation of diffusive-like internal layers. The degree of difficulty of this regime is rather
different from the canonical shock-hydrodynamics physics. In this context three kinds of failure
can occur:
� Catastrophic failure: the scheme crashes in one time step because positive density or

internal energy cannot be preserved. In our case, this is not possible, since the schemes
used for the hyperbolic subsystem are based on the invariant domain discretization methods
described in [53] for which catastrophic failure is simply not possible.

� Non-entropic failure: the numerical scheme appears to succeed, but delivers a solution that
cannot be physical. When this happens we will call such solution non-entropic.

� Technical failure: this is when no catastrophic failure occurs, but abnormally high material
velocities or sound speeds occur at some points in the domain. Using various codes and
schemes, we have observed that in the asymptotic drift-regime, seemingly innocuous
simulations of smooth flows, may develop abnormally high speeds of propagation. Since
the time-step size is controlled by the hyperbolic cfl, this can easily lead to some
simulations requiring in excess of a trillion time-steps to reach completion. For any
practical purpose, most simulations requiring a trillion time-steps have no technical utility
and are preemptively aborted.

The three most important characteristic frequencies associated to the regime described by
bullets (i)-(vi) are the plasma angular frequency, the cyclotron frequency, and the Diocotron
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frequency, defined respectively by

ωp =

√
neq2

e
εme

, ωc =
|B|qe

me
, ωd =

ω2
p

ωc
, (54)

with respective characteristic plasma period, cyclotron period, and the Diocotron period defined
by

Tp =
2π

ωp
, Tc =

2π

ωc
, Td =

2π

ωd
.

A precise physical meaning of the plasma and cyclotron frequencies can be found in the
introductory section of countless plasma physics books, see for instance [14, 6]. Both the plasma
and cyclotron oscillation represent very high-frequency motions that, in general, will not lead to
coherent macroscopic motion of the fluid. In general, time-resolving plasma and cyclotron
high-frequency oscillation do not represent technically meaningful goals. On the other hand, the
Diocotron frequency ωd is related to a slower dynamics that can be related (at least with some
approximate arguments) to the averaged material velocity v = 1

T
∫ T

0 v(t)dt for some
T �max{Tp,Tc}. See also Remark 6.2 for more details.

6.2. Setup of the Diocotron instability

A challenging test problem for the development and testing of numerical methods for the regime
described in the previous subsection is the so-called cold-plasma Diocotron instability. The initial
setup consists circular domain, with an uniform negative electric charge density within the
support of an annulus, rotating around the origin, at negligible temperature (i.e., negligible
pressure). The initial conditions should be in a state of force equilibrium: the electrostatic forces,
pressure forces, and centrifugal forces, all of them pushing the electrons outwards, are in perfect
equilibrium with the Lorentz force pushing the electron inwards.

Therefore, we consider a circular domain Ω of radius r3 = 16, that is

Ω = {xxx ∈ R2 ||xxx|`2 ≤ r3 } , (55)

with boundary conditions p ·n = 0 and ϕ = 0 on the entirety of ∂Ω. We consider two positive
small parameters 0 < δ� 1 and 0 < υ� 1, and set the values of the physical constants as
follows:

me = δ , ε = δ , |B|= 1000
δ

, qe =−1 , θ = υ . (56)

We define the radii r2 and r1:

r2 = c1 · r3 , r1 = c2 · r2 , with c1 = 0.5 , c2 = 0.815 , (57)

which are used to define a negatively charged particle number density ne as

ne =


υn0 if |xxx|`2 ≤ r1

n0(1+0.01sin(2π`θ)) if r1 < |xxx|`2 ≤ r2

υn0 if r2 < |xxx|`2 ≤ r3

with n0 = 1 , (58)
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where `= 5. We also set a fixed, constant in time and space, positive background charge in the
entirety of the domain of value qbnb =−qe ·δ2 ·n0. In all our simulations we use the final time tF
defined by:

tF = 6
2π

ωd0
where ωd0 =

ω2
p0

ωc
and ω

2
p0 =

n0q2
e

εme
(59)

while ωc follows from (54). In other words, the final time is equal to to six times the initial value
of the Diocotron period. From a macroscopic perspective this should translate, approximately,
into six ‘solid body rotations’ of the Diocotron instability.

Finally, the initial velocity is given by:

v := ωωω(r)× rrr where ωωω = ω(r)k̂ , rrr = [rrr1,rrr2,0]> , r = |xxx| , (60)

In Remark 6.2 we describe a quasi-analytical procedure in order to compute ωωω(r) (numerically)
leading to force equilibrium in the context fluid-plasmas with negligible (but non-zero)
pressure.

The setup described by (55)-(60) is anything but accidental. In the following remark we briefly
explain how it was developed.

Remark 6.1. We describe how the setup (55)-(60) was chosen:
��� The coefficients c1 and c2 defined in (57) were picked by visual inspection from Fig. 3 in

[24]. Such coefficients were specifically selected and fined-tuned (by trial and error) in
order to maximize the excitation of the 5-mode of the Diocotron instability. An alternative
to visual inspection is using the formulas (26)-(28) in [24] in order to compute the
growth-rates.

��� In order to guarantee that the Euler-Poisson with a given magnetic field is operating in the

E×B-drift limit we have to satisfy the condition
ω2

p
ω2

c
� 1, see for instance [24, 74]. Using

the formulas in (56), a direct computation shows that for any value of δ we have that
ω2

p
ω2

c
= δ210−6.

��� From reference [24] we also know that it is almost impossible to excite ‘just one’ Diocotron
mode. For instance, we note from Fig. 3 in [24], that exciting the 5-mode will necessarily
excite the 4-mode and 6-mode. Pollution from other higher and lower modes will
necessarily lead to destructive interference. This motivates seeding the initial profile, as
described in (58), in order to minimize pollution from other modes. Even with such
preparation of the data, on the long run, the 4-mode and 6-mode will eventually grow fast
enough to destroy the θ-periodicity of the solution. That is why in all the simulations
presented in this manuscript we use the final time described in (59). Direct computation of
the final time, using (59) and definitions (56), reveals that ωd = 10−3. Therefore the final
time tF is always a constant independent of δ.

��� Overall, the problem setup (55)-(60) is heavily inspired from that one described in [19, 20]
but slightly tweaked in order to make the testing conditions even more severe (e.g. larger
plasma frequency, larger cyclotron frequency, stronger vacuum, etc).

Hopefully, these explanations are enough to convince the reader that, indeed, the setup
proposed by (55)-(60) is computationally challenging and that it is representative of the E×B
asymptotic drift limit.
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Remark 6.2 (Quasi-analytical computation of equilibrium profiles). The initial velocity profile v
of the Diocotron problem satisfies the following equilibrium relationship:

ρ(v ·∇)v+∇p =− qe
me

ρ∇ϕ+ qe
me

ρv×B . (61)

Using (60) we can rewrite (61) as follows

−ρω(r)2rrr+∇p =− qe
me

ρ∇ϕ+ qe
me

ρω(r)(rrr⊥×B) where rrr⊥ := [−rrr2,rrr1,0]> .

