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Abstract— We evaluated the ecological effectiveness of an in-stream restoration project
involving coarse woody debris (CWD) additions to streams along an upland soil and vegetation
disturbance gradient at the Fort Benning Military Installation near Columbus, GA. We examined
short-term (immediate effectiveness) and longer-term (sustainability) responses to CWD
additions by measuring ecosystem metabolism rates in 8§ streams quarterly over a 6-year period;
including 3 years before (2001-2003) and 3 years after (2004-2006) CWD additions were made
to half of the streams. Ecosystem respiration (ER) rates in most CWD-addition streams
increased relative to control streams from spring 2004 through autumn 2005, suggesting
heterotrophic bacteria were the initial responders to CWD additions. Gross primary production
(GPP) rates remained low (typically < 0.3 g O> m d'!) but increased in some CWD-addition
streams relative to control streams in spring 2004 and 2005. The magnitude of ER increases in
CWD-addition streams during the first two years post-addition increased with catchment
disturbance intensity, indicating that more heavily disturbed streams responded most strongly to
restorations—an important consideration when targeting future restoration locations. Because
restorations did not address actual upland disturbance, continued high erosion rates resulted in 32
— 77% of the added CWD being buried by year two and a corresponding return of GPP and ER
rates to pre-CWD addition levels by year three. If restoration projects do not adequately address
the source of catchment disturbances, CWD additions will provide only short-term increases in
streambed structure and stability, hydrodynamic complexity, and nutrient and organic matter

processing and retention.
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45  Keywords: catchment disturbance, stream restoration, ecosystem respiration, primary
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Introduction

Stream ecosystems are strongly influenced by inputs of water, sediment, nutrients, and
organic material from their surrounding catchments (Hynes 1975). Changes in catchment land
use affect the rate at which these important constituents are delivered to streams as well as the
quality of in-stream habitats (e.g., abundance of course woody debris) and biological community
composition (Omernik 1976, Richards and others 1996, Huryn and others 2002, Allan 2004).
For example, deforestation can affect the amount and timing of the delivery of water (Webster
and others 1990), sediment (Gurtz and others 1980), and nutrients (Likens and others 1970, Aust
and Blinn 2004) to streams. Catchment land-use changes have been pervasive with only ~2% of
the 5.3 million km of rivers in the conterminous United States remaining relatively unimpacted
by human activities (Abell 2000, Palmer and others 2007). The riparian zone can play an
important role in mitigating some of the impacts of land use on stream ecosystems and
disturbances to these areas can have particularly large deleterious effects on streams (e.g.,
Lowrance and others 1984, Gregory and others 1991, Richards and others 1996, Aust and Blinn
2004). However, much less is known about how localized, intense disturbances of upland areas
affect streams with intact riparian zones.

The natural input of coarse woody debris (CWD) from the surrounding catchment
influences stream ecosystems in a variety of ways (Harmon and others 1986). CWD dams can
shape channel morphology (by altering water velocity and streambed erosion patterns, and
dissipating energy), increase hydrological heterogeneity (by creating backwaters and eddies),
facilitate the deposition and retention of organic matter (Naiman and Sedell 1979, Bilby and
Likens 1980, Smock and others 1989), and provide habitat surfaces for biofilm algae and

microbes and larger organisms (Gregory and others 2003). Nutrient uptake rates (retention) tend
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to be higher in association with CWD than other stream habitats (Munn and Meyer 1990,
Hoellein and others 2009) and increase after experimental wood additions (Wallace and others
1995, Roberts and others 2007b) but not in all cases (e.g. Hoellein and others 2012). The effects
of CWD removal on nutrient uptake rates are less straightforward, with studies finding decreased
(Ensign and Doyle 2005) or increased nutrient uptake (Warren and others 2013) with CWD
removal. High erosion rates associated with upland disturbances lead to high sediment loads
being transported downstream and increased flashiness of catchment streams (Lake and others
2007). These two factors often result in decreases in CWD abundances in streams (Maloney and
others 2005) which, in turn, can lead to decreases in ecosystem metabolism (Houser and others
2005) and nutrient uptake (Roberts and others 2007b) rates.

Stream restoration projects have the potential to mitigate some of the negative impacts of
catchment-scale disturbances on stream ecosystem processes. Despite billions of dollars
currently being spent on over 37,000 stream and river restoration projects in the United States
alone, the effectiveness of most projects is difficult to assess since adequate post-restoration
monitoring is often lacking (Bernhardt and others 2005). In order for restoration projects to be
ecologically successful, they must attempt to restore function as well as structure to streams
(Lake and others 2007, Craig and others 2008, Palmer 2009, Palmer and others 2014). Within
the last decade, a number of studies have examined the effectiveness of restoration efforts at
enhancing nitrogen (N) removal in the stream channel and adjacent floodplains (e.g.,
Bukaveckas 2007, Roberts and others 2007b, Kaushal and others 2008, Sudduth and others 2011,
Roley and others 2012, Arango and others 2015, Johnson and others 2016). However, studies
that quantitatively monitor stream processes both pre- and post-restoration are rare (e.g.,

Colangelo 2007, Roberts and others 2007b, Entrekin and others 2009, Roley and others 2012). It
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is clearly important to assess the effectiveness of restoration projects immediately after the
restoration has been completed, but it is perhaps even more important (and less common) to
assess the ecological effectiveness beyond the immediate post-restoration period because only
then can it be known if restorations are sustainable.

