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Inverse Problem Approach to Spacecraft Charging Simulations

P.A Resendiz Lira', G.L. Delzanno', M.G. Henderson'!, H.C. Godinez', B.E. Wohlberg', and D. Svyatsky'

"Los Alamos National Laboratory, Los Alamos, New Mexico USA

Abstract— Spacecraft charging is an important topic in space-
weather research since charging can lead to spacecraft anomalies,
which can range from inconsequential to catastrophic. Spacecraft
surface charging calculations use sophisticated numerical codes
and are typically conducted with a direct (forward) approach: the
local properties of the space environment, the spacecraft geometry
and the spacecraft material properties are the input, while the
electric field on and around the spacecraft and the corresponding
plasma particle distributions are the output. This approach can be
limited when some of the critical input parameters are either
unknown or have large uncertainties. For instance, the Van Allen
Probes (VAP) spacecraft is an example of a modern spacecraft
with state-of-the-art measurements capabilities. Predicting the
VAP spacecraft potential requires knowledge of the cold and
warm plasma populations which dominate surface charging.
However, the cold plasma properties (particularly the cold
electron temperature) are not well characterized. In addition, the
material properties are known from measurements in ‘clean’
laboratory conditions, but there are uncertainties associated with
how materials age in space due to their interaction with the
environment. To mitigate these limitations, we developed an
inverse approach to use available spacecraft-charging data to infer
some of the missing properties of the space environment around
the spacecraft and material degradation. This approach is
currently based on an analytical model of spacecraft charging,
based on the orbital-motion-limited theory, together with a quasi-
Newton optimization method. We will present results that show
convergence and the ability to estimate the correct parameters in
synthetic observation experiments.

I. INTRODUCTION

Over several decades, sophisticated numerical tools have
been developed to predict spacecraft surface charging. Such
tools include community codes e.g. NASCAP (Mandell et al.
2006), SPIS (Roussel et al. 2008), MUSCAT (Muranaka et al.
2008), as well as research codes such as CPIC (Meierbachtol et
al. 2017), PTetra (Marchand, 2011), etc. These tools are
generally applied in a direct or forward approach, i.e. the plasma
environment, spacecraft geometry and materials are the inputs
of the code. The output is then the electric field on and around
the spacecraft, as well as the spacecraft potential, and the plasma
particle distributions consistent with this electric field.

We focus on what is perhaps the simplest charging case, i.e.
a spacecraft in sunlight immersed in the magnetospheric cold
(~eV energy) plasma, where the spacecraft potential is dictated
by the emission of photoelectrons balancing the collection of
ambient cold electrons. For simplicity, we will consider the
ambient cold plasma Maxwellian. In a direct charging
calculation, the inputs are: density and temperature of the
ambient cold plasma, the photoemission parameters of the

specific spacecraft materials, and the geometry of the spacecraft.
The output is the spacecraft potential and electric field on/near
the spacecraft. There are two major difficulties in performing
this direct spacecraft charging calculation accurately. The first
is that the parameters that characterize the magnetospheric cold
plasma (density and temperature) are typically unknown due to
the difficulty of in-situ measurements of the cold populations in
the Earth’s magnetosphere (see the discussion in the recent
review of the impact of the cold plasma in magnetospheric
physics, Delzanno et al. 2021). Second, the material parameters
have large uncertainties once the spacecraft is in orbit. Materials
for space applications are well characterized in the lab prior to
launch. However, once in orbit, these materials are exposed to
the harsh space environment and their properties are strongly
modified. Unfortunately, we do not have any robust
methodology to assess and quantify material aging in space.
Given the challenges of direct charging calculations in the
Earth’s magnetosphere, we propose an inverse charging
calculation as an alternative. The idea is to use the available
spacecraft charging data (for instance, the spacecraft potential or
even direct information from the booms measuring the electric
field near the spacecraft) together with other available
environmental parameters as input to estimate those parameters
that are unknown or have large uncertainties.

