

1 Running Head: Restoration and stream metabolism

2

3 **Title: Response of stream metabolism to coarse woody debris additions along a catchment**
4 **disturbance gradient**

5 Brian J. Roberts^{1,*}, Natalie A. Griffiths², Jeffrey N. Houser³, and Patrick J. Mulholland^{2,#},

6

7 ¹Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, Louisiana 70344-2110
8 USA

9 ²Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak
10 Ridge, Tennessee 37831-6351 USA

11 ³Upper Midwest Environmental Sciences Center, US Geological Survey, 2630 Fanta Reed Road,
12 La Crosse, Wisconsin 54603 USA

13 *Corresponding author: broberts@lumcon.edu

14 #Deceased

15 Note: This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-
16 00OR22725 with the U.S. Department of Energy. The United States Government retains and the
17 publisher, by accepting the article for publication, acknowledges that the United States
18 Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or
19 reproduce the published form of this manuscript, or allow others to do so, for United States
20 Government purposes. The Department of Energy will provide public access to these results of
21 federally sponsored research in accordance with the DOE Public Access Plan
22 (<http://energy.gov/downloads/doe-public-access-plan>).

23

24 **Abstract**— We evaluated the ecological effectiveness of an in-stream restoration project
25 involving coarse woody debris (CWD) additions to streams along an upland soil and vegetation
26 disturbance gradient at the Fort Benning Military Installation near Columbus, GA. We examined
27 short-term (immediate effectiveness) and longer-term (sustainability) responses to CWD
28 additions by measuring ecosystem metabolism rates in 8 streams quarterly over a 6-year period;
29 including 3 years before (2001-2003) and 3 years after (2004-2006) CWD additions were made
30 to half of the streams. Ecosystem respiration (ER) rates in most CWD-addition streams
31 increased relative to control streams from spring 2004 through autumn 2005, suggesting
32 heterotrophic bacteria were the initial responders to CWD additions. Gross primary production
33 (GPP) rates remained low (typically $< 0.3 \text{ g O}_2 \text{ m}^{-2} \text{ d}^{-1}$) but increased in some CWD-addition
34 streams relative to control streams in spring 2004 and 2005. The magnitude of ER increases in
35 CWD-addition streams during the first two years post-addition increased with catchment
36 disturbance intensity, indicating that more heavily disturbed streams responded most strongly to
37 restorations—an important consideration when targeting future restoration locations. Because
38 restorations did not address actual upland disturbance, continued high erosion rates resulted in 32
39 – 77% of the added CWD being buried by year two and a corresponding return of GPP and ER
40 rates to pre-CWD addition levels by year three. If restoration projects do not adequately address
41 the source of catchment disturbances, CWD additions will provide only short-term increases in
42 streambed structure and stability, hydrodynamic complexity, and nutrient and organic matter
43 processing and retention.

44

45 **Keywords:** catchment disturbance, stream restoration, ecosystem respiration, primary
46 production, coarse woody debris, seasonal patterns, inter-annual variability, nutrient uptake,
47 organic matter, hydrodynamics

48 **Introduction**

49 Stream ecosystems are strongly influenced by inputs of water, sediment, nutrients, and
50 organic material from their surrounding catchments (Hynes 1975). Changes in catchment land
51 use affect the rate at which these important constituents are delivered to streams as well as the
52 quality of in-stream habitats (e.g., abundance of coarse woody debris) and biological community
53 composition (Omernik 1976, Richards and others 1996, Huryn and others 2002, Allan 2004).
54 For example, deforestation can affect the amount and timing of the delivery of water (Webster
55 and others 1990), sediment (Gurtz and others 1980), and nutrients (Likens and others 1970, Aust
56 and Blinn 2004) to streams. Catchment land-use changes have been pervasive with only ~2% of
57 the 5.3 million km of rivers in the conterminous United States remaining relatively unimpacted
58 by human activities (Abell 2000, Palmer and others 2007). The riparian zone can play an
59 important role in mitigating some of the impacts of land use on stream ecosystems and
60 disturbances to these areas can have particularly large deleterious effects on streams (e.g.,
61 Lowrance and others 1984, Gregory and others 1991, Richards and others 1996, Aust and Blinn
62 2004). However, much less is known about how localized, intense disturbances of upland areas
63 affect streams with intact riparian zones.

64 The natural input of coarse woody debris (CWD) from the surrounding catchment
65 influences stream ecosystems in a variety of ways (Harmon and others 1986). CWD dams can
66 shape channel morphology (by altering water velocity and streambed erosion patterns, and
67 dissipating energy), increase hydrological heterogeneity (by creating backwaters and eddies),
68 facilitate the deposition and retention of organic matter (Naiman and Sedell 1979, Bilby and
69 Likens 1980, Smock and others 1989), and provide habitat surfaces for biofilm algae and
70 microbes and larger organisms (Gregory and others 2003). Nutrient uptake rates (retention) tend

71 to be higher in association with CWD than other stream habitats (Munn and Meyer 1990,
72 Hoellein and others 2009) and increase after experimental wood additions (Wallace and others
73 1995, Roberts and others 2007b) but not in all cases (e.g. Hoellein and others 2012). The effects
74 of CWD removal on nutrient uptake rates are less straightforward, with studies finding decreased
75 (Ensign and Doyle 2005) or increased nutrient uptake (Warren and others 2013) with CWD
76 removal. High erosion rates associated with upland disturbances lead to high sediment loads
77 being transported downstream and increased flashiness of catchment streams (Lake and others
78 2007). These two factors often result in decreases in CWD abundances in streams (Maloney and
79 others 2005) which, in turn, can lead to decreases in ecosystem metabolism (Houser and others
80 2005) and nutrient uptake (Roberts and others 2007b) rates.

81 Stream restoration projects have the potential to mitigate some of the negative impacts of
82 catchment-scale disturbances on stream ecosystem processes. Despite billions of dollars
83 currently being spent on over 37,000 stream and river restoration projects in the United States
84 alone, the effectiveness of most projects is difficult to assess since adequate post-restoration
85 monitoring is often lacking (Bernhardt and others 2005). In order for restoration projects to be
86 ecologically successful, they must attempt to restore function as well as structure to streams
87 (Lake and others 2007, Craig and others 2008, Palmer 2009, Palmer and others 2014). Within
88 the last decade, a number of studies have examined the effectiveness of restoration efforts at
89 enhancing nitrogen (N) removal in the stream channel and adjacent floodplains (e.g.,
90 Bukaveckas 2007, Roberts and others 2007b, Kaushal and others 2008, Sudduth and others 2011,
91 Roley and others 2012, Arango and others 2015, Johnson and others 2016). However, studies
92 that quantitatively monitor stream processes both pre- and post-restoration are rare (e.g.,
93 Colangelo 2007, Roberts and others 2007b, Entrekin and others 2009, Roley and others 2012). It

94 is clearly important to assess the effectiveness of restoration projects immediately after the
95 restoration has been completed, but it is perhaps even more important (and less common) to
96 assess the ecological effectiveness beyond the immediate post-restoration period because only
97 then can it be known if restorations are sustainable.

98 Ecosystem metabolism constitutes the processes (gross primary production [GPP] and
99 ecosystem respiration [ER]) controlling nutrient cycling and organic matter processing in stream
100 ecosystems. Changes in ecosystem metabolism rates are an integrated response to catchment
101 disturbance and land use and have therefore been advocated as useful measures of stream health
102 (Bunn and others 1999, Fellows and others 2006, Young and others 2008). For instance, the
103 ecosystem metabolism method has recently been used to examine rates of GPP and ER in
104 agricultural (Griffiths and others 2013, Roley and others 2014) and urban (Sudduth and others
105 2011, Beaulieu and others 2013, Reisinger and others 2017) streams. Ecosystem metabolism has
106 also been used to assess restoration effects in streams (Sudduth and others 2011, Hoellein and
107 others 2012, Roley and others 2014, Kupilas and others 2017), but these studies are much less
108 common than those evaluating nutrient uptake responses to restoration. Because ecosystem
109 metabolism constitutes an integrative measure of nutrient and organic matter processing in
110 streams, it represents an optimal assessment tool of the ecological effectiveness of restoration
111 efforts. However, GPP and ER are temporally dynamic processes (Bernhardt and others 2018)
112 and therefore seasonality in stream metabolism should also be captured in ecological assessments
113 of restoration.

114 In this study, we evaluated the ecological effectiveness of an in-stream restoration project
115 involving CWD additions to several streams along a well-studied (Houser and others 2005,
116 Maloney and others 2005, Houser and others 2006, Roberts and others 2007b) upland

117 disturbance gradient at the Fort Benning Military Installation (FBMI) near Columbus, GA. We
118 measured ecosystem metabolism rates in 8 streams at FBMI seasonally over a 6-year period,
119 including 3 years before (2001-2003) and 3 years after (2004-2006) CWD additions were made
120 to half of the streams. This design allowed us to examine both the short-term (immediate
121 effectiveness) responses that are occasionally assessed and the longer-term (sustainability)
122 responses that are very rarely assessed in restoration projects. Several studies have shown that
123 stream metabolism is strongly related to streambed stability, particularly in sand-bed streams
124 (Grimm and Fisher 1984, Uehlinger and others 2002, Atkinson and others 2008). Therefore, we
125 hypothesized that the increased streambed stability from CWD additions and the CWD additions
126 themselves would provide stable substrates for the development of algal biofilms, resulting in
127 increased rates of GPP. We also hypothesized that the organic matter trapping ability resulting
128 from CWD additions would increase rates of ER in these streams. Finally, we hypothesized that
129 streams with greater catchment disturbance intensity would benefit more from CWD additions
130 and therefore exhibit stronger responses in ER and GPP following manipulation.