Ecosystem metabolism constitutes the processes (gross primary production [GPP] and
ecosystem respiration [ER]) controlling nutrient cycling and organic matter processing in stream
ecosystems. Changes in ecosystem metabolism rates are an integrated response to catchment
disturbance and land use and have therefore been advocated as useful measures of stream health
(Bunn and others 1999, Fellows and others 2006, Young and others 2008). For instance, the
ecosystem metabolism method has recently been used to examine rates of GPP and ER in
agricultural (Griffiths and others 2013, Roley and others 2014) and urban (Sudduth and others
2011, Beaulieu and others 2013, Reisinger and others 2017) streams. Ecosystem metabolism has
also been used to assess restoration effects in streams (Sudduth and others 2011, Hoellein and
others 2012, Roley and others 2014, Kupilas and others 2017), but these studies are much less
common than those evaluating nutrient uptake responses to restoration. Because ecosystem
metabolism constitutes an integrative measure of nutrient and organic matter processing in
streams, it represents an optimal assessment tool of the ecological effectiveness of restoration
efforts. However, GPP and ER are temporally dynamic processes (Bernhardt and others 2018)
and therefore seasonality in stream metabolism should also be captured in ecological assessments
of restoration.

In this study, we evaluated the ecological effectiveness of an in-stream restoration project
involving CWD additions to several streams along a well-studied (Houser and others 2005,

Maloney and others 2005, Houser and others 2006, Roberts and others 2007b) upland
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117  disturbance gradient at the Fort Benning Military Installation (FBMI) near Columbus, GA. We
118  measured ecosystem metabolism rates in 8 streams at FBMI seasonally over a 6-year period,
119  including 3 years before (2001-2003) and 3 years after (2004-2006) CWD additions were made
120 to half of the streams. This design allowed us to examine both the short-term (immediate

121  effectiveness) responses that are occasionally assessed and the longer-term (sustainability)

122 responses that are very rarely assessed in restoration projects. Several studies have shown that
123 stream metabolism is strongly related to streambed stability, particularly in sand-bed streams
124 (Grimm and Fisher 1984, Uehlinger and others 2002, Atkinson and others 2008). Therefore, we
125  hypothesized that the increased streambed stability from CWD additions and the CWD additions
126  themselves would provide stable substrates for the development of algal biofilms, resulting in
127  increased rates of GPP. We also hypothesized that the organic matter trapping ability resulting
128  from CWD additions would increase rates of ER in these streams. Finally, we hypothesized that
129  streams with greater catchment disturbance intensity would benefit more from CWD additions
130  and therefore exhibit stronger responses in ER and GPP following manipulation.

131

132 Methods

133 Study site

134 Fort Benning Military Installation provides a unique opportunity to evaluate the

135  effectiveness of in-stream restorations (CWD additions) on stream ecosystems impacted by

136  upland disturbance because of the broad range of disturbance intensities found within a small,
137  relatively homogenous region (e.g., numerous stream reaches of comparable morphology,

138  shading, and discharge). We studied eight 1% to 2"4-order, typical low-gradient (range = 0.8—

139  5.1%, mean = 2.1%; Maloney and others 2005), sandy Southeastern Hills and Plains streams
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(Felley 1992) on the FBMI (Fig. 1, 2a). The study streams had generally intact deciduous
riparian canopies (mean summer canopy cover = 94%; Maloney and others 2005) dominated by
blackgum (Nyssa sylvatica) and other mesic species. The streams drained catchments ranging in
size from 33 to 369 ha (Fig. 1, Table 1; Roberts and others 2007b).

The geology and land-use history of the study catchments are detailed in Maloney and
others (2005). The forest has been allowed to regrow in many areas of FBMI since it was
purchased by the US military in 1918 and 1941/1942 (Kane and Keeton 1998), and land cover in
these areas now consists primarily of oak-pine and southern mixed forest compared to row-crop
agriculture and pasture which dominated land-use prior to its purchase. The underlying soils are
sand, sandy clay loam, or loamy sands (Omernik 1987). Some areas of the FBMI are used for
military training involving infantry and heavy-equipment vehicles resulting in some catchments
having localized areas with high levels of vegetation and soil disturbance leading to high erosion
rates and streams with unstable, organic-poor sediments (Maloney and others 2005). Other
catchments have remained essentially undisturbed since their purchase by the military.

Leaf emergence at FBMI usually occurs in late March and leaf abscission is often in early
November resulting in the study streams (all with generally intact riparian forests) being strongly
shaded throughout the April — October period. Since the riparian forests in the study catchments
are almost entirely deciduous, light penetration to the stream surface is significantly higher
during winter and early spring. The specific stream reaches studied were chosen to minimize
variability in morphology, shading, and discharge among streams along the disturbance intensity
gradient. Study reaches were chosen to have minimal lateral inflow with the mean (+ SE)
increase in discharge between the upper and lower sampling stations across all study streams for

the 2004-2006 period being 4.2 + 0.2% (n = 96) and individual streams ranging between 3.0
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(BC1) and 6.2% (LPK). Streamwater nutrient concentrations (dissolved inorganic nitrogen
[DIN] and soluble reactive phosphorus [SRP]) were low (20-60 png N/L and 2-5 pg P/L,

respectively) and did not differ between the before and after restoration periods in any stream

(Mulholland and Roberts, unpublished data).