We note that some form of the inverse spacecraft charging
approach has been exploited by several authors in the past,
including Grard (1973), Pedersen et al. (1984, 1995, 2008),
Schmidt et al. (1987), Escoubet et al. (1997), Ishisaka et al.
(1999), Nakagawa et al. (2000), Scudder et al. (2000), Thiebault
et al. (2006) and Boardsen et al. (2014). A common technique
on space missions is to estimate the plasma density from the
spacecraft potential using an inverse approach. However, in
such approaches, it is assumed that material properties are
known (typically from some in-orbit calibration, other space
missions or lab). Moreover, in most works it is also assumed that
the plasma temperature is known. To our knowledge, the
approach presented here is the first inverse spacecraft charging
technique that estimates both material parameters and some of
the plasma parameters at the same time.

II. METHODOLOGY

To illustrate our inverse approach, we use the NASA Van
Allen Probes (VAP) spacecraft, a modern spacecraft with state-
of-the-art measurements, as a reference for an inverse
calculation. The measurements available from VAP include the
spacecraft potential, total electron density, and fluxes of electron
populations with energies larger than 15 eV. The spacecraft
geometry is also known. The spacecraft potential, the density of
the cold electrons (inferred from the total electron density) and
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the geometry of the spacecraft are the inputs. The temperature
of the cold electrons and the photoemission parameters will then
be the output of the inverse technique. Note that we assume that
photoemission is dominated by the VAP solar panels coated
with ITOC (since, nominally, this is much higher than that from
the black Kapton body (Davis, 2006)) so that photoemission can
be characterized only by one spacecraft material. Additionally,
at present we are only considering a single Maxwellian
component for the photoelectrons, although it is known that
photoelectrons from past spacecraft missions can be
characterized by multiple Maxwellians with different energies
[refs]. Sensitivity of the technique to this assumption will be
assessed in future work.

To describe our inverse approach, we use the specific
charging example discussed above, that is, a conducting,
positively-charged spacecraft in sunlight immersed in the cold
magnetospheric plasma. The thermal ion current is negligible
while the secondary electron emission is not considered here. As
such, the spacecraft potential [Pg is determined by cold electron
collection balancing photoemission. The electron current
collected by a conducting spherical spacecraft can be
approximated using the Orbital Motion Limited (OML) theory
(Mott-Smith & Langmuir, 1926) as

Te SC
I, = —e4nr2n, /zfme (1+ ijTe), b =0 (1)

The photoelectron current, approximated with a single
Maxwellian distribution (Grard, 1973), is given by

Iy = Aty (1425 exp (— 225, 9, >0 )

Here, | is_the elementary charge, |z is the Boltzmann
constant, and @, @, @are the mass, density and temperature
of the electrons, respectively. For photoelectron emission,
and are the temperature and current density of the
photoelectrons, respectively, while p4 is the fraction of the
spacecraft illuminated area relative to the total surface area.
Because of the spacecraft motion, the plasma parameters are
expected to change on time scales of the order of seconds.
Material parameters change on longer time scales (weeks to
months) than plasma conditions and therefore can be kept
constant if we use spacecraft data in hours/days periods. The
spacecraft surface charging is then computed by solving the
equilibrium equation (i.e. floating condition)

I (¢5e:8, To) + Lon(@ser Jpns Ton) = 0 3)

Our inverse charging technique will take ¢, n§ and the
spacecraft geometry as inputs such that, through Eq. (3), we can
write symbolically

Psc = Psc (Te']ph'Tph) 4)

The output of the technique is then T,, J,p,, and Ty, It is worth
to notice that both ¢, and T, are both time-varying variables,
that is, both are functions of time.

Our technique utilizes a constrained minimization approach to
estimate the output parameters such that the appropriate values
of the parameters of interest is given by:

Te:]ph: Tph = argmin ||¢)sc(Te:]ph: Tph) - ¢;7Cbs”’

TerhJTph

subject to: I, (Pse, n&, To) + Lyn (dser Jpn Tpn) = 0,

where ¢, is the surface charging estimation provided by the
OML, while ¢2P% is the observed surface charging data
available for instance from VAP.