131

132 **Methods**

133 Study site

134 Fort Benning Military Installation provides a unique opportunity to evaluate the
135 effectiveness of in-stream restorations (CWD additions) on stream ecosystems impacted by
136 upland disturbance because of the broad range of disturbance intensities found within a small,
137 relatively homogenous region (e.g., numerous stream reaches of comparable morphology,
138 shading, and discharge). We studied eight 1st- to 2nd-order, typical low-gradient (range = 0.8–
139 5.1%, mean = 2.1%; Maloney and others 2005), sandy Southeastern Hills and Plains streams

140 (Felley 1992) on the FBMI (Fig. 1, 2a). The study streams had generally intact deciduous
141 riparian canopies (mean summer canopy cover = 94%; Maloney and others 2005) dominated by
142 blackgum (*Nyssa sylvatica*) and other mesic species. The streams drained catchments ranging in
143 size from 33 to 369 ha (Fig. 1, Table 1; Roberts and others 2007b).

144 The geology and land-use history of the study catchments are detailed in Maloney and
145 others (2005). The forest has been allowed to regrow in many areas of FBMI since it was
146 purchased by the US military in 1918 and 1941/1942 (Kane and Keeton 1998), and land cover in
147 these areas now consists primarily of oak-pine and southern mixed forest compared to row-crop
148 agriculture and pasture which dominated land-use prior to its purchase. The underlying soils are
149 sand, sandy clay loam, or loamy sands (Omernik 1987). Some areas of the FBMI are used for
150 military training involving infantry and heavy-equipment vehicles resulting in some catchments
151 having localized areas with high levels of vegetation and soil disturbance leading to high erosion
152 rates and streams with unstable, organic-poor sediments (Maloney and others 2005). Other
153 catchments have remained essentially undisturbed since their purchase by the military.

154 Leaf emergence at FBMI usually occurs in late March and leaf abscission is often in early
155 November resulting in the study streams (all with generally intact riparian forests) being strongly
156 shaded throughout the April – October period. Since the riparian forests in the study catchments
157 are almost entirely deciduous, light penetration to the stream surface is significantly higher
158 during winter and early spring. The specific stream reaches studied were chosen to minimize
159 variability in morphology, shading, and discharge among streams along the disturbance intensity
160 gradient. Study reaches were chosen to have minimal lateral inflow with the mean (\pm SE)
161 increase in discharge between the upper and lower sampling stations across all study streams for
162 the 2004-2006 period being $4.2 \pm 0.2\%$ ($n = 96$) and individual streams ranging between 3.0

163 (BC1) and 6.2% (LPK). Streamwater nutrient concentrations (dissolved inorganic nitrogen
164 [DIN] and soluble reactive phosphorus [SRP]) were low (20-60 $\mu\text{g N/L}$ and 2-5 $\mu\text{g P/L}$,
165 respectively) and did not differ between the before and after restoration periods in any stream
166 (Mulholland and Roberts, unpublished data).

167

168 Disturbance intensity

169 Disturbance intensity for each catchment was defined as the % of catchment area covered
170 by unpaved roads or bare ground on slopes >5% as determined by Maloney and others (2005).
171 Unpaved roads are mostly used by tracked military vehicles, and much of the bare ground was
172 created by military training using these tracked vehicles. The areas of soil and vegetation
173 disturbance are generally located in upland areas away from the perennial streams, but these
174 areas become hydrologically connected to perennial streams via ephemeral drainages that
175 discharge to the perennial stream during storms.

176 The 8 streams included in this study were in catchments that spanned most of this
177 available range (~3.2 – 13.7%; Table 1) in disturbance intensity of the 249 second-order
178 catchments on the FBMI (0 – 17%; excluding the 4 most disturbed catchments). Low vegetative
179 cover in highly disturbed catchments has increased stream flashiness and sediment load and
180 decreased streambank stability, leading to increased burial and export of CWD (Maloney and
181 others 2005). The combined effects of increased burial and export of CWD were that the relative
182 abundance of submerged CWD decreased significantly with increased disturbance in our study
183 streams (linear regression: $r^2 = 0.91$, $p < 0.0001$, excluding BC1, a catchment with a notably
184 broader, flatter forested floodplain that appeared to protect the stream from the effects of upland
185 disturbance and had received some restoration of upland areas prior to the current studies so was

186 not included in regression analyses; Houser and others 2005, Maloney and others 2005). The
187 percent areal coverage of CWD was estimated from measurements of submerged and buried (to
188 10 cm depth) CWD (> 2.5 cm in diameter) at 15 one-meter-long transects per stream (Maloney
189 and others 2005, Mitchell 2009). CWD coverage in the study streams ranged from ~ 3.1 to $\sim 8.9\%$
190 (except in BC1 where % areal coverage $\approx 12.6\%$; Table 1) before the CWD additions (Roberts
191 and others 2007b).

192

193 CWD and stream restorations

194 CWD was added to streams in 4 of the 8 study catchments (KM1, SB2, SB3, and LPK)
195 that spanned a range of disturbance intensities (~ 4.6 – 11.3% ; Table 1). Riparian trees used for
196 CWD additions (*N. sylvatica* in KM1, SB2, and SB3 and *Quercus alba* in LPK) were felled and
197 sectioned during August 2003 and allowed to dry for 2 to 3 months before deployment. Very
198 few riparian trees were felled per stream and these trees were not located adjacent to study
199 reaches in any stream, thus minimal effects on light availability were expected. On October 25-
200 27, 2003, ten CWD additions (~ 10 m apart) were made over a 100-m reach in each of the 4
201 streams. Individual CWD additions consisted of 3 logs (~ 10 – 20 cm diameter, 1 – 2 m long)
202 anchored in the streambed with rebar stakes (Fig. 2b, c). CWD additions were not intended to
203 create pool environments so logs did not span the entire width of the stream and were positioned
204 in a zigzag arrangement (Fig. 2b, c). CWD additions increased the % areal coverage of CWD by
205 $\sim 3.1\%$ (LPK) to $\sim 5.2\%$ (SB3) and resulted in coverage of $\sim 6.9\%$ (LPK) to $\sim 12.1\%$ (KM1) of the
206 streambed surface area in the restored streams (Table 1). High sedimentation in the two most
207 disturbed streams receiving CWD additions (SB3 and LPK) resulted in significant burial of the
208 CWD added to these streams by the end of the first year after manipulation, so additional CWD

209 (*N. sylvatica* in SB3 and *Q. alba* and *Carya* sp. in LPK) was added to these streams on
210 November 9, 2004. This resulted in CWD additions every 5 m (instead of 10 m) in the study
211 reach of these two streams.

212

213 Ecosystem metabolism rates

214 Daily whole-stream rates of gross primary production (GPP) and ecosystem respiration
215 (ER) were determined using an open-system, single-station diel dissolved O₂ change approach
216 (Odum 1956, Houser and others 2005, Roberts and others 2007a). Measurements of dissolved
217 oxygen (DO) and water temperature were made at 15-min intervals using YSI model 6000 or
218 600 series sondes equipped with model 6562 DO probes that were placed in a laterally
219 constrained section of each stream. The sondes were calibrated in water-saturated air before and
220 immediately after deployment. The calibration DO data were corrected for barometric pressure
221 recorded during calibration and consecutive calibrations were used to detect instrument drift
222 during deployment.

223 Sondes were deployed for approximately 3 weeks in 4 streams (2 control and 2 receiving
224 CWD additions) and then moved to the other 4 streams immediately thereafter because of
225 equipment limitations. However, only DO data collected during similar flow conditions to the
226 deployment date were used to minimize the effect of changing flow on metabolism rates (Houser
227 and others 2005). Winter deployments were during January and February; spring deployments
228 were during March and April; summer deployments were in June, July, and August; and autumn
229 deployments were during October and November. This study includes a total of 6 years of
230 seasonal ecosystem metabolism data (3 years before [Houser and others 2005] and 3 years after
231 CWD additions took place).

232 Volumetric ecosystem metabolism rates ($\text{g O}_2 \text{ m}^{-3}$) were determined from the rate of
233 change in DO concentration using the equation $\Delta\text{DO} = \text{GPP} - \text{ER} + \text{E}$, where ΔDO is the change
234 in DO concentration, GPP is gross primary production ($\text{g O}_2 \text{ m}^{-3}$), ER is ecosystem respiration,
235 and E is net exchange of O_2 with the atmosphere between consecutive measurements. E is the
236 product of the O_2 reaeration coefficient (k_{O_2}) and the average DO deficit (DO concentration at
237 100% saturation minus the DO concentration in stream water) over the measurement interval.
238 Reaeration coefficients, discharge, and velocity were determined for each stream using
239 simultaneous, continuous injections for propane gas (volatile tracer) and a concentrated NaCl
240 solution (conservative tracer) prior to each deployment following the methods detailed in Houser
241 and others (2005) and Roberts and others (2007a).

242 The net metabolism flux for a given measurement interval is equal to $\Delta\text{DO} - \text{E}$. During
243 the night, GPP is zero, so the net metabolism flux is equal to ER. Daytime ER was determined
244 by interpolating ER averaged over the hour before dawn and the first hour after dusk (Houser
245 and others 2005, Roberts and others 2007a). GPP for each daytime interval was the difference
246 between the net metabolism flux and interpolated ER (see Fig. 3 in Roberts and others 2007a for
247 details). Daily volumetric GPP and ER rates ($\text{g O}_2 \text{ m}^{-3} \text{ d}^{-1}$) were calculated as the sum of the 15-
248 min rates over each 24 hour period. Volumetric rates were converted to areal units ($\text{g O}_2 \text{ m}^{-2} \text{ d}^{-1}$)
249 by multiplying by the mean water depth. Water depth was calculated from stream width
250 (average of wetted-width measurements taken every 5 m along the reach), discharge, and
251 velocity (both from the NaCl injections) of each stream (Houser and others 2005, Roberts and
252 others 2007a).