Taking the dot product with rrr we get

−ρω(r)2|rrr|2`2 +∇p · rrr =− qe
me

ρ∇ϕ · rrr+ qe
me

ρω(r)(rrr⊥×B) · rrr ,

which can be finally reorganized as

(ρ|rrr|2`2)︸ ︷︷ ︸
=a

ω(r)2 +
( qe

me
ρ(rrr⊥×B) · rrr

)︸ ︷︷ ︸
=b

ω(r)−
(
∇p · rrr+ qe

me
ρ∇ϕ · rrr

)︸ ︷︷ ︸
=c

= 0 , (62)

which is clearly a quadratic equation for ω(r). Therefore, the algorithm/script required to
compute equilibrium profiles consists in the following steps: (i) Choose a θ-symmetric electron
density and background density profiles ne and nb respectively, (ii) Compute the pressure
p = θ0ρ = θ0mene using the electron density profile ne chosen in step (i), (iii) find the
corresponding electrical potential by solving −ε∆ϕ = qene +qbnb with proper boundary
conditions, (iv) Solve the quadratic equation:

(ρi|rrri|2`2)ω(ri)
2 +
( qe

me
ρi(rrri,⊥×B) · rrri

)
ω(ri)−

(
(∇h ph)i · rrri +

qe
me

ρi(∇ϕh)i · rrri
)
= 0 (63)

for all i ∈ VH(K), where ρi = ρh(xxxi) is the discontinuous finite element density evaluated at the
node xxxi, similarly (∇h ph)i = ∇h ph

∣∣
K(xxxi) represents the broken-gradient of the pressure evaluated

at the node xxxi, and (∇ϕh)i = ∇hϕh
∣∣
K(xxxi) represents the finite element gradient of the potential

evaluated at the corresponding node4. As expected, (63) has two solutions, ω1(ri)
2 and ω2(ri)

2,
and it is important to know how to pick the right one. Some inspection reveals that:

−−− ω1(ri)
2 =

−bi−
√

b2
i−4aici

2ai
: under the assumption of

ω2
p

ω2
c
� 1, some informal asymptotics

implies that ω1(ri)≈ ωd . This corresponds with the unstable equilibrium profile.

−−− ω2(ri)
2 =

−bi+
√

b2
i−4aici

2ai
: again under the assumption of

ω2
p

ω2
c
� 1, the educated guess is that

ω2(ri)≈ ωc. See also [74], formulas (8)-(10), for some analytical details.
Therefore, in all the computations reported in this manuscript we always choose ω1(ri) in order to
define an initial velocity profile. This algorithm can be encoded into any reasonable finite element
library/framework and will deliver quite accurate equilibrium profiles without resorting to
iterative solution methods. We highlight that we are not aware of any other scientific publication
reporting a systematic procedure for the construction of initial equilibrium profiles.

4Note that the gradient of C 0 finite element functions is multi-valued at nodes. In this context, the value of the
gradient at the node means: the restriction ∇ϕh

∣∣
K evaluated at the node xxxi
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6.3. Computational study #1: computation of reference solution

In this section we consider the setup described by (55)-(60) with δ = 0.01 and υ = 10−5, in order
to provide a reference/well-resolved solution.

We used the scheme for isothermal Euler-Poisson with a given magnetic field, advanced in
Section 4, with the Crouzeix’s DIRK23 scheme for the source update scheme, adaptive time-step
size in order to preserve a constant hyperbolic cfl = 0.75 (which is rather aggressive), and
Gauss-law line-search restart as described in Algorithm 5. The mesh was generated from a
base-coarse mesh to which we applied 8 uniform refinements using the bisection method, see
Figure 6-1. This lead to 327,680 quadrilateral cells, 328,193 DOFs for the potential, and
1,310,720 DOFs for each component of the hyperbolic subsystem. The total computation uses a
total of 58127 time-steps. From this total of 58127 time steps, we sampled 1600 frames, each one
at an (approximate) temporal distance of tF/1600 from each other. Some results are shown in
Figure in 6-2.

At the start of the simulation the plasma, cyclotron, and Diocotron period are Tp = 0.0628319,
Tc = 6.28319 ·10−7, and Td = 12566.4 respectively, using formula (59) this leads to a final time
tF = 75398.2. The numerical scheme makes no attempt or provision to time-resolve,
under-resolve or over-resolve the electrostatic plasma or cyclotron oscillation. In fact, the
time-stepping logic is completely agnostic of such characteristic time-scales. For all the
computations presented in this report: time-step size is solely determined by the choice
time-explicit hyperbolic cfl, maximum speed of propagation of the hyperbolic sub-system
(material and acoustic waves), and the meshsize h. The average time-step size τ throughout out
the entire simulation is approximately 1.29, which is almost two orders of magnitude larger than
the plasma period and eight orders of magnitude larger than the cyclotron period.

Some references from the mathematics literature reporting computational results for the
Diocotron instability are [35, 36, 87, 76, 54, 69, 84, 30], similarly from physics journals we have
[75, 15, 8, 88, 72, 62, 65, 60]. In light of these references, we highlight that all the computations
presented in this report are rather unique, in the sense, that beyond reference [19] authored by the
Co-PI, we are not aware of any pre-existing publication/report showing computations of the
Diocotron instability using full-fledged fluid plasma models in Eulerian description. To the best
of our knowledge all the pre-existing literature on the matter use either particle schemes (PIC), or
drift-models (e.g. the guiding center model) with a semi-Lagrangian discretization5 or a particle
method. Strictly speaking, drift-models are not genuine fluid model, since they do not contain
Euler’s equation of gas dynamics as a subsystem. In particular, drift-models will necessarily
neglect large portions of the physics associated to the electron dynamics, acoustic waves, and
related inertial effects, therefore, their scope of utility is rather limited.

We also want to note that meshes used in the context semi-Lagrangian methods for drift-limit
models use approximately 1,000,000 to 4,000,000 cells on the plane in order to reproduce the
Diocotron instability, and highly specialized hermite-like space discretizations for the
electrostatic problem, see for instance [35, 76]. On the other hand, as shown in Figure 6-2, we can
resolve the instability using 327,680 cells. We believe this illustrates that traditional fluid-plasma
models in Eulerian formulation can be very efficient when solved with proper numerical methods.
Even with modest second-order space-time accuracy, it is possible to use relatively coarse meshes

5Semi-Lagrangian methods may be considered as an evolution of characteristics based methods.
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Figure 6-1 Mesh Generation. The picture in the left is the base coarse mesh having
5 cells. After the application of 8 uniform refinements using the bisection method
we obtain a mesh with 5 ·48 = 327,680 cells which we display on the right (only one
quarter of the whole geometry). Even though the figure in the left displays curved
boundaries, we note that the actual finite element discretization uses local-to-global
Q1 map. This means that for any computational purpose, the actual boundary of
the ‘numerical mesh’ is polygonal (no curvature). We also want to highlight that even
though this is a structured mesh, mesh quality by itself is not particularly good: some
elements have significant distortion, in addition the transition of element size and/or
width is not particularly smooth in some parts of the domain. Such mesh features
are well-known to produce mesh imprint in the solution in the context of hyperbolic
PDEs.

and still get meaningful results.

