

Overview of Experimental Activities at the Sandia Spray Labs

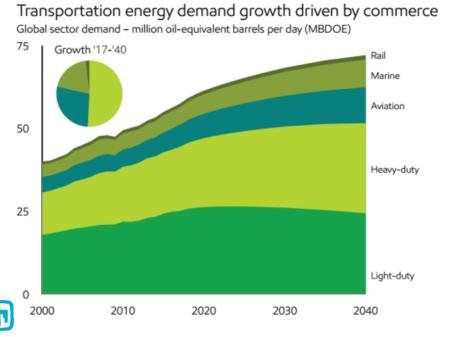
Julien Manin and Lyle Pickett

Applied Combustion I (8361)

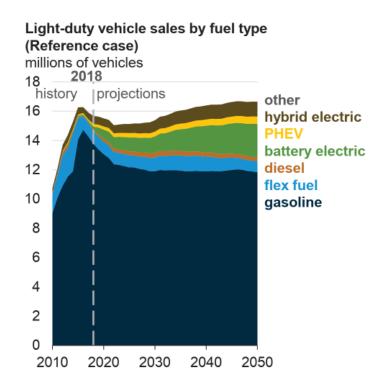
Combustion Research Facility

Acknowledgments: Dave Cicone, Nathan harry, Aaron Czeszynski, and all people involved in the Spray Labs research

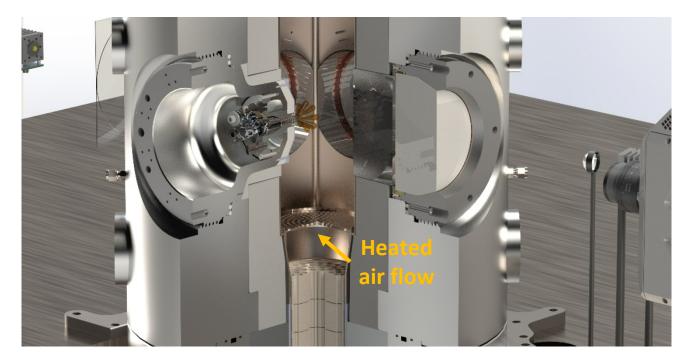
Lab Visit Material



Sandia National Laboratories

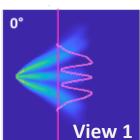

Internal combustion engines need to get better

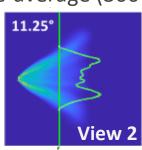
- Transportation is the first consumer of liquid fuel and the largest contributor of CO₂ emissions
- Hybrid and EV vehicles to represent about 20 % of the market share in 30 years
- Gasoline-type vehicles to dominate for the next decades
 - 1 billion gasoline engines to be made over the next 20 years, with still about a 75-% market share by 2050
 - Driven by regulations, projections include significant efficiency gains

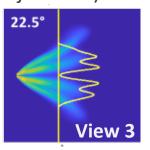


- Heavy-duty diesel engines to become the main fuel demand in transportation in the next few years
- Aviation will experience the largest growth regarding transportation energy demand
- There is no clear path toward efficient electrification for these types of vehicles

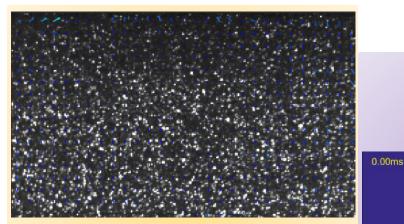
High-pressure continuous-flow chamber






- High-throughput spray chamber with continuously flowing heated air flow
 - Ambient temperature up to 1100 K
 - Ambient pressure from vacuum to 150 atm.
- High-repetition-rate enables time-resolved 3-D tomography on multi-plume sprays
 - Prior Sandia capabilities made statistic-dependent diagnostic near impossible
- Many advanced diagnostics are not applicable at the required high-speeds yet

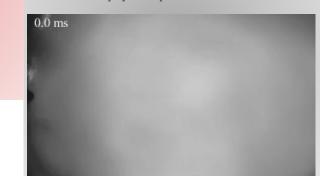
Raw data Ensemble-average (300 injections)


Tomographic reconstruction

Constant volume vessel

CRF

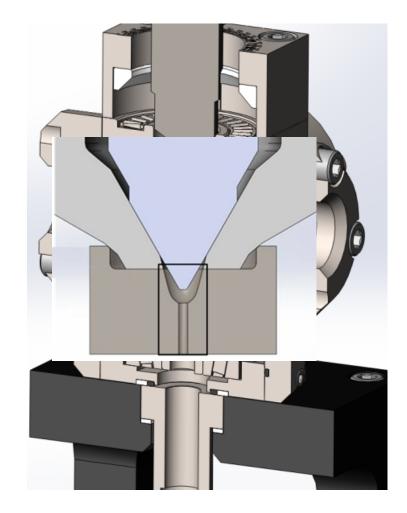
- Constant-volume chamber with high pressure and temperature capabilities
 - Ambient temperature up to 1800 K
 - Ambient pressure from 1 to 350 atm.
- Advanced laser and optical diagnostics to study spray and combustion processes under relevant conditions in a fundamental manner
 - Combines with the continuous flow chamber activities to extend Sandia's capabilities

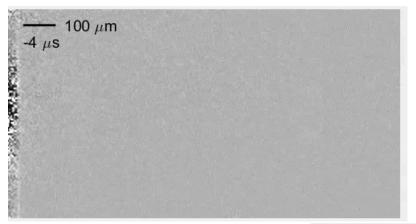

Time-resolved Particle Image
Velocimetry (PIV) for air
entrainment

High-speed mixing measurements using Rayleigh scattering

High-speed PAH LIF experiments to monitor soot precursors

0.0 ms aSOI


Quantitative soot volume fraction measurements under pyrolysis conditions



Internal flow and spray experiments

- Real-size transparent nozzles made of cast acrylic to replace actual metal nozzle tip
 - Nozzle design can withstand real injection pressure operation (1000+ bar)
 - Installed in pressure chamber for vacuum or high-pressure (100 atm.) conditions

- Nozzle support slotted to allow nearnozzle spray visualization and air entrainment
- High-speed stereoscopic microscopy can reconstruct the 3-D field and connect internal nozzle flow to spray features

A wide range of partnerships

- Work closely with the US industry and DOE to set research directions
 - Conversation as part of the Advanced Engine Consortium (AEC) or the Advanced Combustion and Emission Control (ACEC)

- Sandia is leading the largest international research effort on spray and combustion relevant to engines
 - The Engine Combustion Network (ECN) was launched over 10 years ago https://ecn.sandia.gov/

- Various projects directly funded by industry
 - Spray Combustion Consortium (Sandia-led)
 - Research projects funded by injector, fuel or engine manufacturers