The problem as stated above is under-determined since both T,
and ¢, are time dependent variables, so considering a time
interval with N discrete time points, we would have a problem
of trying to estimate N+2 variables (N points in time
corresponding to T, plus the two material parameters that are
constant, J,, and Tp,) with N observations. To solve this issue,
we use an expansion of T, using polynomials (or splines) as

T, = ay + ast + ayt? + - = 0T gtk Q)

where 7 is time, and «,, are the coefficients of the polynomial to
be determined. Reformulating the minimization problem, we
have now more data points than unknowns, i.e. N >> Ny + 2,
where the minimization is now:

ak!]ph’ Tph = aakr]gr;l;nh”(psc(ak’]ph' Tph) - ¢.gcbs||’
JorTp

subject to: I, (¢sc, 1, ) + Iph(¢sc,]ph, Tph) =0

Finally, we solve the quasi-Newton optimization with a non-
linear least-squared fit using the trust-region (Yuan, 2000)
method with bounds.

III. RESULTS

The technique has been tested with synthetic experiments
using OML for the surface charging calculations. Here, a
spherical and perfectly conducting spacecraft is considered. The
synthetic cases are constructed by computing the spacecraft
surface potential with OML using given values of the
photoemission material parameters, as well as given temperature
and density profiles of the cold electrons as a function of time.

A. Case I: no-noise in the observations

w——Observations
2 Control
N1
s
g0
&
3 -1
-2
0.0 0.2 0.4 0.6 0.8 1.0
time normalized
200 w— Density
175
-~ 150
€ 125
2100
a
g 75
o
50
25
0
0.0 0.2 0.4 0.6 0.8 1.0
time normalized




(Ex Ordo Abstract # (ex: 104)

Fig. 1. Input to the optimization. Noise-free signal of spacecraft potential (top)
and density (bottom) as a function of time. In the top panel, ‘Control’ (orange
line) labels the spacecraft potential used as first guess in the optimization.
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Fig. 2. Output of the optimization using noise-free input signals. Material
paramters presented with their respective relative errors (top), and electron
temperature (bottom) estimated by the inverse technique.

First, we considered noise-free input signals for the density and
spacecraft potential. Figure 1 shows an example of input data
for the optimization. Figure 2 shows the output of the inverse
technique, that is, the electron temperature as a function of time
and material parameters. When the input data is free of noise,
the technique allows parameter estimation with high accuracy.
In this example, the maximum relative error in the electron
temperature is 0.9% while that of the material parameters is less
than 0.11%.

B. Case II: noise in the observations.
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Fig. 3. Noisy signal of the spacecraft potential (black dots) smoothed using
Gaussian-filter (blue), Butterworth-filter (orange), and Gaussian Process
Regressor (green).
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Fig. 4. Electron temperature solutions obtained from smoothing the noisy
input data in Fig. 3 using different techniques while varing parameters in the
smoothing filters.

In practice, in-situ measurements are noisy. White noise was
added to the observations to test the robustness of our inverse
technique. Figure 3 shows an example of the spacecraft
potential with added noise, 7% of white-noise in this case. Since
the technique performs exceptionally well with noise-free
signals as input, the first obvious approach was to smooth the
noisy observations using different filters with various filter
parameters. Colored lines in Fig. 3 represent examples of
smoothing the noisy spacecraft potential data (black dots) using
the Gaussian-filter, Butterworth-filter and Gaussian Process
Regressor techniques. Then, the inverse procedure is applied on
the smooth data and the results are presented in Figure 4, which
shows the estimation of the electron temperature as function of
time. Note that nine colored curves are shown in Fig. 4 as a
result of varying the filter parameters for each of the three
techniques presented in Fig. 3. It can be seen in Fig. 4 that some
of the solutions are close to the truth (black dashed line), while
some have significant errors. Indeed, we were unable to find a
robust approach to smooth the noise in the observations that
would lead to consistently highly accuracy estimation of the
parameters. These results led us to conclude that the technique
is very sensitive to noise in the input data.
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C. Case IlI: statistical approach to overcome noise.
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Fig. 5. Ensemble of inputs generated from the noisy input data using the
Gaussian Process Regressor technique.