6.4. Computational study #2: entropic vs non-entropic source-update schemes.

In this section we consider the setup described by (55)-(60) with δ = 0.01 and υ = 10−5. The
mesh generation follows the same procedure described in Section 6.3, see Figure 6-1, but we only
apply 7 uniform refinements to the base coarse mesh, which leads to 81,920 cells, 82,177 DOFs
for the potential, and 327,680 DOFs for each scalar component of the hyperbolic subsystem.

We compare the performance of three different source-update schemes described in Section 4.3:
Backward-Euler (31)-(32), Crank-Nicolson (34)-(35), and the Crouzeix’s DIRK23 scheme. The
primary metrics to evaluate the quality of the schemes are: qualitative visual comparison and
time-step size statistics. In Figures 6-3 and 6-4 the reader can find the results for the
Backward-Euler and DIRK23 schemes respectively. In Figure 6-6 we compare time-step size
evolution for Backward-Euler, Crank-Nicolson and Crouzeix’s DIRK23 scheme.

Neither Backward-Euler, nor Crank-Nicolson, nor DIRK23 scheme can fail catastrophically
since the hyperbolic update (e.g. Stages #1 and #3 in the Context of Marchuk-Strang splitting, see
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Figure 6-2 Reference solution. Schlieren snapshots 0, 200, 400, 600, 800, 1,000, 1,200,
1,400, and 1,600; corresponding with approximate times 0, 0.125tF , 0.25tF , 0.375tF ,
0.5tF , 0.625tF , 0.75tF , 0.875tF , tF . This is an over resolved ‘reference computation’ in
order to compare the results using slightly coarser meshes. See Figure 6-1 for details
in relationship to mesh geometry.
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Algorithm 4) use the schemes described in [53] which have unconditional guarantees of
robustness. However, Crank-Nicolson scheme could not meaningfully reach completion in any
timely fashion: a crude estimate lead us to conclude that Crank-Nicolson requires in excess of a
trillion time-steps in order to reach completion. All the computations using Crank-Nicolson were
preemptively aborted. This was not our first encounter with such problems when using
Crank-Nicolson’s scheme, see [83]. This prompted us to consider the implementation of the
θ-scheme as described in (34)-(35) in order to explain, or at least to try to understand, this
behavior6. We considered running the θ-scheme with θ arbitrarily close to 0.5. After some
experimentation we set θ = 0.500001. With such a setup, the θ-scheme should provide a
marginal/negligible supply or artificial dissipation, while still being representative of the
Crank-Nicolson scheme.

The results of Backward-Euler and DIRK23 are somewhat expectable. In Figure 6-2 we can see
that even though Backward-Euler works, its artificial dissipation damps all perturbations, both
artificial and physical perturbations, leading to an overdamped picture of the Diocotron
instability. On the other hand, in Figure 6-4 we can appreciate that the high-frequency artificial
damping of DIRK23’s scheme effectively trims the unresolved fast dynamics of the solution (the
cyclotron and electrostatic plasma oscillations) leading to a smooth resolution of the macroscopic
motions. We may think of DIRK23 scheme as numerical method with built-in high-order
vanishing-damping mechanisms.

On the other hand, the results for Crank-Nicolson’s scheme are rather shocking. The results in
displayed in Figure 6-5 may lead us to prematurely conjecture that: non-entropic source-update
schemes cannot meaningfully approximate a physically valid solution. It is worth noting that the
computational experiments shown in Figure 6-5 are rather singular and are not stable with respect
to perturbations. For instance, the computations shown in Figure 6-5 were repeated by adding 3%
mesh distortion, and indeed, the Diocotron instability appears to manifest. However, such
computations require in excess of 2 million time-steps in order to reach completion (compare
with the modest number of 28,651 time-steps used by DIRK23). Similarly, using slightly larger or
smaller value of θ might also slightly different final results.

We believe that the computational results shown in Figure 6-5 are strong evidence indicating
that vanishing-damping mechanisms, see for instance formula (36), are an essential, if not
fundamental, part of any numerical scheme that solves Euler-Maxwell and Euler-Poisson
systems. At this point in time, this comment may be rightfully judged as premature and
speculatory in nature. However, from purely pragmatic/utilitarian point of view, it is a our firm
assessment that Crank-Nicolson scheme does not represent a computationally, mathematically, or
physically meaningful solution. The computations of Figure 6-5 using Crank-Nicolson’s scheme
do not use a very large number of DOFs in two-space dimensions, but they still require an
outrageous number of time steps in order to reach completion. For the time being, using DIRK23
for the source-update scheme appears to be the only technically meaningful solution in order to
reach second-order accuracy while also using a modest number of time steps.

It is not possible to give a fully satisfactory mathematical explanation to the results of Figure
6-5. However, we highlight that such kind of nonphysical behavior is not unprecedented. In the
context of hyperbolic system of conservation laws, non-entropic schemes have been reported, and

6In this manuscript the θ-scheme described in (34)-(35) was solely introduced in order to understand why Crank-
Nicolson displays such a poor performance. Beyond that context, it’s use was never intended.
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in some cases mathematically proven, to produce fake stationary contacts/fronts, see for instance
Lemma 3.2 in [52]. However, this is by no means an explanation of the results observed here.

6.5. Computational study #3: dependence on Gauss-law-restart

In this section we consider the setup described by (55)-(60) with δ = 0.01 and υ = 10−5. The
mesh generation follows the same procedure described in Section 6.3, see Figure 6-1, but we only
apply 7 uniform refinements. With this setup, we compare the performance of three different
kinds of Gauss-law restart:
��� Line-search Gauss-law restart: this entails performing a line search for λ ∈ [0,1] as

described in Algorithm 5. This method is mathematically guaranteed to be energy-stable
and provide some partial compliance with the Gauss-law.

��� No Gauss-law restart: equivalent to hard-coding λ = 0 in Algorithm 5. This method is
mathematically guaranteed to be energy-stable. Even though the scheme for the
Euler-Poisson system advanced in this manuscript is high-order consistent (in-time) with
respect to the Gauss-law, we can only expect that the violations of the Gauss-law will
accumulate over the course of hundreds/thousands of time steps. Such deviation will
necessarily have a qualitative impact in the solution, see Figure 6-7 first row, columns two
and three.

��� Full Gauss-law restart: equivalent to hard-coding λ = 1 in Algorithm 5. Note that this
approach is fully compliant with the Gauss-law but cannot be guaranteed to be
energy-stable.

See Figure 6-7 for visual comparison of the three different kinds of Gauss-law restart. The
differences between line-search Gauss-law restart and full Gauss-law restart are pretty much
minimal.