Disturbance intensity

Disturbance intensity for each catchment was defined as the % of catchment area covered
by unpaved roads or bare ground on slopes >5% as determined by Maloney and others (2005).
Unpaved roads are mostly used by tracked military vehicles, and much of the bare ground was
created by military training using these tracked vehicles. The areas of soil and vegetation
disturbance are generally located in upland areas away from the perennial streams, but these
areas become hydrologically connected to perennial streams via ephemeral drainages that
discharge to the perennial stream during storms.

The 8 streams included in this study were in catchments that spanned most of this
available range (~3.2 — 13.7%; Table 1) in disturbance intensity of the 249 second-order
catchments on the FBMI (0 — 17%; excluding the 4 most disturbed catchments). Low vegetative
cover in highly disturbed catchments has increased stream flashiness and sediment load and
decreased streambank stability, leading to increased burial and export of CWD (Maloney and
others 2005). The combined effects of increased burial and export of CWD were that the relative
abundance of submerged CWD decreased significantly with increased disturbance in our study
streams (linear regression: ° = 0.91, p < 0.0001, excluding BC1, a catchment with a notably
broader, flatter forested floodplain that appeared to protect the stream from the effects of upland

disturbance and had received some restoration of upland areas prior to the current studies so was
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not included in regression analyses; Houser and others 2005, Maloney and others 2005). The
percent areal coverage of CWD was estimated from measurements of submerged and buried (to
10 cm depth) CWD (> 2.5 cm in diameter) at 15 one-meter-long transects per stream (Maloney
and others 2005, Mitchell 2009). CWD coverage in the study streams ranged from ~3.1 to ~8.9%
(except in BC1 where % areal coverage = 12.6%; Table 1) before the CWD additions (Roberts

and others 2007b).

CWD and stream restorations

CWD was added to streams in 4 of the 8 study catchments (KM1, SB2, SB3, and LPK)
that spanned a range of disturbance intensities (~4.6 — 11.3%; Table 1). Riparian trees used for
CWD additions (N. sylvatica in KM1, SB2, and SB3 and Quercus alba in LPK) were felled and
sectioned during August 2003 and allowed to dry for 2 to 3 months before deployment. Very
few riparian trees were felled per stream and these trees were not located adjacent to study
reaches in any stream, thus minimal effects on light availability were expected. On October 25-
27,2003, ten CWD additions (~10 m apart) were made over a 100-m reach in each of the 4
streams. Individual CWD additions consisted of 3 logs (~10 — 20 cm diameter, 1 — 2 m long)
anchored in the streambed with rebar stakes (Fig. 2b, ¢). CWD additions were not intended to
create pool environments so logs did not span the entire width of the stream and were positioned
in a zigzag arrangement (Fig. 2b, ¢). CWD additions increased the % areal coverage of CWD by
~3.1% (LPK) to ~5.2% (SB3) and resulted in coverage of ~6.9% (LPK) to ~12.1% (KM1) of the
streambed surface area in the restored streams (Table 1). High sedimentation in the two most
disturbed streams receiving CWD additions (SB3 and LPK) resulted in significant burial of the

CWD added to these streams by the end of the first year after manipulation, so additional CWD
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(N. sylvatica in SB3 and Q. alba and Carya sp. in LPK) was added to these streams on
November 9, 2004. This resulted in CWD additions every 5 m (instead of 10 m) in the study

reach of these two streams.

Ecosystem metabolism rates

Daily whole-stream rates of gross primary production (GPP) and ecosystem respiration
(ER) were determined using an open-system, single-station diel dissolved O change approach
(Odum 1956, Houser and others 2005, Roberts and others 2007a). Measurements of dissolved
oxygen (DO) and water temperature were made at 15-min intervals using YSI model 6000 or
600 series sondes equipped with model 6562 DO probes that were placed in a laterally
constrained section of each stream. The sondes were calibrated in water-saturated air before and
immediately after deployment. The calibration DO data were corrected for barometric pressure
recorded during calibration and consecutive calibrations were used to detect instrument drift
during deployment.

Sondes were deployed for approximately 3 weeks in 4 streams (2 control and 2 receiving
CWD additions) and then moved to the other 4 streams immediately thereafter because of
equipment limitations. However, only DO data collected during similar flow conditions to the
deployment date were used to minimize the effect of changing flow on metabolism rates (Houser
and others 2005). Winter deployments were during January and February; spring deployments
were during March and April; summer deployments were in June, July, and August; and autumn
deployments were during October and November. This study includes a total of 6 years of
seasonal ecosystem metabolism data (3 years before [Houser and others 2005] and 3 years after

CWD additions took place).
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Volumetric ecosystem metabolism rates (g O> m™) were determined from the rate of
change in DO concentration using the equation ADO = GPP - ER + E, where ADO is the change
in DO concentration, GPP is gross primary production (g O> m), ER is ecosystem respiration,
and E is net exchange of Oz with the atmosphere between consecutive measurements. E is the
product of the O reaeration coefficient (ko2) and the average DO deficit (DO concentration at
100% saturation minus the DO concentration in stream water) over the measurement interval.
Reaeration coefficients, discharge, and velocity were determined for each stream using
simultaneous, continuous injections for propane gas (volatile tracer) and a concentrated NaCl
solution (conservative tracer) prior to each deployment following the methods detailed in Houser
and others (2005) and Roberts and others (2007a).