To overcome the negative impact of noise in the observations,
instead of using a deterministic approach, we resorted to a
probabilistic approach. The idea is to create an ensemble of
input functions representing the noisy input data, whose
probability distribution respects the mean and variance of the
original data. For this part, we use the Gaussian Process
Regressor (GPR, Rasmussen, 2006). With M functions of the
input probability distribution, we solve M optimization
problems and construct an ensemble of M solutions of the
inverse technique and the related probability distribution. We
found that the mean of the probability distribution of the
solution ensemble allows one to statistically recover the
parameter solution accurately. Figure 5 shows an example of
the ensemble of inputs generated with GPR. Using the mean
and the variance of the input data, GPR calculates the
probability distribution over all admissible functions that fit the
data.
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Fig. 6. Solution ensemble for the electron temperature (top). The probability
distributions at selected local times (bottom) follow a normal distribution which
allows the computation of the electron temperature as a function of time (red
line) by taking the mean of each of these distributions (black dots).

Figure 6 shows the solution ensemble of the electron
temperature as a function of time (grey lines). The red line (with
black dots) is the solution computed as the mean of the solution
ensemble at each local time. Examples of the probability
distribution at two different local times are shown in the bottom
row of Fig. 6, where one can appreciate that for these particular
time values the probability distribution of the solution ensemble
is well approximated by a normal distribution. We have
determined that when the distributions follow a normal-type,
the mean of the distribution is a good estimate of the parameter
solution. This can be seen clearly in Fig. 6, where the reference
solution for the Te (black line) are extremely close to each other.
Indeed, the overall Root-Mean-Squared-Error (RMSE) is only
5%.
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D. Results of 21 Synthetic Experiments
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Fig. 7. Computed errors of the parameters estimated by the inverse technique
applied to twenty-one synthetic cases. Relative error is shown for the material
parameters in the first and second row, while for the electron temperature as a
function of time the Root-Mean-Squared-Error is reported in the bottom row.

Using the approach described in section IIIC, we applied the
inverse charging approach to twenty-one synthetic cases where
the density and temperature (as a function of time) were varied
in a specific range of parameters. Figure 7 shows the relative
errors in the parameter estimation for all cases (the example
treated in section IIIC is labelled as Case 1 in Fig. 7). The
estimation of the material parameters was extremely accurate,
with no more than 4% error across all cases. As for the electron
temperature, the RMSE remains below 15% across all cases.
Overall, the methodology presented here allows us to robustly
overcome the noise in input data to recover the parameters
consistently and with high accuracy.

IV. CONCLUSIONS

We developed an inverse spacecraft surface charging
technique to estimate material and some cold-plasma properties
simultaneously. In this work we have explored it for a special
charging situation in which a conducting spacecraft is positively
charged in sunlight due to the balance between photoemission
and the collection of cold electrons. The inverse technique is
based on a statistical approach to overcome issues associated
with noise in the input data.

Despite the proof-of-principle nature of this study, once
matured this technique could have important scientific and
practical applications. It enables a method to obtain some of the
properties of the environment (i.e. the cold plasma populations)
that are typically very hard to obtain. This is of particular interest
to the magnetospheric cold-plasma community and it supports
work towards new cold-plasma space missions that are currently
being pursued. Another key aspect is that it delivers a new way
to study material aging in space. This technique can aid on
spacecraft anomaly resolution, since it gives the spacecraft a
‘material identification card” which is a necessary ingredient in
the forensic work to attribute anomalies to the space
environment.
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