Preservation of the Gauss-law in the context of fluid plasma models is a rather technical issue.
We might want to add some comments to this section that serve as important background:
��� At this point in time, developing a scheme that is energy stable does not pose a challenge,

see for instance [83]. Similarly, developing a scheme the preserves the Gauss-law
−ε∆ϕ = qene (with the equality understood in some weak sense) is not that difficult either,
see for instance [18]. The real obstacles appear when we try to satisfy both energy-stability
and Gauss-law. The fundamental problem has nothing to do with the numerical scheme, or
the space discretization, or the time discretization. The antagonistic nature of
‘energy-stability vs Gauss-law’ is in the intrinsic nature of the PDE as we explain in the
following bullet.

��� If the Gauss-law is meant to be preserved by the exact solution, we should not expect it to
hold true in a pointwise sense. Even expecting the Gauss-law to hold in an Lp-sense with p
arbitrary is asking too much. More precisely, we have that −ε∆ϕ = qene ∈ H−1(Ω)
provided that ne ∈ Lp(Ω) with p≥ 6/5, see Appendix B. The notion of a ‘strong’
Gauss-law carries no particular meaning in the context of the Euler-Poisson system. Even
the notion of a weak Gauss-law hangs on a thin thread: there is absolutely no good reason
to believe that the electron density will satisfy the conditions ne ∈ Lp(Ω) with p≥ 6/5 for
all time. If during the time evolution of exact solution, we have that ne ∈ Lp(Ω) with
p < 6/5, then the it will not be possible to guarantee that ‖∇ϕ‖L2(Ω) ≤ const, and the exact
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Figure 6-3 Backward-Euler. Schlieren snapshots 0, 200, 400, 600, 800, 1,000, 1,200,
1,400, and 1,600; corresponding with approximate times 0, 0.125tF , 0.25tF , 0.375tF ,
0.5tF , 0.625tF , 0.75tF , 0.875tF , tF . This computation uses a total of 27086 time-steps.
These snapshots are meant to be compared with those of Figure 6-2. Essentially,
when using the Backward-Euler method for the source-update scheme, we get an
overdamped Diocotron instability. This is not completely surprising. In the context of
computational fluid dynamics it is somewhat known that first-order methods (either
in time or space) struggle to reproduce hydrodynamic instabilities, and sometimes
they are unable to manifest them at all, see for instance [67].

39



Figure 6-4 Crouzeix’s DIRK23. Schlieren snapshots 0, 200, 400, 600, 800, 1,000, 1,200,
1,400, and 1,600; corresponding with approximate times 0, 0.125tF , 0.25tF , 0.375tF ,
0.5tF , 0.625tF , 0.75tF , 0.875tF , tF . This computation uses a total of 2,8651 time-steps.
These snapshots compare favorably with those of Figure 6-2.
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Figure 6-5 Crank-Nicolson. Schlieren snapshots 0, 200, 400, 600, 800, 1,000, 1,200,
1,400, and 1,600. Strictly speaking, these computations do not use Crank-Nicolson
scheme but rather the θ-scheme with θ = 0.500001. This computation uses a total of
399,770 time-steps: almost 14 times more time-steps than Backward-Euler or DIRK23
scheme. After snapshot 800 the scheme appears to produce highly defective numer-
ical results: even though the fluid is still rotating, the electron density pattern stays
in the same position. In other words, the interface between the annulus of electrons
and the vacuum behaves like a ‘stationary contact’ or ‘stationary internal layer’.
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Figure 6-6 Time-step size evolution. Evolution of the time-step size along the simu-
lation time: Crank-Nicolson (purple), Backward-Euler (green), and Crouzeix’s DIRK23
(light blue). We can see that the time-step size of Crank-Nicolson is more than
an order of magnitude smaller than that one required by either Backward-Euler or
Crouzeix’s scheme. On the other hand, we can appreciate that both Backward-Euler
and Crouzeix’s scheme display a quite stable time-step size throughout the entire
simulation time.

solution is unlikely to preserve energy-stability.
��� From the previous bullet we may be inclined to say that any attempt to develop a scheme

that preserves both energy-stability and Gauss-law (stringently) is a roadmap for failure.
Such goal, appears to be out of touch with the actual nature of the PDE. That is why at early
stages of this project, when we started to design a scheme for the Euler-Poisson system, we
decided to prioritize energy-stability over Gauss-law.

��� Computational implementation of the ‘idealized’ or ‘abstract’ Gauss-law restart, as defined
in (75) and (76), might not be computationally efficient. However, our early experiments
using numerical implementations of simplified Gauss-law restart strategies, such as
Algorithm 5, are quite promising, see Figure 6-7.

At this point in time, we have largely drifted away from the specifics advanced in Algorithm 5.
We do not report such schemes due to limitations of time. Such schemes were tested in the
shocked-regime (i.e., discontinuous solutions) leading to early results where full-restart and
line-search restart were nearly indistinguishable. Overall, addressing the preservation of the
Gauss law as a post-processing stage, rather than a property built-in to the scheme, appears to be
technically sound and very promising.

6.6. Computational study #3: dependence on small parameter δ.

We consider the setup described by (55)-(60) with fixed value υ = 10−5, but develop a parametric
study on δ. More precisely, we consider δ = 10−2,10−3,10−4,10−5. From (56), we know that
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Figure 6-7 Gauss-law restart: visual comparison. Schlieren snapshots 500 (left),
1,000 (middle), 1,500 (right). There are approximately 7,000 time-steps between snap-
shot 500 and 1,000, and between snapshots 1,000 and 1,500. These snapshots cor-
respond with: no Gauss-law restart (top row), line-search Gauss-law restart (middle
row), and full Gauss-law restart (bottom row). We note that the differences between
the last two rows are almost imperceptible under visual inspection, suggesting that
the line-search Gauss-law restart as described in Algorithm 5 does exactly what we
need. Regarding the first row (no restart), we notice that Snapshot 1,000 and 1,500
have some additional features/kinks that do not appear with any of the other two
Gauss-law restart techniques. It is worth mentioning that running the scheme with no
Gauss-law restart (at all) is never intended or suggested. Still, the baseline second-
order scheme, without no Gauss-law restart, seems to be pretty good at preserving
major features of the flow, even after 7,000 time-steps (as shown in the first column),
which is rather remarkable.
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Figure 6-8 Time vs time-step: parametric study on δ. We consider the cases of
δ = 10−2, δ = 10−3, δ = 10−4, δ = 10−5. The curves are literally on top of each
other. These four cases use (exactly) 28,651 time steps. For reference, for the case of
δ = 10−5, which is the most severe, the initial plasma period is Tp = 6.28 ·10−5, while
the cyclotron period is Tc = 6.28 ·10−13, and the average time step size is τ≈ 2.6 as it
can be appreciated in the plot. That is: we are overstepping the plasma period by six-
orders of magnitude, while we are overstepping the cyclotron period by almost fifteen
orders of magnitude. Hopefully, this is enough to illustrate that the proposed scheme
is indeed capable to overstepping high-frequency oscillatory phenomena without ex-
hibiting degradation of its performance.

gradually smaller values of δ will lead to smaller electron masses me, and smaller electrical
permittivity ε. The compounded effect of both constants going to zero is a dramatic growth of the
plasma and cyclotron angular frequencies. From a dynamic point of view, this will make
electrostatic forces more violent and will lead to sharper accelerations.