The net metabolism flux for a given measurement interval is equal to ADO — E. During
the night, GPP is zero, so the net metabolism flux is equal to ER. Daytime ER was determined
by interpolating ER averaged over the hour before dawn and the first hour after dusk (Houser
and others 2005, Roberts and others 2007a). GPP for each daytime interval was the difference
between the net metabolism flux and interpolated ER (see Fig. 3 in Roberts and others 2007a for
details). Daily volumetric GPP and ER rates (g O> m™ d'!) were calculated as the sum of the 15-
min rates over each 24 hour period. Volumetric rates were converted to areal units (g O> m?2 d!)
by multiplying by the mean water depth. Water depth was calculated from stream width
(average of wetted-width measurements taken every 5 m along the reach), discharge, and
velocity (both from the NaCl injections) of each stream (Houser and others 2005, Roberts and

others 2007a).

Statistical analysis
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We quantified the effects of CWD additions on whole-stream GPP and ER rates using a
modified before—after control—intervention (BACI; Green 1979) approach. Both control and
intervention [CWD addition] locations were replicated (Underwood 1994) in four locations for a
total of 8 study streams. During the pre-manipulation period (2001-2003), FBMI streams
exhibited strong seasonal differences in stream metabolism and physical parameters yet no
significant interannual variation (Houser and others 2005), we therefore averaged all pre-
manipulation measurements within each stream to ensure robust estimates and evaluated the
effects of CWD additions on a seasonal basis. After:before [A:B] ratios (e.g., ER in winter 2004
divided by mean ER in winters 2001 — 2003 for a given stream) were calculated in each of four
seasons (winter, spring, summer, and autumn) in each stream and in each post-treatment year
(2004, 2005, 2006). This approach allowed us to examine both the effectiveness of CWD
additions as well as the duration over which any effects persisted. Similarly, we calculated A:B
ratios for physical variables (i.e., discharge, temperature, and reaeration coefficient) for each
stream in each season and post-restoration year. Since ratio data were not normally distributed,
all ratios were square root-transformed. The effects of CWD addition on A:B ratios of physical
variables and metabolism rates were evaluated in each season using two-way ANOVAs with
Holm-Sidak corrections for all pairwise comparisons with treatment (i.e., comparing the
transformed A:B ratios of the 4 control streams to the transformed A:B ratios of the 4 CWD
addition streams) and post-treatment year as factors.

We also quantified changes in GPP and ER rates over time in each stream in each season
by comparing seasonal mean rates before manipulation (2001 — 2003) with seasonal mean rates
after manipulation (2004, 2005, and 2006). Since metabolism data were not all normally

distributed, changes over time were evaluated using one-way ANOVAs on ranks (Kruskal-
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Wallis test) with Dunn’s method used for evaluating pairwise comparisons among years. To
examine the effect of watershed disturbance on ER and GPP in CWD addition streams, the ER
and GPP A:B ratios for all manipulated streams were regressed against % watershed disturbance
intensity in each post-treatment year.

All statistical analyses were conducted using either SigmaPlot (version 14.0) or
SigmaStat (version 4.0) (Systat Software Inc., Point Richmond, California). Significance was
defined as 0=0.05, and marginal significance was defined as a=0.10.

Between the autumn 2005 and winter 2006 sampling periods, the least disturbed control
stream (BC2) received a drastic disturbance in the form of the construction of a road that crossed
the stream ~200 m upstream of the study reach, resulting in a large increase in sediment loading
to the reach (Mulholland and others 2009). As a result of this disturbance, data from BC2 were

included in all figures but excluded from all analyses in the third year after manipulation (2006).

Results

Physical variables

Most physical variables were similar before and after the CWD additions within each
stream. The range of wetted widths (0.90 — 2.07 m) and mean depths (0.04 — 0.15 m) across
streams was relatively narrow (Table 1). Discharge rates over the 6 year study period were
generally higher in winter and spring (15.2 and 17.4 L/s) than in summer and autumn (8.7 and
9.4 L/s; Table S1). Seasonal differences in discharge were primarily a result of seasonal
differences in evapotranspiration rates since rainfall was distributed relatively evenly among
seasons. After:before ratios of discharge (Fig. S1, Table S2) varied by year in spring (A:B ratios

of discharge were higher in 2005 and 2006 than in 2004) and summer (A:B ratio was higher in
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2005 than in 2004 or 2006), but did not differ by treatment (control versus manipulated streams)
during any season (Table S2).

Water temperatures were warmer during summer (22.7 + 0.2 °C) than in winter (11.2 +
0.5 °C) with spring and autumn temperatures being intermediate (Table S1). Similar to
discharge, A:B ratios of water temperature (Fig. S2, Table S3) varied by year in spring (A:B
ratio of temperature was highest in 2006, intermediate in 2005, and lowest in 2004). There was a
significant interaction of treatment and year in summer (Table S3), with the A:B ratio of
temperature higher in manipulated streams than control streams in 2004 (Fig. S2). The A:B ratio
of water temperature did not differ by treatment (control versus manipulated streams) during any
other season (Table S3).

