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The magneto-Rayleigh–Taylor instability (MRTI) plays an essential role in astrophysical systems
and in magneto-inertial fusion, where it is known to be an important degradation mechanism of con-
finement and target performance. In this Letter, we show for the first time experimental evidence
of mode mixing and the onset of an inverse-cascade process resulting from the nonlinear coupling
of two discrete pre-seeded axial modes (400-µm and 550-µm wavelengths) on an Al liner that is
magnetically imploded using the 20-MA, 100-ns rise-time Z Machine at Sandia National Laborato-
ries. Four radiographs captured the temporal evolution of the MRTI. We introduce a novel unfold
technique to analyze the experimental radiographs and compare the results to simulations and to a
weakly nonlinear model. We find good quantitative agreement with simulations using the radiation
magneto-hydrodynamics code hydra. Spectral analysis of the MRTI time-evolution obtained from
the simulations shows evidence of harmonic generation, mode coupling, and the onset of an inverse-
cascade process. The experiments provide a benchmark for future work on the MRTI and motivate
the development of new analytical theories to better understand this instability.

Introduction.– The magneto-Rayleigh–Taylor instabil-
ity (MRTI) [1, 2] is a ubiquitous phenomenon in astro-
physics [3, 4]. It plays an important role in the devel-
opment of plumes in solar prominences [5] and filaments
in the solar corona [6] and in the Crab Nebula [7, 8].
This instability is also important in laboratory pinch
plasmas such as those in magneto-inertial fusion, wire-
array z-pinches, and equation-of-state studies [9–11]. In
these applications, the MRTI occurs when a load plasma
(which acts as a heavy fluid) is accelerated by a mag-
netic pressure (which acts as a light fluid). Like the
classical Rayleigh–Taylor instability (RTI), this config-
uration is unstable [12]. In the case of the Magnetized
Liner Inertial Fusion (MagLIF) platform [13–16], which
uses high magnetic pressures to compress a fuel plasma
to thermonuclear conditions, the MRTI can compromise
the inertial confinement and degrade performance [17].

The MRTI in laboratory z-pinch plasmas includes sev-
eral physical effects that are absent in the classical RTI;
for example, convergent imploding geometry, liner shells
with finite thickness, inhomogeneities in the magnetic
pressure, magnetic diffusion, Ohmic heating of the ma-
terials, and ablation. Several experiments have been
published studying the MRTI growth on the 100-ns
timescale. For example, single-mode seeded MRTI exper-
iments were reported in Refs. 18 and 19. Unseeded MRTI
growth was investigated in cylindrical liners [20, 21] and
planar slabs [22]. Helical MRTI modes spontaneously
emerge in smooth cylindrical loads when applying an ax-
ial magnetic field [23–26], which demonstrate the impor-
tance of magnetic-tension effects unique to the MRTI.

This Letter presents a series of experiments investigat-
ing the growth and interaction of two MRTI modes ini-
tially seeded on the outer surface of an imploding shell.

Experimental radiographs show evidence that a finite
number of discrete initial modes lead to nonlinear har-
monic generation and an inverse-cascade process, i.e., the
transfer of energy from small to large scales, as was pre-
dicted previously [27]. We obtain good agreement when
comparing the radiographs to those found using the radi-
ation magneto-hydrodynamics code hydra [28, 29]. To
quantitatively compare the experimental results to sim-
ulations and to a weakly nonlinear model, we developed
a novel technique that uncovers the underlying transmis-
sion contours of the experimental radiographs accounting
for the non-zero probing angle of the x-ray backlighter.
Experimental setup.– Cylindrical liners were imploded

using the 20-MA, 100-ns rise-time Z Machine at Sandia
National Laboratories. The liners were made of Al-1100
alloy and were placed inside an 8-post, 26-mm inner-
diameter return-current structure. The outer surfaces of
the liners were machined with two periodic perturbations
so that the initial outer radius was

R(z) = R0 +A0 [cos(k1z) + cos(k2z)− 2], (1)

where R0 = 3.168 mm is the unperturbed outer radius,
ki

.
= 2π/λi are the mode wavenumbers, and z is the ax-

ial coordinate. The wavelengths of the two initial modes
were λ1 = 550 µm and λ2 = 400 µm, which correspond to
k̄1

.
= k1/(2π) = 18.1 cm−1 and k̄2

.
= k2/(2π) = 25 cm−1,

respectively. Both modes had the same initial amplitude
A0 = 10 µm. (The instability starts in the linear growth
regime.) Pre-shot characterization of the outer surfaces
of the liners showed that local deviations from Eq. (1)
did not exceed 2.0 µm along the field of view of the in-
strument (see Fig. 1). The inner radius of the targets
was 2.876 mm. An on-axis, 1-mm radius tungsten rod
was fielded to limit self-emission radiation at stagnation.
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FIG. 1. (a) Delivered current with radiograph times overlaid
as vertical bars. (b) Photograph of the liner with machined
perturbations. (c) Blue: nominal perturbation in Eq. (1).
Red and orange: surface deviations (magnified by 10x) of ma-
chined targets z2525 and z2556 measured by Coherence Scan-
ning Interferometry. (d) Experimental radiograph at 3077 ns.