253

254 Statistical analysis

255 We quantified the effects of CWD additions on whole-stream GPP and ER rates using a
256 modified before–after control–intervention (BACI; Green 1979) approach. Both control and
257 intervention [CWD addition] locations were replicated (Underwood 1994) in four locations for a
258 total of 8 study streams. During the pre-manipulation period (2001–2003), FBMI streams
259 exhibited strong seasonal differences in stream metabolism and physical parameters yet no
260 significant interannual variation (Houser and others 2005), we therefore averaged all pre-
261 manipulation measurements within each stream to ensure robust estimates and evaluated the
262 effects of CWD additions on a seasonal basis. After:before [A:B] ratios (e.g., ER in winter 2004
263 divided by mean ER in winters 2001 – 2003 for a given stream) were calculated in each of four
264 seasons (winter, spring, summer, and autumn) in each stream and in each post-treatment year
265 (2004, 2005, 2006). This approach allowed us to examine both the effectiveness of CWD
266 additions as well as the duration over which any effects persisted. Similarly, we calculated A:B
267 ratios for physical variables (i.e., discharge, temperature, and reaeration coefficient) for each
268 stream in each season and post-restoration year. Since ratio data were not normally distributed,
269 all ratios were square root-transformed. The effects of CWD addition on A:B ratios of physical
270 variables and metabolism rates were evaluated in each season using two-way ANOVAs with
271 Holm-Sidak corrections for all pairwise comparisons with treatment (i.e., comparing the
272 transformed A:B ratios of the 4 control streams to the transformed A:B ratios of the 4 CWD
273 addition streams) and post-treatment year as factors.

274 We also quantified changes in GPP and ER rates over time in each stream in each season
275 by comparing seasonal mean rates before manipulation (2001 – 2003) with seasonal mean rates
276 after manipulation (2004, 2005, and 2006). Since metabolism data were not all normally
277 distributed, changes over time were evaluated using one-way ANOVAs on ranks (Kruskal-

278 Wallis test) with Dunn's method used for evaluating pairwise comparisons among years. To
279 examine the effect of watershed disturbance on ER and GPP in CWD addition streams, the ER
280 and GPP A:B ratios for all manipulated streams were regressed against % watershed disturbance
281 intensity in each post-treatment year.

282 All statistical analyses were conducted using either SigmaPlot (version 14.0) or
283 SigmaStat (version 4.0) (Systat Software Inc., Point Richmond, California). Significance was
284 defined as $\alpha=0.05$, and marginal significance was defined as $\alpha=0.10$.

285 Between the autumn 2005 and winter 2006 sampling periods, the least disturbed control
286 stream (BC2) received a drastic disturbance in the form of the construction of a road that crossed
287 the stream ~200 m upstream of the study reach, resulting in a large increase in sediment loading
288 to the reach (Mulholland and others 2009). As a result of this disturbance, data from BC2 were
289 included in all figures but excluded from all analyses in the third year after manipulation (2006).

290

291 **Results**

292 Physical variables

293 Most physical variables were similar before and after the CWD additions within each
294 stream. The range of wetted widths (0.90 – 2.07 m) and mean depths (0.04 – 0.15 m) across
295 streams was relatively narrow (Table 1). Discharge rates over the 6 year study period were
296 generally higher in winter and spring (15.2 and 17.4 L/s) than in summer and autumn (8.7 and
297 9.4 L/s; Table S1). Seasonal differences in discharge were primarily a result of seasonal
298 differences in evapotranspiration rates since rainfall was distributed relatively evenly among
299 seasons. After:before ratios of discharge (Fig. S1, Table S2) varied by year in spring (A:B ratios
300 of discharge were higher in 2005 and 2006 than in 2004) and summer (A:B ratio was higher in

301 2005 than in 2004 or 2006), but did not differ by treatment (control versus manipulated streams)
302 during any season (Table S2).

303 Water temperatures were warmer during summer (22.7 ± 0.2 °C) than in winter ($11.2 \pm$
304 0.5 °C) with spring and autumn temperatures being intermediate (Table S1). Similar to
305 discharge, A:B ratios of water temperature (Fig. S2, Table S3) varied by year in spring (A:B
306 ratio of temperature was highest in 2006, intermediate in 2005, and lowest in 2004). There was a
307 significant interaction of treatment and year in summer (Table S3), with the A:B ratio of
308 temperature higher in manipulated streams than control streams in 2004 (Fig. S2). The A:B ratio
309 of water temperature did not differ by treatment (control versus manipulated streams) during any
310 other season (Table S3).

311 O_2 reaeration coefficient (k_{O_2}) did not show any discernible temporal patterns for either
312 the control or manipulated streams in any season (Table S4). Seasonal A:B ratios of k_{O_2} (Fig.
313 S3) did not vary by treatment or year (Table S5). Taken together, these findings indicate that
314 these physical variables did not appreciably change in response to the CWD additions.

315

316 Stream ecosystem metabolism rates

317 Daily rates of ecosystem respiration (ER) exhibited a wide range of values (~ 1.0 – 11.5 g
318 O_2 $m^{-2} d^{-1}$) throughout the study (Fig. S4). All streams were highly net heterotrophic (daily ER
319 rates exceeded daily GPP rates) in all seasons both before and after CWD additions. There was a
320 significant effect of CWD additions on A:B respiration ratios in 3 of 4 seasons that varied by
321 year (Table S6). Differences in A:B respiration ratios between control and CWD addition
322 streams were significant in all seasons of 2004 and 2005 except winter 2004 (Fig. 3) which was
323 the first season after CWD was added to the manipulated streams. In 2006, there were no

324 significant differences in the A:B ratio for ER between control and manipulated streams (Fig. 3).
325 During the first two years after CWD was added, ER rates generally increased in manipulated
326 streams during all seasons (Fig. S4). However, there was considerable among-stream variation in
327 responses and the number of streams in which ER increased varied by season (Table S7) and
328 year. In 2004, the effect of restoration on increasing ER was observed in two manipulated
329 streams in spring, with non-significant trends observed in several streams in other seasons (Fig.
330 S4). In contrast, ER did not increase significantly in any control stream in any season in 2004.
331 The change in ER in CWD addition streams was more consistent in 2005, with 2 (summer), 3
332 (winter and spring), or all 4 manipulated streams (autumn) exhibiting higher ER rates than in the
333 pre-treatment period for those seasons (Fig. S4). Overall, the largest increases in ER were
334 observed in the two streams with the most highly disturbed catchments (SB3 and LPK with
335 10.49 and 11.26% of catchment disturbed, respectively) (Fig. S4).

336 Daily gross primary production (GPP) rates were low throughout the entire study in all
337 streams with values typically $< 0.3 \text{ g O}_2 \text{ m}^{-2} \text{ d}^{-1}$ except for during late winter-early spring in some
338 years in a few less-disturbed streams receiving CWD additions (Fig. S5). Overall, the addition
339 of CWD to FBMI streams resulted in some significant treatment effects on GPP after:before
340 manipulation ratios, with higher A:B ratios in manipulated than control streams in winter ($p <$
341 0.01), spring ($p < 0.1$), and autumn ($p < 0.1$) (Table S8). However, this effect also varied by time
342 since restoration. In 2004, there were no significant differences in the A:B ratio for GPP between
343 control and manipulated streams in any season. In 2005, A:B manipulation ratios of GPP rates in
344 streams receiving CWD additions were significantly higher than in control streams in winter and
345 spring (Fig. 4; $p < 0.05$). Although mean A:B ratios always appeared higher in manipulated than
346 in control streams after spring 2005, differences were only marginally significant in winter 2006

347 ($p < 0.1$; Fig. 4). GPP rates in all four control streams were significantly influenced by year in at
348 least one season, but no control stream exhibited a significantly higher rate in the post-treatment
349 than in the pre-treatment period during any season (Fig. S5, Table S9). GPP rates were
350 significantly influenced by year in all four manipulated streams in at least one season (Fig. S5,
351 Table S9). However, the only large stimulation in GPP resulting from CWD additions occurred
352 in the least disturbed stream (KM1) and only in spring 2004 and 2005 with only the 2005
353 increase being significant (Fig. S5). A significant increase in GPP in stream SB3 was observed in
354 spring 2005, but the magnitude of this increase was small (0.06 v. 0.02 g O₂ m⁻² d⁻¹) (Fig. S5).

355 Pre-manipulation disturbance intensity had a significant effect on the magnitude of the
356 response to CWD additions with ecosystem respiration A:B ratio being predicted by prior
357 disturbance intensity in the first two years after restoration (Fig. 5a). The high variability in this
358 relationship results from both stronger responses being observed during the second year after
359 CWD addition (2005; slope = 0.24, $r^2 = 0.36$, $p = 0.01$) than in the first year (2004; slope = 0.12,
360 $r^2 = 0.19$, $p = 0.09$) and seasonal variability (each point per year in Fig. 5a represents the mean in
361 a given season) in the strength of the response to CWD addition. The relationship was not
362 significant in 2006 ($r^2 = 0.09$, $p = 0.26$) (Fig. 5a). In contrast, the magnitude of response in GPP
363 A:B ratios to CWD additions was not predicted by pre-manipulation disturbance intensity in any
364 of the 3 years after restoration (Fig. 5b; $r^2 < 0.15$, $p > 0.15$ in all years).