Os reaeration coefficient (ko) did not show any discernible temporal patterns for either
the control or manipulated streams in any season (Table S4). Seasonal A:B ratios of ko> (Fig.
S3) did not vary by treatment or year (Table S5). Taken together, these findings indicate that

these physical variables did not appreciably change in response to the CWD additions.

Stream ecosystem metabolism rates

Daily rates of ecosystem respiration (ER) exhibited a wide range of values (~1.0-11.5 g
0, m2 d'!) throughout the study (Fig. S4). All streams were highly net heterotrophic (daily ER
rates exceeded daily GPP rates) in all seasons both before and after CWD additions. There was a
significant effect of CWD additions on A:B respiration ratios in 3 of 4 seasons that varied by
year (Table S6). Differences in A:B respiration ratios between control and CWD addition
streams were significant in all seasons of 2004 and 2005 except winter 2004 (Fig. 3) which was

the first season after CWD was added to the manipulated streams. In 2006, there were no
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significant differences in the A:B ratio for ER between control and manipulated streams (Fig. 3).
During the first two years after CWD was added, ER rates generally increased in manipulated
streams during all seasons (Fig. S4). However, there was considerable among-stream variation in
responses and the number of streams in which ER increased varied by season (Table S7) and
year. In 2004, the effect of restoration on increasing ER was observed in two manipulated
streams in spring, with non-significant trends observed in several streams in other seasons (Fig.
S4). In contrast, ER did not increase significantly in any control stream in any season in 2004.
The change in ER in CWD addition streams was more consistent in 2005, with 2 (summer), 3
(winter and spring), or all 4 manipulated streams (autumn) exhibiting higher ER rates than in the
pre-treatment period for those seasons (Fig. S4). Overall, the largest increases in ER were
observed in the two streams with the most highly disturbed catchments (SB3 and LPK with
10.49 and 11.26% of catchment disturbed, respectively) (Fig. S4).

Daily gross primary production (GPP) rates were low throughout the entire study in all
streams with values typically < 0.3 g O, m d"! except for during late winter-early spring in some
years in a few less-disturbed streams receiving CWD additions (Fig. S5). Overall, the addition
of CWD to FBMI streams resulted in some significant treatment effects on GPP after:before
manipulation ratios, with higher A:B ratios in manipulated than control streams in winter (p <
0.01), spring (p <0.1), and autumn (p < 0.1) (Table S8). However, this effect also varied by time
since restoration. In 2004, there were no significant differences in the A:B ratio for GPP between
control and manipulated streams in any season. In 2005, A:B manipulation ratios of GPP rates in
streams receiving CWD additions were significantly higher than in control streams in winter and
spring (Fig. 4; p <0.05). Although mean A:B ratios always appeared higher in manipulated than

in control streams after spring 2005, differences were only marginally significant in winter 2006
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(p <0.1; Fig. 4). GPP rates in all four control streams were significantly influenced by year in at
least one season, but no control stream exhibited a significantly higher rate in the post-treatment
than in the pre-treatment period during any season (Fig. S5, Table S9). GPP rates were
significantly influenced by year in all four manipulated streams in at least one season (Fig. S5,
Table S9). However, the only large stimulation in GPP resulting from CWD additions occurred
in the least disturbed stream (KM1) and only in spring 2004 and 2005 with only the 2005
increase being significant (Fig. S5). A significant increase in GPP in stream SB3 was observed in
spring 2005, but the magnitude of this increase was small (0.06 v. 0.02 g O, m d'!) (Fig. S5).
Pre-manipulation disturbance intensity had a significant effect on the magnitude of the
response to CWD additions with ecosystem respiration A:B ratio being predicted by prior
disturbance intensity in the first two years after restoration (Fig. 5a). The high variability in this
relationship results from both stronger responses being observed during the second year after
CWD addition (2005; slope = 0.24, ¥’ = 0.36, p = 0.01) than in the first year (2004; slope = 0.12,
r»=0.19, p = 0.09) and seasonal variability (each point per year in Fig. 5a represents the mean in
a given season) in the strength of the response to CWD addition. The relationship was not
significant in 2006 (+* = 0.09, p = 0.26) (Fig. 5a). In contrast, the magnitude of response in GPP
A:B ratios to CWD additions was not predicted by pre-manipulation disturbance intensity in any

of the 3 years after restoration (Fig. 5b; 7> < 0.15, p > 0.15 in all years).

Discussion
FBMI streams have some of the lowest published GPP rates in the literature (Houser and
others 2005) and remained low throughout the post-restoration period regardless of whether the

stream received CWD additions or not. FBMI streams exhibit a broader range and showed
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stronger responses in ER rates with A:B ratios peaking during the second year after CWD
addition. Since the study was designed to examine both the short-term (immediate effectiveness)
responses that have occasionally been assessed and the longer-term (sustainability) responses
that have rarely been assessed in restoration projects, we have organized the discussion by year
since CWD addition to better examine how the integrated response of ecosystem metabolism

(both GPP and ER) changed with time since manipulation.