Our initial expectation was to observe a severe degradation of the time-step size, or at least,
experience a major loss of the time-step size stability throughout the simulation time. Similarly,
we were expecting a qualitative picture severely polluted by convective-like numerical
instabilities. However, none of that happened. Regarding time-step size stability, the reader can
check Figure 6-8 comparing the evolution of the time-step size for the different values of δ. As
with all the computations presented in this report, the time-step size is solely determined by the
hyperbolic cfl, and within such limitations, the number of time-steps remains pretty much
constant (i.e. independent of the value of δ). Regarding qualitative picture, the reader can take a
look at Figure 6-9 using δ = 10−5.

6.7. Computational study #4: dependence on small parameter υ.

We consider the setup described by (55)-(60) with fixed value δ = 10−2, but explore a parametric
study on υ. More precisely we will consider using υ = 10−5, υ = 10−7, υ = 10−9, υ = 10−11

(almost a trillionth). From (55)-(60), we know that υ determines the strength of the vacuum
conditions outside the annulus of negative electric charge and the plasma temperature. In Figure
6-10 we can see some results showing the history of the time-step size for each value of υ.
Essentially, as we use stronger vacuum and lower temperatures the scheme is capable of using
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Figure 6-9 DIRK23 scheme using δ = 10−5. Using this value of δ we obtain Tp ≈ 6.28 ·
10−5, Tc ≈ 6.28 ·10−13 and Td ≈ 12566, and the average time step size is τ ≈ 2.6 (see
Figure 6-8). These results appear to be qualitatively right with no major questionable
features. Note that there is, in principle, no good reason to think that these results
should resemble those of Figure 6-4 using δ = 10−2. Their similarity appears to be
just a happy consequence of the choice of scaling.
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Figure 6-10 Time vs. time-step size: parametric study on υ. In this plot we consider,
from lowest to highest location in the plot: υ = 10−5 (bottom purple curve), υ = 10−7,
υ = 10−9 υ = 10−11 (top yellow curve). The most important observation is that, re-
gardless of the density contrast-ratio, the time-step appears to be stable throughout
the entire simulation time. For reference: bottom curve, corresponding with υ = 10−5

uses a total of 28,651 time-steps; while top curve, corresponding with υ = 10−11 uses
merely 7,178 time-steps. Generally speaking, the scheme excels as we use stronger
vacuum conditions and lower temperatures (i.e. υ→ 0+ in the context of (55)-(60)).
Part of this behavior can be explained looking at the maximum speed of propagation
of the hyperbolic subsystem. For the isothermal Euler-Poisson system we have that
λmax ≈ u+

√
θ, where u is a material velocity while

√
θ is the sound speed. Clearly

for smaller values υ we will get smaller sound speeds, which allows to use larger
time-step sizes.

larger time-step sizes. In Figure 6-11 we can see some Schlieren screenshots corresponding to the
most extreme case using υ = 10−11.
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Figure 6-11 Computational results for the case of υ = 10−11. Snapshots 0, 200, 400,
600, 800, 1,000, 1,200, 1,400, and 1,600. This is a rather extreme computation with a
density contrast-ratio of almost a trillion. Snapshots 600 and 800 show some jagged
features. These computations used cfl = 0.75, which is somewhat too aggressive:
using a smaller cfl removes these defects. Nonetheless we decided to present the
current results ‘as they are’ in order to make meaningful comparison without resort-
ing to any case-by-case tweaking. Beyond that, there are appears to be no other
(evident to the naked) eye numerical issue. Note that there is no good reason to think
that the results of this Figure should be comparable with those of Figure 6-2. The
results of the current figure model a very cold plasma with temperature θ = 10−11,
therefore acoustic waves are negligible. On the other hand, the results of Figure 6-2
use θ = 10−5, and while acoustic waves do not play a dominant role, they are non-
negligible.
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7. CONCLUSION

This report introduces a semi-implicit scheme for the isothermal Euler-Poisson system with a
given magnetic field. The scheme splits the purely hyperbolic terms from the source-terms, see
Section 4. The source terms couple implicitly the momentum and the potential. Fully implicit
coupling between momentum and potential appears to be the minimal degree coupling we can
introduce if we want to develop schemes that can overstep electrostatic plasma and cyclotron
oscillation without suffering any degradation of the time-step size or numerical stability. The
choice of splitting allowed us to isolate concerns, such as positivy preservation, since the
hyperbolic subsystem can be solved with numerical schemes with mathematical guarantees of
robustness. We note that in this context the magnetic field is ‘given data’, and assumed to be
‘constant’ or ‘frozen in-time’, this is however, perfectly compatible with second-order accuracy,
see [83, Section 3.4].

The source-update scheme was implemented using statically condensed Schur-complements. In
other words, we avoided blocked DOF-managers and blocked linear algebra in their entirety. This
leads to a linear algebra system that is not that different from that one encountered when solving a
scalar Poisson equation. Static condensation is by no means a new idea. However we believe that
its application in the current context, PDE-ODE coupling, is an original technique, see Section
4.4 for more details.

Minimal conditions for entropy stability were introduced. The conditions seem to indicate that
entropy production does not only depend on the choice of scheme used for the hyperbolic
subsystem but also on the choice of time-integration scheme used for the source-update scheme.
Our initial assessment is that vanishing-damping mechanisms appear to be of critical importance
in order to recover entropic (i.e. physically valid) solutions. See Sections 5 and 6.4 for more
details.

The scheme was tested in the high magnetic drift-regime, in order to approximate the solution
of the guiding center drift-model. In order to prove preliminary concepts we chose the
cold-plasma Diocotron instability, see Section 6.2. Our early numerical investigation provides
quite strong computational evidence indicating that Crank-Nicolson scheme (for the source
update scheme) has very little to no potential of working in the context of magnetic drift-regimes.
This prompted us to develop an entire mathematical framework for Diagonally Implicit
Runge-Kutta methods that satisfy a discrete energy law. The resulting scheme was shown to be
capable of overstepping electrostatic plasma and cyclotron oscillations by several orders of
magnitude, while also requiring a very modest number of time steps in order to complete
simulations. Similarly, the scheme was also shown to be capable of working in the context of very
large density contrast ratios (i.e. strong vacuum conditions). See Section 6 for more details.