365

366 **Discussion**

367 FBMI streams have some of the lowest published GPP rates in the literature (Houser and
368 others 2005) and remained low throughout the post-restoration period regardless of whether the
369 stream received CWD additions or not. FBMI streams exhibit a broader range and showed

370 stronger responses in ER rates with A:B ratios peaking during the second year after CWD
371 addition. Since the study was designed to examine both the short-term (immediate effectiveness)
372 responses that have occasionally been assessed and the longer-term (sustainability) responses
373 that have rarely been assessed in restoration projects, we have organized the discussion by year
374 since CWD addition to better examine how the integrated response of ecosystem metabolism
375 (both GPP and ER) changed with time since manipulation.

376

377 First year post-CWD addition

378 In the first year after the CWD addition, there were modest increases in ER and smaller
379 responses in GPP. The net result of the CWD additions was to make these streams even more
380 strongly net heterotrophic throughout the first year after manipulation. These results are counter
381 to our original hypothesis but consistent with results from the pre-CWD addition period showing
382 that GPP did not consistently vary with CWD abundance but ER was higher in streams with
383 higher CWD abundance (Houser and others 2005).

384 CWD is important in shaping channel morphology (e.g., increasing streambank and
385 streambed stability), decreasing water velocity, and increasing hydrological (e.g., spatial
386 variation in water velocity) and habitat heterogeneity (Bilby 1981, Trotter 1990, Bilby and Bison
387 1998). The addition of CWD to FBMI streams quickly (within 1 month) resulted in increased
388 hydrodynamic complexity, including decreased average water velocity and increased importance
389 of transient storage (Roberts and others 2007b). Results from other recent studies also suggest
390 that stream restorations have the potential to positively affect hydrologic residence time
391 (Kasahara and Hill 2006, Bukaveckas 2007, Becker and others 2013, Kupilas and others 2017).
392 The net result of these hydrodynamic changes is that increasing the abundance of CWD increases

393 the potential contact time of sediment-associated biota with dissolved constituents during transit
394 through the stream, thus increasing nutrient uptake (Roberts and others 2007b) and retention and
395 processing of organic matter (this study).

396 Consistent with the above predictions, we have previously demonstrated that both NH_4^+
397 uptake (Roberts and others 2007b) and ER (Houser and others 2005) rates decreased (while GPP
398 remained low) as catchment disturbance intensity increased (and CWD abundance decreased) in
399 FBMI streams. Similarly, organic matter availability, both in terms of benthic organic matter
400 (BOM: Maloney and others 2005) and dissolved organic carbon (DOC: Houser and others 2006),
401 decreased with increased catchment disturbance (and decreased CWD). When CWD was added
402 to these streams, organic matter retention (see contrast between 1 month after CWD addition in
403 Fig. 2c and immediately before and after CWD addition in Figs. 2a and 2b) and NH_4^+ uptake
404 rates increased (Roberts and others 2007b). Throughout the first year after CWD was added to
405 FBMI streams, ER rates increased but GPP remained relatively unchanged. Taken together,
406 these results suggest that the initial responders to CWD additions in FBMI streams were
407 heterotrophic bacteria and that NH_4^+ assimilation in these FBMI streams is driven largely by
408 heterotrophic assimilation.

409

410 Second year post-CWD addition

411 The positive effects that the CWD additions had on stream morphology and structure
412 were more clearly observed during the second year after the additions. Maloney and others
413 (2005) previously showed that the FBMI streams with greater abundances of CWD experienced
414 less scouring of the streambed and greater streambank and streambed stability than streams with
415 lower abundances of CWD. In addition, the CWD added to manipulated streams provided more

416 stable substrata for algal and microbial colonization and growth on otherwise shifting, fine-
417 grained streambed sediments; i.e., the logs served as stable substrata and they helped stabilize
418 fine sediments (Roberts and others 2007b). The increased substrata stability corresponded to
419 observations of filamentous cyanobacteria mats (*Lyngbya* sp.; Walter R. Hill, personal
420 communication) forming on logs added to manipulated streams, other wood in these streams, and
421 on the newly formed stable substrata on the streambed during winter and spring of 2005 (BJR,
422 personal observation). However, this increase in cyanobacterial abundance was patchy in
423 distribution (restricted to isolated areas associated with the CWD additions) and therefore only
424 resulted in limited increases in ecosystem-scale rates of GPP in two manipulated streams during
425 spring 2005. As light availability decreased in summer and autumn, the patches of cyanobacteria
426 were no longer observed and GPP rates in all streams were again $\leq 0.3 \text{ g O}_2 \text{ m}^{-2} \text{ d}^{-1}$, consistent
427 with the idea that light availability often limits primary production in forested streams (Hill and
428 others 1995, Mulholland and others 2001).

429 This increase in substrata stability and availability of BOM associated with increased
430 CWD abundance during the second year after CWD addition also corresponded to stronger
431 responses in ER in all streams during all seasons of 2005 than were observed in 2004. The
432 magnitude of the observed increases in ER in 2005 relative to pre- and first year post-CWD
433 addition tended to increase with catchment disturbance intensity in all seasons indicating that the
434 more heavily disturbed streams responded most strongly to the restorations.

435

436 Third year post-CWD addition

437 The large increases in ER (and modest increases in GPP) rates observed in most restored
438 streams throughout the second year after CWD addition were not observed in 2006. Areas

439 denuded of almost all vegetative cover in highly disturbed FBMI catchments resulted in
440 increased stream flashiness and sediment load and decreased streambank stability, leading to
441 increased burial of (the already lower standing stocks) of CWD (Maloney and others 2005).
442 Since the current restoration effort was not designed to address the impacts of the upland
443 disturbances themselves, a significant percentage of the added wood was buried (e.g., Fig. 2d) in
444 all manipulated streams by the end of the second year, with the KM1, SB2, SB3, and LPK
445 streams experiencing 32, 68, 77, and 59% burial of added CWD, respectively (Mitchell 2009).
446 By the end of the second year post-CWD addition, the increases in hydrodynamic complexity
447 (decreased water velocity and increased size and importance of transient storage zones) and
448 NH_4^+ uptake observed 1 month after CWD addition (Roberts and others 2007b) were no longer
449 observed (Roberts, unpublished data). Annual precipitation rates for both the before and after
450 CWD addition periods spanned the range of observations at FBMI since 1950; with 2005 and
451 2003 being among the wettest, 2004 and 2002 being intermediate, and 2006 and 2001 being
452 among the driest years on record. This combined with the fact that the two most heavily
453 disturbed catchments that received CWD addition required augmentation by the end of the first
454 year post-addition (an average rainfall year) suggests that the observed burial of CWD additions
455 (and loss of effectiveness of the restoration) was likely the result of a gradual process that would
456 occur even faster if the streams had been exposed to unusually large storm events. The net result
457 of these findings is that throughout the third year after CWD addition, the study streams behaved
458 similarly to the pre-manipulation period.
459
460 **Implications for stream restorations**

461 The addition of CWD to FBMI streams provided stability and structure to the streambed,
462 increased the hydrodynamic complexity, and led to nearly immediate (within 1 month) increases
463 in organic matter retention and nutrient (NH_4^+) uptake rates (Roberts and others 2007b) and
464 increased ER rates (within the first year). This is consistent with the findings of other recent
465 studies that suggest stream restorations influence stream hydrologic residence times (Kasahara
466 and Hill 2006, Bukaveckas 2007, Becker and others 2013, Kupilas and others 2017).
467 Additionally, several other stream restorations have shown relatively quick increases in N
468 uptake; including the creation of riffles to enhance hyporheic exchange (Kasahara and Hill
469 2006), channel naturalization through creation of stream meanders and pools and riffles to create
470 diverse flow conditions (Bukaveckas 2007), and geomorphic restoration involving hydrologic
471 reconnection of a stream to its floodplain (Kaushal and others 2008). While these studies have
472 each looked at relatively short-term (<1 to a maximum of 2 years post-restoration) responses in a
473 single system, they contribute to a growing literature indicating the incorporation of ecological
474 theory into the design of stream restorations greatly improves the likelihood of observing
475 effective ecosystem-scale responses (Lake and others 2007).

476 The fast responses in nutrient uptake (Roberts and others 2007b) and ER rates combined
477 with a lack of any corresponding increases in GPP indicates that the initial responders to stream
478 restorations (CWD additions) in FBMI streams were heterotrophic microbes and that NH_4^+
479 assimilation in FBMI streams is driven largely by heterotrophic assimilation. These findings are
480 consistent with the stream microbial community following the “rubber band” model of
481 community recovery (Sarr 2002) in which recovery may be relatively quick once suitable habitat
482 is rebuilt (Lake and others 2007). This recovery trajectory usually requires the disturbance to be
483 stopped so that the habitat can be rebuilt, but in this case, suitable habitat (CWD) was added

484 directly to the stream as part of the restoration. It takes longer for enough stable substrate to be
485 created (especially in these streams within catchments of highly erodible sediments; Houser and
486 others 2005) so that increases in photosynthesis rates in isolated patches of the stream (associated
487 with CWD additions) can translate into a large enough increase in autotrophic biomass to
488 produce an ecosystem-scale increase in GPP rates. Therefore, stream algae seem to follow a
489 slower, non-linear recovery trajectory more similar to Sarr's (2002) "broken leg" model (Lake
490 and others 2007) than that of heterotrophic microbes. It appears to take even longer for the
491 impact of CWD additions to effectively progress up the food web to invertebrates and fish
492 (Mitchell 2009). Taken together, these findings seem to suggest that different components of the
493 stream community may follow highly diverse degradation-recovery pathways.