First year post-CWD addition

In the first year after the CWD addition, there were modest increases in ER and smaller
responses in GPP. The net result of the CWD additions was to make these streams even more
strongly net heterotrophic throughout the first year after manipulation. These results are counter
to our original hypothesis but consistent with results from the pre-CWD addition period showing
that GPP did not consistently vary with CWD abundance but ER was higher in streams with
higher CWD abundance (Houser and others 2005).

CWD is important in shaping channel morphology (e.g., increasing streambank and
streambed stability), decreasing water velocity, and increasing hydrological (e.g., spatial
variation in water velocity) and habitat heterogeneity (Bilby 1981, Trotter 1990, Bilby and Bison
1998). The addition of CWD to FBMI streams quickly (within 1 month) resulted in increased
hydrodynamic complexity, including decreased average water velocity and increased importance
of transient storage (Roberts and others 2007b). Results from other recent studies also suggest
that stream restorations have the potential to positively affect hydrologic residence time
(Kasahara and Hill 2006, Bukaveckas 2007, Becker and others 2013, Kupilas and others 2017).

The net result of these hydrodynamic changes is that increasing the abundance of CWD increases
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the potential contact time of sediment-associated biota with dissolved constituents during transit
through the stream, thus increasing nutrient uptake (Roberts and others 2007b) and retention and
processing of organic matter (this study).

Consistent with the above predictions, we have previously demonstrated that both NH4*
uptake (Roberts and others 2007b) and ER (Houser and others 2005) rates decreased (while GPP
remained low) as catchment disturbance intensity increased (and CWD abundance decreased) in
FBMI streams. Similarly, organic matter availability, both in terms of benthic organic matter
(BOM: Maloney and others 2005) and dissolved organic carbon (DOC: Houser and others 2006),
decreased with increased catchment disturbance (and decreased CWD). When CWD was added
to these streams, organic matter retention (see contrast between 1 month after CWD addition in
Fig. 2c and immediately before and after CWD addition in Figs. 2a and 2b) and NH4" uptake
rates increased (Roberts and others 2007b). Throughout the first year after CWD was added to
FBMI streams, ER rates increased but GPP remained relatively unchanged. Taken together,
these results suggest that the initial responders to CWD additions in FBMI streams were
heterotrophic bacteria and that NH4" assimilation in these FBMI streams is driven largely by

heterotrophic assimilation.

Second vyear post-CWD addition

The positive effects that the CWD additions had on stream morphology and structure
were more clearly observed during the second year after the additions. Maloney and others
(2005) previously showed that the FBMI streams with greater abundances of CWD experienced
less scouring of the streambed and greater streambank and streambed stability than streams with

lower abundances of CWD. In addition, the CWD added to manipulated streams provided more
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stable substrata for algal and microbial colonization and growth on otherwise shifting, fine-
grained streambed sediments; i.e., the logs served as stable substrata and they helped stabilize
fine sediments (Roberts and others 2007b). The increased substrata stability corresponded to
observations of filamentous cyanobacteria mats (Lyngbya sp.; Walter R. Hill, personal
communication) forming on logs added to manipulated streams, other wood in these streams, and
on the newly formed stable substrata on the streambed during winter and spring of 2005 (BJR,
personal observation). However, this increase in cyanobacterial abundance was patchy in
distribution (restricted to isolated areas associated with the CWD additions) and therefore only
resulted in limited increases in ecosystem-scale rates of GPP in two manipulated streams during
spring 2005. As light availability decreased in summer and autumn, the patches of cyanobacteria
were no longer observed and GPP rates in all streams were again < 0.3 g O, m2 d"!, consistent
with the idea that light availability often limits primary production in forested streams (Hill and
others 1995, Mulholland and others 2001).

This increase in substrata stability and availability of BOM associated with increased
CWD abundance during the second year after CWD addition also corresponded to stronger
responses in ER in all streams during all seasons of 2005 than were observed in 2004. The
magnitude of the observed increases in ER in 2005 relative to pre- and first year post-CWD
addition tended to increase with catchment disturbance intensity in all seasons indicating that the

more heavily disturbed streams responded most strongly to the restorations.

Third year post-CWD addition

The large increases in ER (and modest increases in GPP) rates observed in most restored

streams throughout the second year after CWD addition were not observed in 2006. Areas
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denuded of almost all vegetative cover in highly disturbed FBMI catchments resulted in
increased stream flashiness and sediment load and decreased streambank stability, leading to
increased burial of (the already lower standing stocks) of CWD (Maloney and others 2005).
Since the current restoration effort was not designed to address the impacts of the upland
disturbances themselves, a significant percentage of the added wood was buried (e.g., Fig. 2d) in
all manipulated streams by the end of the second year, with the KM1, SB2, SB3, and LPK
streams experiencing 32, 68, 77, and 59% burial of added CWD, respectively (Mitchell 2009).
By the end of the second year post-CWD addition, the increases in hydrodynamic complexity
(decreased water velocity and increased size and importance of transient storage zones) and
NH4" uptake observed 1 month after CWD addition (Roberts and others 2007b) were no longer
observed (Roberts, unpublished data). Annual precipitation rates for both the before and after
CWD addition periods spanned the range of observations at FBMI since 1950; with 2005 and
2003 being among the wettest, 2004 and 2002 being intermediate, and 2006 and 2001 being
among the driest years on record. This combined with the fact that the two most heavily
disturbed catchments that received CWD addition required augmentation by the end of the first
year post-addition (an average rainfall year) suggests that the observed burial of CWD additions
(and loss of effectiveness of the restoration) was likely the result of a gradual process that would
occur even faster if the streams had been exposed to unusually large storm events. The net result
of these findings is that throughout the third year after CWD addition, the study streams behaved

similarly to the pre-manipulation period.