The standard scheme does not preserve the Gauss-law exactly. However, the Gauss-law appears
to be satisfied with very high-accuracy. This opened the possibility of recovering the preservation
of the Gauss-law using simple but effective postprocessing techniques. These are early attempts
in this direction: at this point in time, oversimplistic post-processing techniques are advanced in
this report. Nonetheless, these initial attempts are promising, delivering results which are nearly
indistinguishable from numerical solutions which are fully compliant with the Gauss law, see
Section 6.5 for more details.
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APPENDIX A. DISCRETE ENERGY-LAW OF THE CROUZEIX DIRK23
SCHEME

Let W⊆ U⊆W∗ be a Gelfand triple. Here W∗ is the dual space of W. The inner product between
objects of the U-space will be denoted as (·, ·)U, therefore the corresponding norm will be denoted
as | · |U = (·, ·)1/2

U . The duality pairing between W and W∗ is denoted by 〈·, ·〉W∗,W. We are
interested in solving the evolutionary problem ∂tu+F (t,u) = 0 where F (t,u) : R×W→W∗,
therefore ∂tu ∈W∗, with initial data u0 ∈ U, in the interval of time [0, tF ] with tF > 0. We assume
the following additive structure for F (t,u) that separates the autonomous part from the
non-autonomous component as

F (t,u) := A(u)− f (t) (64)

where A(u) : W→W∗ is the autonomous part of F (t,u), and f (t) : [0, tF ]→W∗ is the
non-autonomous part. In practice boundary-data can be assimilated into f (t).

The Crouzeix’s two-stage third-order scheme is described by the following tableau:

1
2 + γ

1
2 + γ

1
2 − γ −2γ

1
2 + γ

1
2

1
2

with γ =
√

3
6 . (65)

This tableau appears for the first time in [21].

Remark A.1 (Implementation of DIRK schemes). Tableau (65) translates into the following
sequence of steps: given an initial state un at time tn we compute un+1 as follows:

Stage #1 u1−un =−(1
2 + γ)τF (t1,u1) (66)

Stage #2 u2−un = 2γτF (t1,u1)− (1
2 + γ)τF (t2,u2) (67)

Final solution #3 un+1−un =−1
2τF (t1,u1)− 1

2τF (t2,u2) (68)

where t1 = tn +(1
2 + γ)τ and t2 = tn +(1

2 − γ)τ. Note that the operations described by (66)-(68) are
uncoupled: we first compute u1 by solving an implicit problem in (66), then we use the value of
u1 in order to compute u2 using (67), and finally we compute the solution un+1 using (68).
However, (66)-(68) is not representative of how these methods are actually implemented. For
instance, storage of the vectors F (t1,u1) and F (t2,u2) is not only cumbersome but also
unnecessary. An algebraically equivalent implementation of (66)-(68) consists of:

Stage #1: u1 +(1
2 + γ)τF (t1,u1) = un (69)

Stage #2: u2 +(1
2 + γ)τF (t2,u2) = υ12u1 +(1−υ12)un (70)

Final solution #3: un+1 = υnun +υ1u1 +υ2u2 (71)

where υ12 = 1−
√

3, υn = 1−
√

3, υ1 =
3
√

3
2 −

3
2 and υ2 =

3
2 −

√
3

2 . In the context of (69)-(71) it
is clear that the DIRK23 scheme consists in two calls to a Backward-Euler solver, each time with
different initial data, and a final linear extrapolation step. In other words: Backward-Euler should
be understood as a separate routine/method. This small observation usually leads to better code
organization.
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The Crouzeix scheme is of one many so-called Diagonally Implicit Runge-Kutta schemes
[1, 63], usually called DIRK-schemes for short. These kind of schemes have existed for quite a
while, however their stability analysis is mostly to limited perturbative theories of stability.
However, Crouzeix’s scheme is quite special, in particular, since it satisfies a dissipative discrete
energy-balance as detailed in the following lemma.

Lemma A.1. Crouzeix’s scheme, satisfies the following discrete energy-balance:

1
2 |un+1|2U +Q (un,u1,u2)+ τν1〈F (u1),u1〉W∗,W + τν2〈F (u2),u2〉W∗,W = 1

2 |un|2 , (72)

where ν1 =
1
2 , ν2 =

1
2 , and Q (u,v,w) : H×H×H→ R is positive semi-definite homogeneous of

degree-2 quadratic form given by

Q (un,u1,u2) :=
[
δ1|u1−un|2U +δ2|u2−u1|2U +δ12(u1−un,u2−u1)U

]
. (73)

with

δ1 =
√

3− 3
2 , δ2 =

√
3

4 and δ12 =
3
2 −

√
3

2 . (74)

The proof of this lemma is rather non-trivial and goes well-beyond the context of this
LDRD-project. Such proof is part of a separate body of mathematical research containing more
general mathematical results in relationship to DIRK schemes, see arXiv pre-print [81]. We
highlight that energy-identity (72)-(74) constitutes, by itself, an original result advanced
specifically for the purposes addressed in this report.

APPENDIX B. GAUSS-LAW RESTART

Given a pair of electron number density nn
e and potential ϕn returned by the call of Algorithm 1,

for the case of guiding center drift-limit model, or Algorithm 4 for the case of Euler-Poisson
model, in general we have that Gauss-law −ε∆ϕn = qenn

e +qbnn
b will not hold true. We say that a

a ‘Gauss-law restart’ is any mathematical procedure that recovers either partial or total
compliance with the Gauss-law while also preserving energy-stability property (21) for the case
of Drift-limit model, or entropy-stability property (51) for the case of isothermal Euler-Poisson
system. We may think of ‘Gauss-law restart’ as a post-processing technique that requires solving
a constrained optimization problem. Therefore, we may want to find a new potential ϕ̂n defined
as

ϕ̂
n = argmin

{ϕ∈H1(Ω) |‖∇ϕ‖L2(Ω)
≤κ}
‖ε∆ϕ+qenn

e +qbnn
b‖Hs(Ω) , (75)

where s ∈ R and κ≥ 0 is a prescribed value. This begs quite a few questions: How can we devise
such procedure? How can we make it inexpensive? What is the proper choice of norm Hs(Ω)?
More generally what is the proper functional-analytic framework in order to make problem (75)
well-posed? What is the proper value of κ? Is it feasible to devise such procedure without
spoiling the accuracy properties of Marchuk-Strang splitting scheme? However, the context of
this narrowly-scoped LDRD-project, our goal is not to attempt to advance, develop or promote
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any optimal Gauss-law restart methodology. For the purposes of this manuscript, the primary goal
is to devise the simplest and most inexpensive technique that allows us to enforce preservation of
the Gauss-law either in whole or in part. The utilitarian purpose of such technique is to use it in
order to evaluate the robustness and sensitivity of the numerical results with respect to the
preservation (or violation) of the Gauss-law.

The proper choice of norm in (75) appears to be Hs(Ω) with s =−1. In this context (75) can be
rewritten as

ϕ̂
n+1 = argmin

{ϕ∈H1(Ω) |‖∇ϕ‖L2(Ω)
≤κ}
‖∇ϕ−∇ϕg‖L2(Ω) , (76)

where ϕg is the solution of −ε∆ϕg = qenn
e +qbnn

b. On the other hand, κ should be understood as a
‘energy budget’ that we are not allowed to violate. If we set κ = ‖∇ϕn‖L2(Ω), we will guarantee
that the Gauss-law restart does not spoil the entropy/energy stability properties of
Marchuk-Strang splitting. In other words: forcefully replacing ϕn with ϕn

g will preserve stability
of the scheme provided that ‖∇ϕn

g‖L2(Ω) ≤ ‖∇ϕn‖L2(Ω). However, if we use a dissipative scheme
for the source-update scheme, we may pick-up the energy lost during the source update scheme
and add it to κ in order to ‘enlarge our energy budget’. For instance, in the context of isothermal
Euler-Poisson system, if we use DIRK23 scheme in order to compute the source-update, we may
consider setting

κ =
(
‖∇ϕ

n+1‖2
L2(Ω)+

2
ε

Q (un
h,u

1
h,u

2
h)
) 1

2

where Q (un
h,u

1
h,u

2
h) was defined in (36). This is perfectly compatible with energy-stability.