494 Many ecological restoration projects aim for rapid progress to bring a system from a
495 degraded state toward a specific target endpoint but consequently the longer-term prognosis for
496 the system is often neglected (Hilderbrand and others 2005). Longer-term monitoring of wetland
497 restoration projects suggests that it will likely take many restored wetlands decades to resemble
498 pre-disturbance conditions (Zedler and Callaway 1999, Wilkins and others 2003, Hilderbrand
499 and others 2005). While stream restorations lack similar long-term monitoring information it is
500 likely that the development or reestablishment of full community structure and ecosystem
501 function in stream ecosystems will often take much longer (years to decades) than the duration of
502 planned monitoring of project effectiveness (if there is post-restoration monitoring). As longer-
503 term post-restoration monitoring of stream restorations begins to occur, the relevant degradation-
504 recovery pathways (Lake and others 2007) will be more easily identified and restoration
505 sustainability more accurately assessed.

506 The ultimate failure of the FBMI restoration effort illustrates the importance of designing
507 for resilience in restoration projects in order to maximize the opportunity for sustained
508 effectiveness (Hilderbrand and others 2005). It is not possible to anticipate all future events and
509 environmental conditions, but restorations can be conducted in ways that allow for ecosystem
510 variability (Molles and others 1998) and uncertainty (Hilderbrand and others 2005) which may
511 require increases in the scale of future restoration efforts. For example, if FBMI stream
512 sedimentation and ultimately CWD burial rates were better understood prior to the initiation of
513 the current project, CWD may have been added to experimental reaches that were much longer
514 than 100 m. It is difficult to predict whether these longer “restored” reaches would have resulted
515 in a significantly longer duration of observed effectiveness. However, it is also important to
516 consider that as the spatial scale increases, so does the temporal scale over which restoration
517 effects may proceed (Lake and others 2007). As a result, an even longer time span of post-
518 restoration monitoring will be required to assess the effectiveness and sustainability of
519 restoration activities.

520 In order for future restoration projects to be ecologically successful (Palmer and others
521 2005), they must adequately address the source of catchment disturbances that are impacting
522 streams (e.g., Bohn and Kershner 2002, Lake and others 2007), not simply attempt to restore the
523 structure of streams. The restoration of stream structures may provide immediate improvements
524 to stream ecosystems, however, only with reductions in disturbance intensity are restored
525 conditions likely to persist. So, if the disturbance was historical (meaning erosion has since been
526 controlled), simply adding wood back to streams may restore ecosystem processes and stream
527 functions to their pre-disturbance state. However, if the disturbance still persists today (as seen
528 in FBMI streams), adding wood will only provide transient improvements to the stream.

529 Similary, many urban restorations aimed at restoring highly eroded stream channels suffer
530 similar failures because the driver (flashy hydrography) and root cause (impervious surfaces) of
531 the problem are not addressed (Hilderbrand and others 2005). At FBMI and similar sites,
532 restoration efforts must include re-vegetation of uplands to reduce sediment loads to the streams
533 so that added wood will not simply be buried. If this condition is met, the addition of woody
534 debris should provide stability and structure to the streambed and increase hydrodynamic
535 complexity which will allow nutrient and organic matter retention and processing (i.e., nutrient
536 uptake and ecosystem metabolism rates) to increase and potentially support a more robust biotic
537 community.

538

539 **Acknowledgements**

540 We thank the personnel at the Fort Benning Military Installation for permitting regular
541 visits to the installation, particularly Hugh Westbury for arranging access to our field sites on the
542 reservation. Pete Swiderek and Gary Hollon provided scientific and logistical advice. Jack
543 Feminella, Kelly Maloney, Richard Mitchell, and Stephanie Miller helped install the CWD dams.
544 We also thank Richard Mitchell for providing data on CWD % areal coverage. Comments of
545 Yetta Jager, Emily Stanley, and two anonymous referees greatly improved an earlier version of
546 this manuscript. This project was supported by grants from the US Department of Defense's
547 Strategic Environmental Research and Development Program (SERDP) to Oak Ridge National
548 Laboratory (ORNL). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the
549 U.S. Department of Energy under contract DE-AC05-00OR22725.

550

551 **Literature Cited**

552 Abell RA, Olson DM, Dinerstein E, Hurley PT, Diggs JT, Eichbaum W, Walters S, Wettengel
553 W, Allnutt T, Loucks CJ, Hedao P. 2000. Freshwater ecoregions of North America: a
554 conservation assessment. Washington, DC: Island Press. 368p.

555 Allan, JD. 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems.
556 Annual Review of Ecology, Evolution, and Systematics 35:257-284.

557 Arango CP, James PW, Hatch KB. 2015. Rapid ecosystem response to restoration in an urban
558 stream. *Hydrobiologia* 749:197-211.

559 Atkinson BL, Grace MR, Hart BT, Vanderkruk KEN. 2008. Sediment instability affects the rate
560 and location of primary production and respiration in a sand-bed stream. *Journal of the*
561 *North American Benthological Society* 27:581-592.

562 Aust WM, Blinn CR. 2004. Forestry best management practices for timber harvesting and site
563 preparation in the eastern United States: an overview of water quality and productivity
564 research during the past 20 years (1982-2002). *Water, Air, and Soil Pollution* 4:5-36.

565 Beaulieu JJ, Arango CP, Balz DA, Shuster WD. 2013. Continuous monitoring reveals multiple
566 controls on ecosystem metabolism in a suburban stream. *Freshwater Biology* 58:918-937.

567 Becker JF, Endreny TA, Robinson JD. 2013. Natural channel design impacts on reach-scale
568 transient storage. *Ecological Engineering* 57:380-392.

569 Bernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, Brooks S, Carr J, Clayton S,
570 Dahm C, Follstad-Shah J, Galat D, Gloss S, Goodwin P, Hart D, Hassett B, Jenkinson R,
571 Katz S, Kondolf GM, Lake PS, Lave R, Meyer JL, O'Donnell TK, Pagano L, Powell B,
572 Sudduth E. 2005. Synthesizing US river restoration efforts. *Science* 308:636-637.

573 Bernhardt ES, Heffernan JB, Grimm NB, Stanley EH, Harvey JW, Arroita M, Appling AP,
574 Cohen MJ, McDowell WH, Hall Jr RO, Read JS, Roberts BJ, Stets EG, Yackulic CB.
575 2018. The metabolic regimes of flowing waters. *Limnology and Oceanography* 63:S99-
576 S118.

577 Bilby RE. 1981. Role of organic debris dams in regulating the export of dissolved and particulate
578 matter from a forested watershed. *Ecology* 62:1234-1243.

579 Bilby RE, Bison PA. 1998. Function and distribution of large woody debris. Naiman RJ, Bilby
580 RE, editors. *River ecology and management: lessons from Pacific coastal ecoregion*. New
581 York: Springer-Verlag New York. p324-346

582 Bilby RE, Likens GE. 1980. Importance of organic matter debris dams in the structure and
583 function of stream ecosystems. *Ecology* 61:1107-1113.

584 Bohn BA, Kershner JL. 2002. Establishing aquatic restoration priorities using a watershed
585 approach. *Journal of Environmental Management* 64:355-363.

586 Bott TL, Brock JT, Dunn CS, Naiman RJ, Ovink RW, Petersen RC. 1985. Benthic community
587 metabolism in 4 temperate stream systems--an inter-biome comparison and evaluation of
588 the river continuum concept. *Hydrobiologia* 123:3-45.

589 Bott TL, Newbold JD, Arscott DB. 2006. Ecosystem metabolism in piedmont streams: reach
590 geomorphology modulates the influence of riparian vegetation. *Ecosystems* 9:398-421.

591 Bukaveckas PA. 2007. Effects of channel restoration on water velocity, transient storage, and
592 nutrient uptake in a channelized stream. *Environmental Science & Technology* 41:1570-
593 1576.

594 Bunn SE, Davies PM, Mosisch TD. 1999. Ecosystem measures of river health and their response
595 to riparian and catchment degradation. *Freshwater Biology* 41:333-345.

596 Colangelo DJ. 2007. Response of river metabolism to restoration of flow in the Kissimmee
597 River, Florida, U.S.A. *Freshwater Biology* 52:459-470.

598 Craig LS, Palmer MA, Richardson DC, Filoso S, Bernhardt ES, Bledsoe BP, Doyle MW,
599 Groffman PM, Hassett BA, Kaushal SS, Mayer PM, Smith SM, Wilcock PR. 2008.
600 Stream restoration strategies for reducing river nitrogen loads. *Frontiers in Ecology and*
601 *the Environment* 6:529-538.

602 Ensign SH, Doyle MW. 2005. In-channel transient storage and associated nutrient retention:
603 evidence from experimental manipulations. *Limnology and Oceanography* 50:1740-1751.

604 Entrekin SA, Tank JL, Rosi-Marshall EJ, Hoellein TJ, Lamberti GA. 2009. Response of
605 secondary production by macroinvertebrates to large wood addition in three Michigan
606 streams. *Freshwater Biology* 54:1741-1758.

607 Felley JD. 1992. Medium-low-gradient streams of the Gulf Coast Plain. Hackney CT, Adams
608 SM, Martin WH, editors. *Biodiversity of the southeastern United States: aquatic*
609 *communities*. New York: John Wiley and Sons. p233-269.