Implications for stream restorations
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The addition of CWD to FBMI streams provided stability and structure to the streambed,
increased the hydrodynamic complexity, and led to nearly immediate (within 1 month) increases
in organic matter retention and nutrient (NH4") uptake rates (Roberts and others 2007b) and
increased ER rates (within the first year). This is consistent with the findings of other recent
studies that suggest stream restorations influence stream hydrologic residence times (Kasahara
and Hill 2006, Bukaveckas 2007, Becker and others 2013, Kupilas and others 2017).
Additionally, several other stream restorations have shown relatively quick increases in N
uptake; including the creation of riffles to enhance hyporheic exchange (Kasahara and Hill
2006), channel naturalization through creation of stream meanders and pools and riffles to create
diverse flow conditions (Bukaveckas 2007), and geomorphic restoration involving hydrologic
reconnection of a stream to its floodplain (Kaushal and others 2008). While these studies have
each looked at relatively short-term (<1 to a maximum of 2 years post-restoration) responses in a
single system, they contribute to a growing literature indicating the incorporation of ecological
theory into the design of stream restorations greatly improves the likelihood of observing
effective ecosystem-scale responses (Lake and others 2007).

The fast responses in nutrient uptake (Roberts and others 2007b) and ER rates combined
with a lack of any corresponding increases in GPP indicates that the initial responders to stream
restorations (CWD additions) in FBMI streams were heterotrophic microbes and that NH4"
assimilation in FBMI streams is driven largely by heterotrophic assimilation. These findings are
consistent with the stream microbial community following the “rubber band” model of
community recovery (Sarr 2002) in which recovery may be relatively quick once suitable habitat
is rebuilt (Lake and others 2007). This recovery trajectory usually requires the disturbance to be

stopped so that the habitat can be rebuilt, but in this case, suitable habitat (CWD) was added



484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

Roberts, Griffiths, Houser, and Mulholland 23

directly to the stream as part of the restoration. It takes longer for enough stable substrate to be
created (especially in these streams within catchments of highly erodible sediments; Houser and
others 2005) so that increases in photosynthesis rates in isolated patches of the stream (associated
with CWD additions) can translate into a large enough increase in autotrophic biomass to
produce an ecosystem-scale increase in GPP rates. Therefore, stream algae seem to follow a
slower, non-linear recovery trajectory more similar to Sarr’s (2002) “broken leg” model (Lake
and others 2007) than that of heterotrophic microbes. It appears to take even longer for the
impact of CWD additions to effectively progress up the food web to invertebrates and fish
(Mitchell 2009). Taken together, these findings seem to suggest that different components of the
stream community may follow highly diverse degradation-recovery pathways.

Many ecological restoration projects aim for rapid progress to bring a system from a
degraded state toward a specific target endpoint but consequently the longer-term prognosis for
the system is often neglected (Hilderbrand and others 2005). Longer-term monitoring of wetland
restoration projects suggests that it will likely take many restored wetlands decades to resemble
pre-disturbance conditions (Zedler and Callaway 1999, Wilkins and others 2003, Hilderbrand
and others 2005). While stream restorations lack similar long-term monitoring information it is
likely that the development or reestablishment of full community structure and ecosystem
function in stream ecosystems will often take much longer (years to decades) than the duration of
planned monitoring of project effectiveness (if there is post-restoration monitoring). As longer-
term post-restoration monitoring of stream restorations begins to occur, the relevant degradation-
recovery pathways (Lake and others 2007) will be more easily identified and restoration

sustainability more accurately assessed.
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The ultimate failure of the FBMI restoration effort illustrates the importance of designing
for resilience in restoration projects in order to maximize the opportunity for sustained
effectiveness (Hilderbrand and others 2005). It is not possible to anticipate all future events and
environmental conditions, but restorations can be conducted in ways that allow for ecosystem
variability (Molles and others 1998) and uncertainty (Hilderbrand and others 2005) which may
require increases in the scale of future restoration efforts. For example, if FBMI stream
sedimentation and ultimately CWD burial rates were better understood prior to the initiation of
the current project, CWD may have been added to experimental reaches that were much longer
than 100 m. It is difficult to predict whether these longer “restored” reaches would have resulted
in a significantly longer duration of observed effectiveness. However, it is also important to
consider that as the spatial scale increases, so does the temporal scale over which restoration
effects may proceed (Lake and others 2007). As a result, an even longer time span of post-
restoration monitoring will be required to assess the effectiveness and sustainability of
restoration activities.