Experimental results.– The MRTI evolution was di-
agnosed using a two-frame, 2-ns pulse-width monochro-
matic 6.151-keV backlighting diagnostic with 15-µm res-
olution [30]. Four radiographs were taken at t =
{3041, 3057, 3065, 3077} ns in two experimental shots
(z2525 and z2556). The shot-to-shot difference between
the measured currents was less than 2%. The cross-
timing error between the radiographs and the measured
currents is ±1 ns. The magnification error of the im-
ages is ±3% and can vary shot to shot. The radio-
graph backlighter has ±3° viewing angles for the first
and second frame of each shot. Figure 1 shows a raw
radiograph obtained at 3077 ns. The perturbations were
azimuthally correlated with small differences appearing
near the MRTI bubbles (innermost radial perturbations).

Simulations.– To help interpret the experimental data,
we performed simulations using hydra, a massively
parallel arbitrary Lagrangian–Eulerian (ALE) radiation,
resistive-diffusion, magneto-hydrodynamics code [28, 29].
hydra is one of the main design codes for MagLIF ex-
periments [31–33]. The simulations were done in 2D
rz cylindrical geometry. Radiation was modeled using
multi-group diffusion. For the Al material properties, we
used the leos equation-of-state table 130 [34] and the
quantum Lee–More–Desjarlais conductivity table 29373
[35]. The simulation had initial resolution of 10.1-µm and
2.1-µm in the axial and radial directions, respectively.
The runs were driven using the currents in Fig. 1.

Comparison of experiments and simulations.– Fig. 2
compares zoomed-in images of the experimental radio-
graphs and the synthetic radiographs generated from hy-
dra simulations. The simulations reproduce the large-
scale features of the experimental radiographs, particu-
larly the shape and orientation of the bubbles and spikes.
Note that the last radiography frame shows some bubble

regions already colliding with the coaxial tungsten rod.

Small-scale discrepancies appear in Fig. 2. The plasma
jets near the bubble regions at 3057 and 3065 ns likely
originate from the surface roughness of the Al alloy,
micron-scale scratches, pits, or metallic inclusions [36].
All can seed the electro-thermal instability (ETI) [37]
and lead to a local enhancement of Ohmic heating and
ablation of the liner surface [38–41]. In the last two radio-
graphs, the differences appearing near the bubble regions
may be due to the ETI and machining imperfections of
the liners. In Fig. 1, the largest measured deviations for
the z2556 load were 1-2 µm in size and were located near
the valley regions of the nominal perturbation. When
initializing the simulations with the experimentally mea-
sured liner surfaces, we obtained minor qualitative im-
provements in the MRTI evolution (not shown).

To find the underlying transmission contour without
the ±3° viewing-angle effect, we used a novel unfolding
technique that models the plasma as a series of coaxial,
opaque disks of radius Rj located at z = Zj . When tilted
by an angle θ, a disk contour becomes an ellipse obeying
(r/Rj)

2 + [(z−Zj)/(Rj sin θ)]
2 = 1. For each disk, Rj is

the maximum radius such that the corresponding ellipse
lies within the 25%-transmission contour of a given radio-
graph. The unfolded contour without viewing-angle ef-
fects is found using Runfold(Zj) = Rj . We tested this un-
fold technique against simulations and found good agree-
ment for cases with small MRTI growth. (Unfolded con-
tours are overlaid on top of the simulated density plots
in Fig. 4.) However, this analysis technique breaks down
when the MRTI becomes large or when a single-valued
function cannot represent the plasma contour.