610 Fellows CS, Clapcott JE, Udy JW, Bunn SE, Harch BD, Smith MJ, Davies PM. 2006. Benthic
611 metabolism as an indicator of stream ecosystem health. *Hydrobiologia* 572:71-87.

612 Green RH 1979. Sampling design and statistical methods for environmental biologists.
613 Chichester (UK): Wiley Interscience. 272p.

614 Gregory SV, Boyer K, Gurnell AM, editors. 2003. *The ecology and management of wood in*
615 *world rivers*. American Fisheries Society Symposium 37. Bethesda (Maryland):
616 American Fisheries Society. 444p.

617 Gregory SV, Swanson FJ, McKee WA, Cummins KW. 1991. An ecosystem perspective of
618 riparian zones. *Bioscience* 41:540-551.

619 Griffiths NA, Tank JL, Royer TV, Roley SS, Rosi-Marshall EJ, Whiles MR, Beaulieu JJ,
620 Johnson LT. 2013. Agricultural land use alters the seasonality and magnitude of stream
621 metabolism. *Limnology and Oceanography* 58:1513-1529.

622 Grimm NB, Fisher SG. 1984. Exchange between interstitial and surface water: implications for
623 stream metabolism and nutrient cycling. *Hydrobiologia* 111:219-228.

624 Gurtz ME, Webster JR, Wallace JB. 1980. Seston dynamics in southern Appalachian streams--
625 effects of clear-cutting. *Canadian Journal of Fisheries and Aquatic Sciences* 37:624-631.

626 Hall RO, Tank JL. 2003. Ecosystem metabolism controls nitrogen uptake in streams in Grand
627 Teton National Park, Wyoming. *Limnology and Oceanography* 48:1120-1128.

628 Hall RO, Tank JL. 2005. Correcting whole-stream estimates of metabolism for groundwater
629 input. *Limnology and Oceanography-Methods* 3:222-229.

630 Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline
631 SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW. 1986.
632 Ecology of coarse woody debris in temperate ecosystems. *Advances in Ecological
633 Research* 15:133-302.

634 Hilderbrand RH, Watts AC, Randle AM. 2005. The myths of restoration ecology. *Ecology and
635 Society* 10:19.

636 Hill WR, Ryon MG, Schilling EM. 1995. Light limitation in a stream ecosystem--responses by
637 primary producers and consumers. *Ecology* 76:1297-1309.

638 Hoellein TJ, Tank JL, Rosi-Marshall EJ, Entrekin SA. 2009. Temporal variation in substratum-
639 specific rates of N uptake and metabolism and their contribution at the stream-reach
640 scale. *Journal of the North American Benthological Society* 28:305-318.

641 Hoellein TJ, Tank JL, Entrekin SA, Rosi-Marshall EJ, Stephen ML, Lamberti GA. 2012. Effect
642 of benthic habitat restoration on nutrient uptake and ecosystem metabolism in three
643 headwater streams. *River Research and Applications* 28:1451-1461.

644 Houser JN, Mulholland PJ, Maloney KO. 2005. Catchment disturbance and stream metabolism:
645 patterns in ecosystem respiration and gross primary production along a gradient of upland
646 soil and vegetation disturbance. *Journal of the North American Benthological Society*
647 24:538-552.

648 Houser JN, Mulholland PJ, Maloney KO. 2006. Upland disturbance affects headwater stream
649 nutrients and suspended sediments during baseflow and stormflow. *Journal of*
650 *Environmental Quality* 35:352-365.

651 Huryn AD, Huryn VMB, Arbuckle CJ, Tsomides L. 2002. Catchment land-use,
652 macroinvertebrates and detritus processing in headwater streams: taxonomic richness
653 versus function. *Freshwater Biology* 47:401-415.

654 Johnson TAN, Kaushal SS, Mayer PM, Smith RM, Sivirichi GM. 2016. Nutrient retention in
655 restored streams and rivers: a global review and synthesis. *Water* 8:116.

656 Kane S, Keeton R. 1998. Fort Benning: the land and the people. Prepared by the National Park
657 Service, Southeast Archaeological Center, Tallahassee, Florida, for the US Army Infantry
658 Center, Directorate of Public Works, Environmental Management Division, Fort
659 Benning, Georgia. (Available from: US Army Infantry Center, Directorate of Public
660 Works, Environmental Management Division, Harmony Church, Fort Benning, Georgia
661 31905 USA).

662 Kasahara T, Hill AR. 2006. Effects of riffle-step restoration on hyporheic zone chemistry in N-
663 rich lowland streams. *Canadian Journal of Fisheries and Aquatic Sciences* 63:120-133.

664 Kaushal SS, Groffman PM, Mayer PM, Striz E, Gold AJ. 2008. Effects of stream restoration on
665 denitrification in an urbanizing watershed. *Ecological Applications* 18:789-804.

666 Kupilas B, Hering D, Lorenz AW, Knuth C, Gücker B. 2017. Hydromorphological restoration
667 stimulates river ecosystem metabolism. *Biogeosciences* 14:1989-2002.

668 Lake PS, Bond N, Reich P. 2007. Linking ecological theory with stream restoration. *Freshwater
669 Biology* 52: 597-615.

670 Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS. 1970. Effects of forest cutting
671 and herbicide treatment on nutrient budgets in Hubbard Brook watershed-ecosystem.
672 *Ecological Monographs* 40:23-47.

673 Lowrance R, Todd R, Fail J, Hendrickson O, Leonard R, Asmussen L. 1984. Riparian forests as
674 nutrient filters in agricultural watersheds. *Bioscience* 34:374-377.

675 Maloney KO, Mulholland PJ, Feminella JW. 2005. Influence of catchment-scale military land
676 use on stream physical and organic matter variables in small southeastern plains
677 catchments (USA). *Environmental Management* 35:677-691.

678 Marzolf ER, Mulholland PJ, Steinman AD. 1994. Improvements to the diurnal upstream-
679 downstream dissolved-oxygen change technique for determining whole-stream
680 metabolism in small streams. *Canadian Journal of Fisheries and Aquatic Sciences*
681 51:1591-1599.

682 Mitchell RM. 2009. The Influence of Coarse Woody Debris, Disturbance, and Restoration on
683 Biological Communities in Sandy Coastal Plain Streams. Ph.D. Dissertation.
684 <http://hdl.handle.net/10415/2022>. Auburn (AL): Auburn University. 206p.

685 Molles MC, Crawford CS, Ellis LM, Valett HM, Dahm CN. 1998. Managed flooding for riparian
686 ecosystem restoration. *Bioscience* 48:749-756.

687 Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Marti E, Ashkenas
688 L, Bowden WB, Dodds WK, McDowell WH, Paul MJ, Peterson BJ. 2001. Inter-biome
689 comparison of factors controlling stream metabolism. *Freshwater Biology* 46:1503-1517.

690 Mulholland PJ, Houser JN, Maloney KO. 2005. Stream diurnal dissolved oxygen profiles as
691 indicators of in-stream metabolism and disturbance effects: Fort Benning as a case study.
692 *Ecological Indicators* 5: 243-252.

693 Mulholland PJ, Feminella JW, Hollon GL. 2009. Final report addendum: Effects of Construction
694 of the Digital Multipurpose Range Complex (DMPRC) on Riparian and Stream
695 Ecosystems at Fort Benning, Georgia.

696 Munn NL, Meyer JL. 1990. Habitat-specific solute retention in 2 small streams: an intersite
697 comparison. *Ecology* 71:2069-2082.

698 Naiman RJ, Sedell JR. 1979. Benthic organic matter as a function of stream order in Oregon.
699 *Archiv Fur Hydrobiologie* 87:404-422.

700 Odum HT. 1956. Primary production in flowing waters. *Limnology and Oceanography* 1:102-
701 117.

702 Omernik JM. 1976. The influence of land use on stream nutrient levels. EPA-600/3-76-014.
703 Corvalis (OR): US Environmental Protection Agency. 106p.

704 Omernik JM. 1987. Ecoregions of the conterminous United States. *Annals of the Association of*
705 *American Geographers* 77:118-125.

706 Palmer MA. 2009. Reforming watershed restoration: science in need of application and
707 applications in need of science. *Estuaries and Coasts* 32:1-17.

708 Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm
709 CN, Shah JF, Galat DL, Loss SG, Goodwin P, Hart DD, Hassett B, Jenkinson R, Kondolf

710 GM, Lave R, Meyer JL, O'Donnell TK, Pagano L, Sudduth E. 2005. Standards for
711 ecologically successful river restoration. *Journal of Applied Ecology* 42:208-217.

712 Palmer MA, Hondula KL, Koch BJ. 2014. Ecological restoration of streams and rivers: shifting
713 strategies and shifting goals. *Annual Review of Ecology, Evolution, and Systematics*
714 45:247-269.

715 Reisinger AJ, Rosi EJ, Bechtold HA, Doody TR, Kaushal SS, Groffman PM. 2017. Recovery
716 and resilience of urban stream metabolism following Superstorm Sandy and other floods.
717 *Ecosphere* 8:e01776.

718 Richards C, Johnson LB, Host GE. 1996. Landscape-scale influences on stream habitats and
719 biota. *Canadian Journal of Fisheries and Aquatic Sciences* 53(Supplement 1): 295-311.

720 Roberts BJ, Mulholland PJ. 2007. In-stream biotic control on nutrient biogeochemistry in a
721 forested stream, West Fork of Walker Branch. *Journal of Geophysical Research-*
722 *Biogeosciences* 112: G04002.