We will consider the following algorithm in order to restart the Gauss-law:

Algorithm 5 line_search_gauss_law_restart({ne,nb,ϕ,κ})

��� Step #1 (projection): compute ϕg solution of −ε∆ϕg = qene +qbnb.

��� Step #2 (line-search): compute λ defined as

λ := max
{

s ∈ [0,1]
∣∣‖s∇ϕg− (1− s)∇ϕ‖L2(Ω) ≤ κ

}
.

��� Step #3 (linear combination): set ϕ̂ := λϕg +(1−λ)ϕ

Return: ϕ̂

Regarding the accuracy of Algorithm 5 we have compelling mathematical arguments in order to
believe that it will not spoil the accuracy of the scheme. In what follows, Lemma B.1, Lemma
B.2, and finally Proposition B.1, provide some comfort proving that ϕ̂, as defined in Step #3 of
Algorithm 5, will preserve the accuracy of the scheme. We start with Lemma B.1 which
establishes that if the scheme is sufficiently accurate, Gauss-law should exhibit a decay rate in
dual-norm, even if Gauss-law is not strictly enforced by the scheme.
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Lemma B.1 (Gauss-law-residual estimate). Let nn
e and ϕn represent the solutions returned by a

numerical scheme of q-th order of accuracy, meaning that it satisfies a formal error estimate of
the form

ε‖∇ϕ(tn)−∇ϕ
n‖L2(Ω)+qe‖ne(tn)−nn

e‖L2(Ω) ≤ O(τq) , (77)

where ne(tn) and ϕ(tn) represent the exact solutions to the time integration problem. Such exact
solutions, ne(tn) and ϕ(tn), are assumed to satisfy the constraint −ε∆ϕ(t) = qene(t)+qbnb(t) for
all time t ∈ [0, tF ]. We define the Gauss-law residual R n ∈ H−1(Ω) of the approximate solution as

R n := ε∆ϕ
n +qenn

e +qbnn
b . (78)

Then, it follows that ‖R n‖H−1(Ω) ≤ O(τq).

Proof. By definition of H−1(Ω)-norm we have

‖R n‖H−1(Ω) = sup
{ω∈H1 |‖ω‖H1=1}

〈ε∆ϕ
n +qenn

e +qbnn
b,ω〉

= sup
{ω∈H1 |‖ω‖H1=1}

〈ε∆ϕ
n +qenn

e +qbnn
b− [ε∆ϕ(tn)+qene(tn)+qbnb(tn)]︸ ︷︷ ︸

≡0

,ω〉

= sup
{ω∈H1 |‖ω‖H1=1}

ε(∇ϕ(tn)−∇ϕ
n,∇ω)+qe(nn

e−ne(tn),ω)

≤ sup
{ω∈H1 |‖ω‖H1=1}

ε(∇ϕ(tn)−∇ϕ
n,∇ω)+qe sup

{ω∈H1 |‖ω‖H1=1}
qe(nn

e−ne(tn),ω)

≤ ε‖∇ϕ(tn)−∇ϕ
n‖L2(Ω)+qe sup

ω∈L2(Ω),‖ω‖L2(Ω)
=1
(nn

e−ne(tn),ω)

≤ ε‖∇ϕ(tn)−∇ϕ
n‖L2(Ω)+qe‖nn

e−ne(tn)‖L2(Ω)

where we have used that the exact solution {ne(tn),ϕ(tn)} satisfies the Gauss-law exactly, the fact
that nb(tn) and nn

b are equal in the semi-discrete context, integration by parts in order to rewrite
the 〈H−1,H1〉 pairing in terms of a Riesz representative, sub-additivity of the sup, and the
monotonicity property supH1 ≤ supL2 . The result follows readily applying the assumed estimate
(77).

The following lemma shows that Step #1 of Algorithm 5, computing a new potential ϕg that
satisfies the Gauss-law, cannot be too different from the original potential delivered by our q-th
order accurate scheme.

Lemma B.2 (Projection error). Let nn
e and ϕn represent the solutions returned by a numerical

scheme of q-th order of accuracy, see (77). Let us define ϕn
g as the solution of

−ε∆ϕ
n
g = qenn

e +qbnn
b . (79)

Then, under the assumptions of Lemma B.1, we have that

ε‖∇ϕ
n
g−∇ϕ

n‖L2(Ω) ≤ O(τq) . (80)
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Proof. Subtracting (79) from (78) we get

−ε(∆ϕ
n
g−∆ϕ

n) = R n+1 .

Taking the duality pairing with ϕn
g−ϕn we get

ε‖∇ϕ
n
g−∇ϕ

n‖2
L2(Ω) = 〈R

n+1,ϕn
g−ϕ

n〉

≤ ‖R n‖H−1‖ϕn
g−ϕ

n‖H1

. ‖R n‖H−1‖∇ϕ
n
g−∇ϕ

n‖L2 ,

where we used Poincare’s inequality in the last step. The result follows by cancelling a factor of
‖∇ϕg−∇ϕn‖L2 and using the decay rate for ‖R n+1‖H−1 established in Lemma B.1.

The following lemma shows that Step #3 of Algorithm 5, computing a new potential that is a
convex combination of the projected potential and the original q-order potential, should be
q-order accurate too.

Proposition B.1 (Accuracy of linear combinations). Let nn
e and ϕn represent the solutions

returned by a numerical scheme of q-th order of accuracy. Let λ be any real number of order
O(1). Under the assumptions of Lemma B.1 we have that

‖[λ∇ϕ
n
g +(1−λ)∇ϕ

n]−∇ϕ(tn)‖L2(Ω) ≤ O(τq) (81)

with ϕn
g as defined in (79) and ϕ(tn) being the exact solution of our time-integration process.

Proof. The proof is rather trivial and follows by using 1 = λ+(1−λ) and the triangle inequality:

‖[λ∇ϕ
n
g +(1−λ)∇ϕ

n]−∇ϕ(tn)‖L2(Ω) =

‖λ[∇ϕ
n
g−∇ϕ(tn)]+(1−λ)[∇ϕ

n−∇ϕ(tn)]‖L2(Ω)

≤ λ‖∇ϕ
n
g−∇ϕ(tn)‖L2(Ω)+ |1−λ|‖∇ϕ

n−∇ϕ(tn)‖L2(Ω)

≤ λ‖∇ϕ
n
g−∇ϕ

n‖L2(Ω)+λ‖∇ϕ
n−∇ϕ(tn)‖L2(Ω)+ |1−λ|‖∇ϕ

n−∇ϕ(tn)‖L2(Ω) . (82)

The three terms in (82) are estimated using (80), assumptions (77), and boundedness of λ and
1−λ.