The unfolded contours of the experimental radiographs
are non-periodic within the field of view. To make a
quantitative comparison to the unfolded contours of the
simulations, we used a least-squares spectral analysis
(LSSA) technique to calculate the corresponding Fourier
spectra [42, 43]. For the LSSA, we used sine and cosine
functions resulting from one to four mode combinations
of the mother k1 and k2 modes that are expected from
weakly nonlinear (wNL) theory [44–46]. Twenty modes
were included, and the maximum wavenumber allowed
was 4k̄2 = 100 cm−1. Figure 3 compares the LSSA spec-
tra of the unfolded contours of the radiographs taken at
t = 3065 ns (before the inner portions of the liner have
collided with the central rod). Quantitative agreement
is found for the largest amplitude modes. The mother
k1 and k2 modes have respectively grown to 250 µm and
330 µm in amplitude, which correspond to growth factors
of 25x and 33x of their initial amplitudes (A0 = 10 µm).
Figure 3 shows harmonic generation of new daughter
modes. The amplitudes of several daughter modes are
larger than the initial amplitude of the mother modes.
Notably, the k2 − k1 mode has the largest amplitude of
the daughter modes and provides experimental evidence
for the onset of transfer of energy from small scales to
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FIG. 2. Left column: Zoomed-in images of the obtained experimental radiographs. The diagnostic has a 4-mm axial field of
view. Right column: Synthetic radiographs obtained from hydra using the initial perturbation in Eq. (1). The radiographs
were calculated using the cold opacity of Al at 6.151 keV (102.6 cm2/g). The 25%-transmission contours of the experimental
radiographs are overlaid in red. Good qualitative agreement is obtained.

large scales, i.e., an inverse cascade occurring from the
nonlinear coupling of discrete initial MRTI modes.

Discussion of MRTI dynamics.– Figure 4 shows the
time evolution of the liner density and of the Fourier
spectrum of the liner mass per-unit-length bm(t, z)

.
=

2π
R∞
0

ρ(t, r, z)r dr. At 3041 ns, the amplitudes of the
k1 and k2 modes have increased 4x and 5x respec-
tively compared to their initial values (5.34 mg/cm) [47].
The k2 mode grows faster than the k1 mode since the
linear MRTI growth rate increases with wavenumber:
γk(t) ≃ (k|R̈|)1/2, where R̈(t) is the liner acceleration.
The spectrum shows harmonic generation of new modes
with wavenumbers k2 − k1, 2k1, k1 + k2, and 2k2. These
are “first-generation” daughter modes since they are the
first modes expected to appear from the mother k1 and k2
modes in wNL RTI theory [44–46]. At 3057 ns, the spec-
trum shows new “second-generation” daughter modes.
For example, to lowest order, the daughter k1 + 2k2
mode can appear from the coupling of the (k1, 2k2) or
(k2, k1 + k2) modes. At 3065 ns, the MRTI has entered
the nonlinear phase with the maximum peak-to-peak am-
plitude of the perturbations being ∼0.7 mm. The k2
mode, which previously had the largest amplitude, is
now smaller than the k1 mode. The second-harmonic
2k2 daughter mode has disappeared. These observations
suggest that saturation mechanisms and nonlinear mode
interactions are at play. The emergence of the k2 − k1
mode, which can only appear when the two modes are
initially seeded [27], and the larger amplitude of the k1
mode indicate that energy is being transferred to the
larger scales suggesting the onset of an inverse cascade.

k̄1
k̄2

k̄1 + k̄2
k̄2 � k̄1

2k̄2

2k̄2 � k̄1

2k̄2 � 2k̄1
2k̄1

2k̄1 + 2k̄2

k̄1 + 3k̄2
3k̄1 + k̄2

2k̄1 + k̄2

k̄1 + 2k̄2

FIG. 3. LSSA amplitudes (in logarithmic scale) of the un-
folded transmission contours inferred from the radiographs at
3065 ns. Blue error bars correspond to differences between
the left- and right-hand sides of the experiment radiographs.
Horizontal gray-dashed line indicates the amplitude that can
be measured to 30% uncertainty due to the fitting error.

Comparison to weakly nonlinear theory.– The early
MRTI growth can be approximately described using the
wNL model of Ref. 46 extended to two initially seeded
modes. This model considers a single, planar interface
separating the plasma fluid and magnetic field. The fluid
is assumed perfectly conducting, incompressible, and ir-
rotational. The wNL coupling between the modes ka
belonging to the set K = {k1, k2, 2k1, 2k2, k1 + k2, k2 −
k1} can be described by a least action principle δΛ =

δ
R t1
t0

Ldt = 0. Here L
.
=

P
ka∈K Φka

dξka
/dt−H is the

Lagrangian of the system, ξka(t) denotes the cosine am-
plitude of the ka mode of the outer surface perturbation,
Φka