723 Roberts BJ, Mulholland PJ, Hill WR. 2007a. Multiple scales of temporal variability in ecosystem
724 metabolism rates: Results from 2 years of continuous monitoring in a forested headwater
725 stream. *Ecosystems* 10:588-606.

726 Roberts BJ, Mulholland PJ, Houser JN. 2007b. Effects of upland disturbance and instream
727 restoration on hydrodynamics and ammonium uptake in headwater streams. *Journal of*
728 *the North American Benthological Society* 26:38-53.

729 Roley SS, Tank JL, Stephen ML, Johnson LT, Beaulieu JJ, Witter JD. 2012. Floodplain
730 restoration enhances denitrification and reach-scale nitrogen removal in an agricultural
731 stream. *Ecological Applications* 22:281-297.

732 Roley SS, Tank JL, Griffiths NA, Hall Jr. RO, Davis RT. 2014. The influence of floodplain
733 restoration on whole-stream metabolism in an agricultural stream: insights from a 5-year
734 continuous data set. *Freshwater Science* 33:1043-1059.

735 Sarr DA. 2002. Riparian livestock exclosure research in the western United States: a critique and
736 some recommendations. *Environmental Management* 30:516-526.

737 Sinsabaugh RL. 1997. Large-scale trends for stream benthic respiration. *Journal of the North*
738 *American Benthological Society* 16:119-122.

739 Smock LA, Metzler GM, Gladden JE. 1989. Role of debris dams in the structure and functioning
740 of low gradient headwater streams. *Ecology* 70:764-775.

741 Sudduth EB, Hassett BA, Cada P, Bernhardt ES. 2011. Testing the field of dreams hypothesis:
742 functional responses to urbanization and restoration in stream ecosystems. *Ecological*
743 *Applications* 21:1972-1988.

744 Trotter EH. 1990. Woody debris, forest-stream succession, and catchment geomorphology.
745 *Journal of the North American Benthological Society* 9:141-156.

746 Uehlinger U, Konig C, Reichert P. 2000. Variability of photosynthesis-irradiance curves and
747 ecosystem respiration in a small river. *Freshwater Biology* 44:493-507.

748 Uehlinger U, Naegli M, Fisher SG. 2002. A heterotrophic desert stream? The role of sediment
749 stability. *Western North American Naturalist* 62:466-473.

750 Underwood AJ. 1994. On beyond BACI: sampling designs that might reliably detect
751 environmental disturbances. *Ecological Applications* 4:3-15.

752 Wallace JB, Webster JR, Meyer JL. 1995. Influence of log additions on physical and biotic
753 characteristics of a mountain stream. *Canadian Journal of Fisheries and Aquatic Sciences*
754 52:2120-2137.

755 Warren DR, Judd KE, Bade DL, Likens GE, Kraft CE. 2013. Effects of wood removal on stream
756 habitat and nitrate uptake in two northeastern US headwaters. *Hydrobiologia* 717:119-
757 131.

758 Webster JR, Golladay SW, Benfield EF, Dangelo DJ, Peters GT. 1990. Effects of forest
759 disturbance on particulate organic matter budgets of small streams. *Journal of the North*
760 *American Benthological Society* 9:120-140.

761 Wilkins S, Keith DA, Adam P. 2003. Measuring success: evaluating the restoration of a grassy
762 eucalypt woodland on the Cumberland Plain, Sydney, Australia. *Restoration Ecology*
763 11:489-503.

764 Young RG, Huryn AD. 1998. Comment: Improvements to the diurnal upstream-downstream
765 dissolved oxygen change technique for determining whole-stream metabolism in small
766 streams. *Canadian Journal of Fisheries and Aquatic Sciences* 55:1784-1785.

767 Young RG, Matthaei CD, Townsend CR. 2008. Organic matter breakdown and ecosystem
768 metabolism: functional indicators for assessing river ecosystem health. *Journal of the*
769 *North American Benthological Society* 27:605-625.

770 Zedler JB, Callaway JC. 1999. Tracking wetland restoration: do mitigation sites follow desired
771 trajectories? *Restoration Ecology* 7:69-73.

772 Table Headings.

773 Table 1. Selected physical and chemical characteristics of the study-stream reaches.

774

775 Table 1.

776

Width, depth, discharge, and velocity values are means (SD) based on measurements made during quarterly NaCl/propane injections from summer 2001 through autumn 2006 (n = 21). See Fig. 1 for stream abbreviations									
Stream	Disturbance intensity (% catchment)	Catchment area (ha)	Reach length (m)	Width (m)	Depth (m)	Discharge (L/s)	Velocity (m/min)	Before	CWD (% areal coverage)
Control streams									
BC2	3.15	75	45	0.96 (0.11)	0.11 (0.03)	5.34 (2.41)	2.84 (0.87)	8.92	-
HBC	6.62	215	110	1.77 (0.18)	0.11 (0.03)	19.44 (13.29)	5.39 (2.10)	6.34	-
BC1	10.46	210	60	1.25 (0.13)	0.15 (0.03)	9.12 (3.60)	2.80 (0.69)	12.62	-
SB4	13.65	100	80	1.49 (0.42)	0.05 (0.02)	9.72 (5.84)	7.75 (2.42)	3.11	-
Manipulated streams									
KM1	4.63	369	105	2.07 (0.29)	0.14 (0.04)	26.65 (14.97)	5.26 (1.24)	8.60	12.09
SB2	8.12	123	115	1.61 (0.19)	0.08 (0.03)	18.53 (9.15)	8.57 (1.58)	7.30	11.62
SB3	10.49	72	100	1.18 (0.25)	0.07 (0.03)	9.17 (6.23)	6.46 (1.52)	3.70	8.89
LPK	11.26	33	65	0.90 (0.17)	0.04 (0.01)	3.66 (1.38)	5.93 (1.20)	3.79	6.90

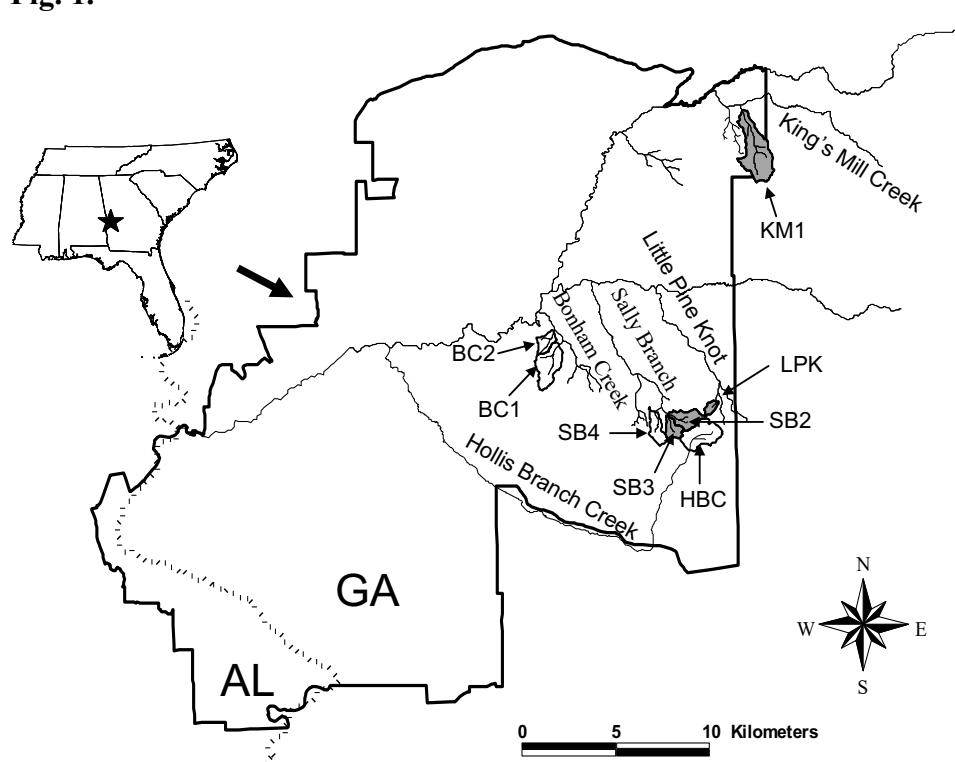
777

778 **Figure Legends**779 **Fig. 1.** Study catchments on the Fort Benning Military Installation near Columbus, Georgia.

780 Study catchments include 2 tributaries of Bonham Creek (BC1 and BC2), 3 tributaries of
781 Sally Branch Creek (SB2, SB3, and SB4), 1 tributary of Little Pine Knot Creek (LPK), 1
782 tributary of Kings Mill Creek (KM1), and Hollis Branch Creek (HBC). Shaded
783 catchments indicate catchments that received coarse woody debris (CWD) additions. GA
784 = Georgia, AL = Alabama.

785 **Fig. 2.** Photographs of one of the four study streams that received CWD additions (Sally Branch
786 Creek 3 (SB3); disturbance intensity = 10.49%) in October 2003 a) before and b) after
787 CWD additions were made to the stream, c) one month after CWD addition (November
788 2003) showing the effectiveness of additions at reducing water velocity and retaining
789 organic matter and other materials, and d) March 2006 showing the extensive burial of
790 added CWD (77% of CWD added to SB3 was buried by January 2006).