In conclusion: estimate (81) tells us that any linear combination of potential computed by
Gauss-law-restart indeed introduces and error, but this error is O(τq), therefore it cannot not hurt
the asymptotic accuracy of the whole scheme. Finally, we would like to have an estimate on the
total energy of the system, in particular the electrostatic energy, after restart.

Lemma B.3 (Energy difference). Let nn
e and ϕn represent the solutions returned by a numerical

scheme of q-th order of accuracy, see (77). Assume that

‖nn
b‖L2(Ω)+‖nn

e‖L2(Ω)+‖∇ϕ
n‖L2(Ω) ≤ const < ∞ (83)

Under the assumptions of the Lemma B.1 we have that

ε
∣∣‖∇ϕ

n‖2
L2(Ω)−‖∇ϕ

n
g‖2

L2(Ω)

∣∣≤ O(τq)

where ϕn
g was defined in (79).
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Proof. From (78) and (79) we have that

ε‖∇ϕ
n‖2

L2(Ω) = (qenn
e +qbnn

b,ϕ
n)−〈R n,ϕn〉 ,

ε‖∇ϕ
n
g‖2

L2(Ω) = (qenn
e +qbnn

b,ϕ
n
g) .

Taking their difference we get

ε(‖∇ϕ
n
g‖2

L2(Ω)−‖∇ϕ
n‖2

L2(Ω)) = (qenn
e +qbnn

b,ϕ
n
g−ϕ

n)+ 〈R n,ϕn〉 ,

. (‖nn
e‖L2(Ω)+‖nn

b‖L2(Ω))‖∇ϕ
n
g−∇ϕ

n‖L2(Ω)+‖∇ϕ
n‖L2(Ω)‖R n+1‖H−1

. ‖∇ϕ
n
g−∇ϕ

n‖L2(Ω)+‖R n‖H−1 .

where we have used Poincare inequalities and the assumed bounds (83). The result follows using
the convergence rate (80) and the decay rate of the Gauss-law residual ‖R n‖H−1 ≤ O(τq).

APPENDIX C. GRAPH-BASED HYPERBOLIC SOLVER

For the hyperbolic subsystem (23) we use a framework of numerical schemes based on a
graph-viscosity stabilization and convex limiting [51, 49, 53, 66, 47]. The framework is
discretization agnostic, meaning that it can in principle be used in conjunction with continuous or
discontinuous finite element, finite volume, or finite difference formulations. In this report,
however, we will use a discontinuous finite element spaces, see Section 4.2, for reasons discussed
in Remark 4.6 related to local well-posedness of the linear algebra system. For the sake of
completeness we summarize some implementation aspects in this appendix. For a complete
overview of the methodology we refer the reader to [53].

C.1. Discrete divergence operator and stencil

For every i ∈ VH(K) and every j ∈ VH we define the vector ci j ∈ Rd as

ci j :=

{
cK

i j− c∂K
i j if j ∈ VH(K),

c∂K
i j if j ∈ V \VH(K),

where
cK

i j :=
∫

K
φi∇φ j dxxx, c∂K

i j :=
1
2

∫
∂K\∂Ω

φ jφinK dsss.

where nK is the outwards pointing normal of the element K. Note that: c∂K
i j will be necessarily

zero if φ j does not have support on the element K or on one of its immediate neighbors. With this
observation in mind, we define the stencil at the node i as follows:

I (i) = { j ∈ VH | ci j 6= 0}.

The set of vectors {ci j} j∈I (i) is used to construct an approximation of the divergence operator at
each node i in the spirit of a collocation scheme [53]. We highlight that this approximation of the
divergence operator is consistent with the polynomial degree of the shape functions {φi}i∈VH

and
will work with arbitrary meshes, see [53] for more details.
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C.2. Scheme

For a given state Un
i = [ρi,pi]

> we define a low-order update Un+1,L
i approximating the solution

of (23) as follows:

mi
Un+1,L

i −Un
i

τ
+ ∑

j∈I (i)
f(Un

j)ci j−dn,L
i j (Un

j −Un
i ) = 0, for all i ∈ VH , (84)

where we have set mi =
∫

Ω
φi dxxx, and where f(Un

j) ∈ R(d+1)×d is the flux at the node j ∈ I (i), and

dn,L
i j ∈ R+ is a viscosity coefficient defined as

dn,L
i j := max{λmax(Un

i ,U
n
j ,ni j)|ci j|`2,λmax(Un

j ,U
n
i ,n ji)|c ji|`2} .

Here, λmax(UL,VR,n) is any upper-bound on the maximum wavespeed of propagation of the
projected-Riemann problem (setting x := xxx ·n):

∂tU+∂x(f(U) ·n) = 0 with initial data U0 =

{
UL if x≤ 0,
UR if x > 0,

and we set dn,L
ii =−∑ j∈I (i)\{i} dn,L

i j . Then, under the hyperbolic cfl condition

τn :=−ccfl min
i∈VH

( mi

2dn,L
ii

)
, (85)

for some user selected ccfl ∈ (0,1] the update Un+1,L
i as defined by (84) preserves the invariant

domain and all entropy inequalities, see [51, 53].

C.3. High-order update and convex limiting

We also introduce a corresponding high-order method,

mi
Un+1,H

i −Un
i

τn
+ ∑

j∈I (i)
f(Un

j)ci j−dn,H
i j (Un

j −Un
i ) = 0,

where the only difference with the low-order scheme (84) lies in the choice of a high-order
viscosity dn,H

i j . The high-order graph viscosities are typically constructed such that dn,H
i j ≈ dn,L

i j

near shocks and discontinuities, but dn,H
i j ≈ 0 in smooth regions of the solution. A possible choice

is to construct local indicators estimating the entropy production or local smoothness of the
solution and use those to construct the high-order viscosity [52, 49]. In the computations reported
in this manuscript, however, we use a rather simple approach to compute the high-order
viscosities

dn,H
i j =

{
dn,L

i j if xxxi = xxx j,

0 otherwise.
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This definition is equivalent to using the low-order viscosity only on the faces of the elements.
We observe numerically good convergence rates for P1 and Q1 elements. However, the high-order
solution Un+1,H

i is not guaranteed to be invariant domain preserving and cannot be used directly
[49, 53]. In order to maintain invariant domain preservation and the high approximation
properties we blend the low-order solution and high-order solution together in a post-processing
step by setting

Un+1
i = Un+1,L

i + ∑
j∈I (i)

`i jAi j with Ai j := τn(d
n,H
i j −dn,L

i j )(Un
j −Un

i ).

Here, the limiter matrix `i j ∈ [0,1] is computed using a convex limiting procedure that consisting
of directional line searches that ensures that Un+1

i remains in the invariant set, see [49, 53] for
more details.
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