In order for future restoration projects to be ecologically successful (Palmer and others
2005), they must adequately address the source of catchment disturbances that are impacting
streams (e.g., Bohn and Kershner 2002, Lake and others 2007), not simply attempt to restore the
structure of streams. The restoration of stream structures may provide immediate improvements
to stream ecosystems, however, only with reductions in disturbance intensity are restored
conditions likely to persist. So, if the disturbance was historical (meaning erosion has since been
controlled), simply adding wood back to streams may restore ecosystem processes and stream
functions to their pre-disturbance state. However, if the disturbance still persists today (as seen

in FBMI streams), adding wood will only provide transient improvements to the stream.
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Similary, many urban restorations aimed at restoring highly eroded stream channels suffer
similar failures because the driver (flashy hydrography) and root cause (impervious surfaces) of
the problem are not addressed (Hilderbrand and others 2005). At FBMI and similar sites,
restoration efforts must include re-vegetation of uplands to reduce sediment loads to the streams
so that added wood will not simply be buried. If this condition is met, the addition of woody
debris should provide stability and structure to the streambed and increase hydrodynamic
complexity which will allow nutrient and organic matter retention and processing (i.e., nutrient
uptake and ecosystem metabolism rates) to increase and potentially support a more robust biotic

community.
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Width, depth, discharge, and velocity values are means (SD) based on measurements made during quarterly
. 1 for stream abbreviations

NaCl/propane injections from summer 2001 through autumn 2006 (n =21). See Fi

CWD (% areal
coverage)
Stream Disturbance | Catchment | Reach | Width | Depth | Discharge | Velocity | Before | After
intensity (% | area (ha) length (m) (m) (L/s) (m/min)
catchment) (m)
Control streams
BC2 3.15 75 45 0.96 0.11 5.34 2.84 8.92 -
(0.11) | (0.03) (2.41) (0.87)
HBC 6.62 215 110 1.77 0.11 19.44 5.39 6.34 -
(0.18) | (0.03) | (13.29) (2.10)
BC1 10.46 210 60 1.25 0.15 9.12 2.80 12.62 -
(0.13) | (0.03) (3.60) (0.69)
SB4 13.65 100 80 1.49 0.05 9.72 7.75 3.11 -
(0.42) | (0.02) (5.84) (2.42)
Manipulated streams
KM1 4.63 369 105 2.07 0.14 26.65 5.26 8.60 12.09
(0.29) | (0.04) | (1497 1.24)
SB2 8.12 123 115 1.61 0.08 18.53 8.57 7.30 11.62
(0.19) | (0.03) 9.15) (1.58)
SB3 10.49 72 100 1.18 0.07 9.17 6.46 3.70 8.89
(0.25) | (0.03) (6.23) (1.52)
LPK 11.26 33 65 0.90 0.04 3.66 5.93 3.79 6.90
(0.17) | (0.0D) (1.38) (1.20)
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Figure Legends

Fig. 1.

Fig. 2.

Fig. 3.

Study catchments on the Fort Benning Military Installation near Columbus, Georgia.
Study catchments include 2 tributaries of Bonham Creek (BC1 and BC2), 3 tributaries of
Sally Branch Creek (SB2, SB3, and SB4), 1 tributary of Little Pine Knot Creek (LPK), 1
tributary of Kings Mill Creek (KM1), and Hollis Branch Creek (HBC). Shaded
catchments indicate catchments that received coarse woody debris (CWD) additions. GA
= Georgia, AL = Alabama.

Photographs of one of the four study streams that received CWD additions (Sally Branch
Creek 3 (SB3); disturbance intensity = 10.49%) in October 2003 a) before and b) after
CWD additions were made to the stream, ¢) one month after CWD addition (November
2003) showing the effectiveness of additions at reducing water velocity and retaining
organic matter and other materials, and d) March 2006 showing the extensive burial of
added CWD (77% of CWD added to SB3 was buried by January 2006).

Mean (+ SE) after:before (A:B) CWD addition ratios of ecosystem respiration (ER) rates
for control (open bars) and manipulated (gray bars) streams for the a) winter, b) spring, c)
summer, and d) autumn sampling periods in 2004, 2005, and 2006. A:B ratio = 1
(dashed lines) indicate no change between the two sampling periods. Significant effects
of treatment (control v. manipulated streams) and year on ER rates were assessed using
two-way ANOVAs on square-root transformed ratios (F and p values for test of treatment
effects are listed for each season). Significant treatment effects for a given year are
indicated above bars. MS indicates p < 0.1, * indicates p < 0.05, and ** indicates p <

0.01. Note that the y-axis scale on each figure differs.
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Mean (+ SE) after:before (A:B) CWD addition ratios of gross primary production (GPP)
rates for control (open bars) and manipulated (gray bars) streams for the a) winter, b)
spring, ¢) summer, and d) autumn sampling periods in 2004, 2005, and 2006. The figure
is assembled in same manner as Fig. 3.

Relationship between pre-manipulation disturbance intensity and after:before (A:B)
CWD addition ratios of a) ecosystem respiration (ER) rates a) and gross primary
production (GPP) rates for manipulated streams in 2004 (white symbols), 2005 (black
symbols), and 2006 (gray symbols). Data points represent season means for each stream
by year. A:B ratio = 1 (dashed line) indicates no change between the two sampling
periods. Dotted and solid lines indicate statistically significant linear regressions for ER
in 2004 (p = 0.09; marginally significant) and 2005 (p = 0.01); 2006 was not significant
(p = 0.26). Linear regressions for 2004 and 2005 are: (Respiration A:B) =0.12
(disturbance intensity) + 0.58 and (Respiration A:B) = 0.24 (disturbance intensity) +

0.06, respectively. Regressions with GPP were not significant.
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820  Fig. 3.
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