791 **Fig. 3.** Mean (+ SE) after:before (A:B) CWD addition ratios of ecosystem respiration (ER) rates
792 for control (open bars) and manipulated (gray bars) streams for the a) winter, b) spring, c)
793 summer, and d) autumn sampling periods in 2004, 2005, and 2006. A:B ratio = 1
794 (dashed lines) indicate no change between the two sampling periods. Significant effects
795 of treatment (control v. manipulated streams) and year on ER rates were assessed using
796 two-way ANOVAs on square-root transformed ratios (F and p values for test of treatment
797 effects are listed for each season). Significant treatment effects for a given year are
798 indicated above bars. **MS** indicates $p < 0.1$, * indicates $p < 0.05$, and ** indicates $p <$
799 0.01. Note that the y-axis scale on each figure differs.

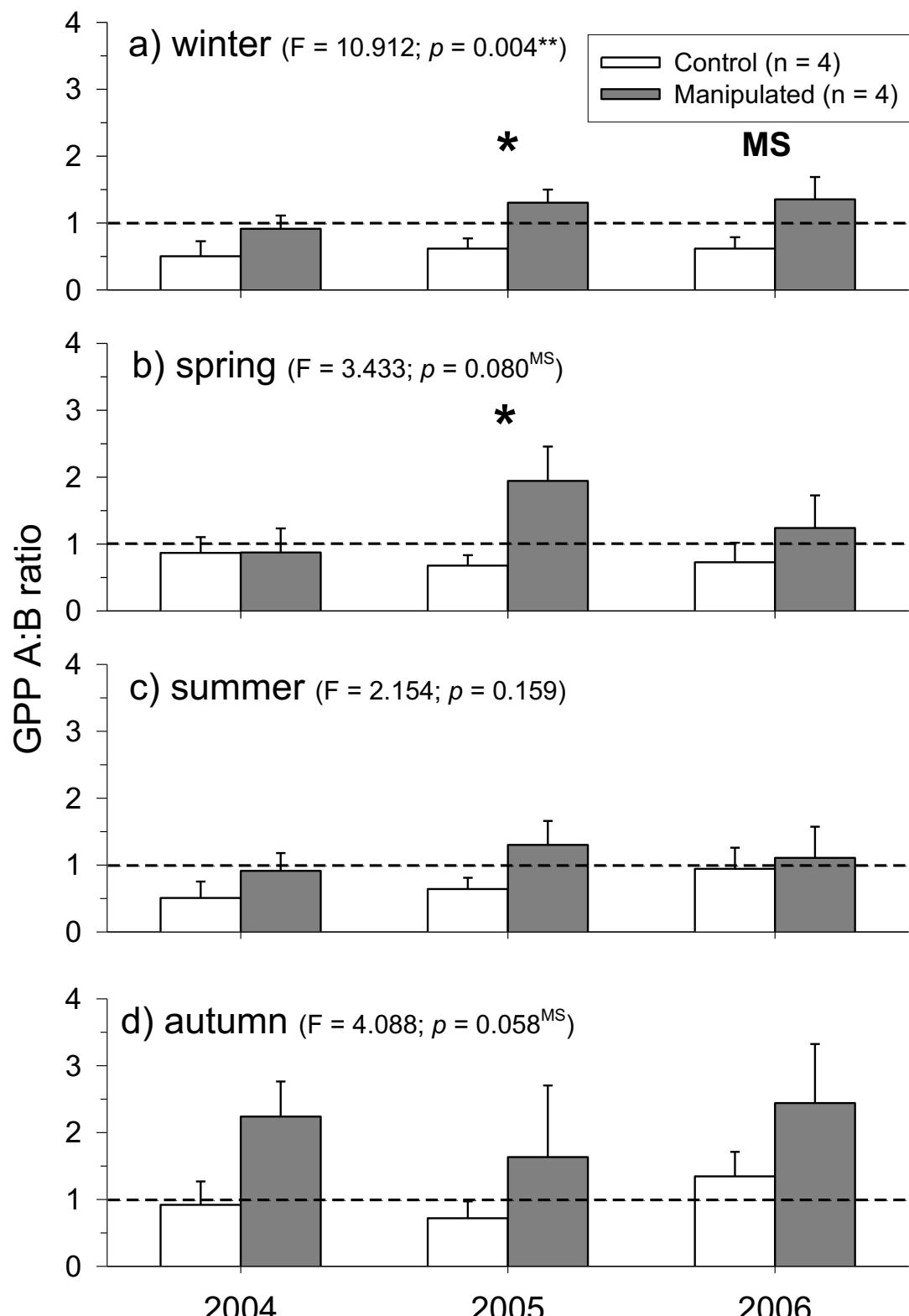

800 **Fig. 4.** Mean (+ SE) after:before (A:B) CWD addition ratios of gross primary production (GPP)
801 rates for control (open bars) and manipulated (gray bars) streams for the a) winter, b)
802 spring, c) summer, and d) autumn sampling periods in 2004, 2005, and 2006. The figure
803 is assembled in same manner as Fig. 3.

804 **Fig. 5.** Relationship between pre-manipulation disturbance intensity and after:before (A:B)
805 CWD addition ratios of a) ecosystem respiration (ER) rates a) and gross primary
806 production (GPP) rates for manipulated streams in 2004 (white symbols), 2005 (black
807 symbols), and 2006 (gray symbols). Data points represent season means for each stream
808 by year. A:B ratio = 1 (dashed line) indicates no change between the two sampling
809 periods. Dotted and solid lines indicate statistically significant linear regressions for ER
810 in 2004 ($p = 0.09$; marginally significant) and 2005 ($p = 0.01$); 2006 was not significant
811 ($p = 0.26$). Linear regressions for 2004 and 2005 are: (Respiration A:B) = 0.12
812 (disturbance intensity) + 0.58 and (Respiration A:B) = 0.24 (disturbance intensity) +
813 0.06, respectively. Regressions with GPP were not significant.

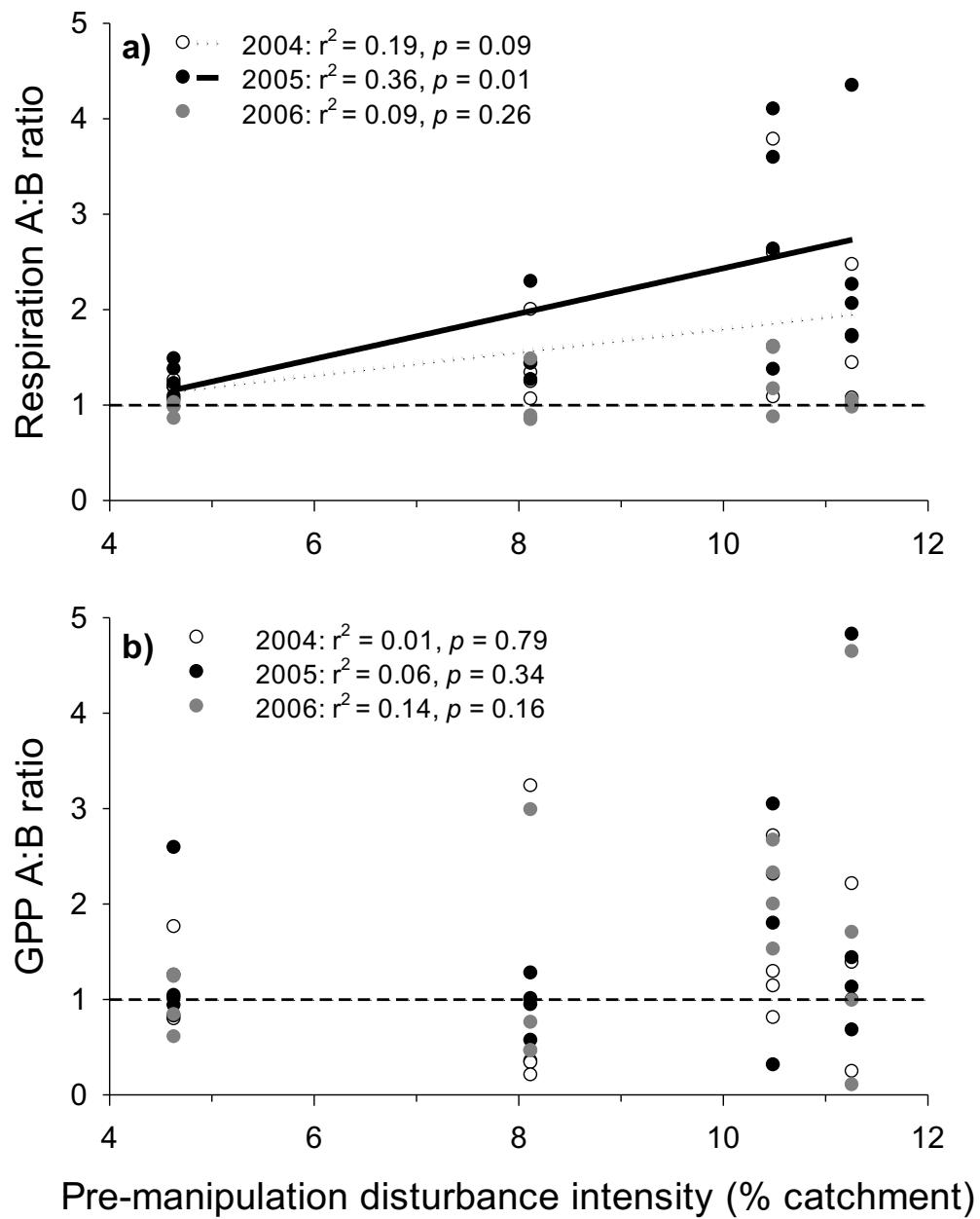
814

815

816 **Fig. 1.**


817

818
819


Fig. 2.

820 **Fig. 3.**

823 **Fig. 4.**

825 Fig. 5.

826
827