(t) is the canonical momentum conjugate to ξka
, and

H(t, ξka
,Φka

) is the Hamiltonian given by
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FIG. 4. Fourier spectra of the liner mass per-unit-length ob-
tained from hydra. Inlet: simulated density map (in loga-
rithmic scale) of the imploding liner. Horizontal and vertical
axes correspond to the axial and radial coordinates, respec-
tively, and are measured in mm. Red lines denote the un-
folded contours from the synthetic radiographs in Fig. 2.
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From Eq. (2), we can identify the leading-order inter-
actions between the MRTI modes. The quadratic terms
inside the sum correspond to kinetic and potential en-
ergies. These terms describe the linear growth of each
individual mode [46]. The remaining terms in the first
line are nonlinear self-coupling terms for the k1 and k2
modes. The terms in the second line couple the k1 and k2
modes with their second-harmonic 2k1 and 2k2 daughter
modes. These first nonlinear terms are responsible for the
saturation of the mother k1 and k2 modes [44–46]. The
remaining nonlinear terms represent couplings between
the k1, k2, k1+ k2, and k2− k1 modes. In particular, the
first term in the third line is the main driver for the k2−k1
mode. Hamilton’s equations are obtained by varying the
action Λ with respect to ξka

and Φka
:

ξ̇ka
= ∂H/∂Φka

, Φ̇ka
= −∂H/∂ξka

. (3)

We numerically solved these twelve equations using a
4th-order Runge-Kutta integrator. The liner accelera-
tion R̈(t) was obtained using a thin-shell model [18, 19].
Figure 5 shows the time evolution of the mother

and first-generation daughter modes. The experimen-

FIG. 5. Time evolution of MRTI amplitudes. Solid lines:
LSSA amplitudes of the unfolded contours of the synthetic
radiographs. Dashed lines: amplitudes ξka obtained by solv-
ing Eqs. (3). Diamonds: LSSA amplitudes of the unfolded
contours of the experimental radiographs. Gray-dashed line:
amplitude that can be measured to better than 30% uncer-
tainty under combined effects of the signal-to-noise ratio, the
15-µm spatial resolution of the diagnostic, the 4.3-µm pixel
size of the images, and the LSSA fitting error.

tal points and the simulation results show good agree-
ment. Excluding the ablation phase of the liner sur-
face (t ≃ 3015 ns), the wNL model reproduces the early
growth of the mother modes until t ≲ 3045 ns. There is
also a partial agreement for the amplitude of the k2 − k1
mode. However, the theory overpredicts the growth of
the higher k modes: 2k1, k1 + k2, and 2k2. A probable
cause is the absent second-generation daughter modes,
which can act as energy sinks for the (2k1, k1 + k2, 2k2)
modes and limit their growth. Beyond t ≳ 3045 ns, the
mode amplitudes become large causing the wNL pertur-
bation theory to break down. In Fig. 5, this manifests as
a sudden change in the mother-mode amplitudes and as
an unbounded growth of the higher k modes. This short-
coming of wNL theories cannot be fixed by including
additional modes [44–46]. The wNL model also misses
cylindrical-convergence and feedthrough effects which be-
come important as the liner further implodes [48, 49].
Adding these effects into a nonlinear analytical frame-
work could improve our understanding of MRTI.

Conclusions.– We conducted experiments to study the
magneto-Rayleigh–Taylor instability (MRTI) with two
initially seeded modes. Using a novel technique to un-
cover the underlying transmission contours of the radio-
graphs with the ±3° viewing angle removed, we showed
experimental evidence of harmonic generation and the
onset of an inverse cascade resulting from the nonlinear
coupling of discrete modes. These experimental findings
agreed well with predictions from HYDRA simulations.
We presented a weakly nonlinear model that identifies the
leading-order nonlinear interactions between the MRTI
modes. Before breakdown, the model reproduces the dy-
namics of the largest-amplitude modes, but the model
shows disagreement for the lowest-amplitude modes.
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These findings motivate new controlled experiments to
scope the inverse cascade of MRTI in a deeper nonlinear
regime. Seeding more discrete axial modes (with well-
characterized initial amplitudes) can increase the number
of nonlinear interactions. A new multiframe radiogra-
phy diagnostic with a 0° viewing angle would remove the
shadowing of the MRTI features and simplify data anal-
ysis. From the theory side, the techniques in Ref. 50 can
be used to quantify the dominant energy-transfer mech-
anisms occurring in cylindrical MRTI, e.g., the kinetic-
to-kinetic and magnetic-to-kinetic energy-transfer chan-
nels. Developing new analytical theories for describing
fully-nonlinear, multi-mode MRTI is left for future work.
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