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Inverse Problem Approach to Spacecraft Charging Simulations 

 
Abstract— Spacecraft charging is an important topic in space-

weather research since charging can lead to spacecraft anomalies, 
which can range from inconsequential to catastrophic. Spacecraft 
surface charging calculations use sophisticated numerical codes 
and are typically conducted with a direct (forward) approach: the 
local properties of the space environment, the spacecraft geometry 
and the spacecraft material properties are the input, while the 
electric field on and around the spacecraft and the corresponding 
plasma particle distributions are the output. This approach can be 
limited when some of the critical input parameters are either 
unknown or have large uncertainties. For instance, the Van Allen 
Probes (VAP) spacecraft is an example of a modern spacecraft 
with state-of-the-art measurements capabilities. Predicting the 
VAP spacecraft potential requires knowledge of the cold and 
warm plasma populations which dominate surface charging. 
However, the cold plasma properties (particularly the cold 
electron temperature) are not well characterized. In addition, the 
material properties are known from measurements in ‘clean’ 
laboratory conditions, but there are uncertainties associated with 
how materials age in space due to their interaction with the 
environment. To mitigate these limitations, we developed an 
inverse approach to use available spacecraft-charging data to infer 
some of the missing properties of the space environment around 
the spacecraft and material degradation. This approach is 
currently based on an analytical model of spacecraft charging, 
based on the orbital-motion-limited theory, together with a quasi-
Newton optimization method. We will present results that show 
convergence and the ability to estimate the correct parameters in 
synthetic observation experiments.  

I. INTRODUCTION  
Over several decades, sophisticated numerical tools have 

been developed to predict spacecraft surface charging. Such 
tools include community codes e.g. NASCAP (Mandell et al. 
2006), SPIS (Roussel et al. 2008), MUSCAT (Muranaka et al. 
2008), as well as research codes such as CPIC (Meierbachtol et 
al. 2017), PTetra (Marchand, 2011), etc. These tools are 
generally applied in a direct or forward approach, i.e. the plasma 
environment, spacecraft geometry and materials are the inputs 
of the code. The output is then the electric field on and around 
the spacecraft, as well as the spacecraft potential, and the plasma 
particle distributions consistent with this electric field.  

We focus on what is perhaps the simplest charging case, i.e. 
a spacecraft in sunlight immersed in the magnetospheric cold 
(~eV energy) plasma, where the spacecraft potential is dictated 
by the emission of photoelectrons balancing the collection of 
ambient cold electrons. For simplicity, we will consider the 
ambient cold plasma Maxwellian. In a direct charging 
calculation, the inputs are: density and temperature of the 
ambient cold plasma, the photoemission parameters of the 

specific spacecraft materials, and the geometry of the spacecraft. 
The output is the spacecraft potential and electric field on/near 
the spacecraft. There are two major difficulties in performing 
this direct spacecraft charging calculation accurately. The first 
is that the parameters that characterize the magnetospheric cold 
plasma (density and temperature) are typically unknown due to 
the difficulty of in-situ measurements of the cold populations in 
the Earth’s magnetosphere (see the discussion in the recent 
review of the impact of the cold plasma in magnetospheric 
physics, Delzanno et al. 2021). Second, the material parameters 
have large uncertainties once the spacecraft is in orbit. Materials 
for space applications are well characterized in the lab prior to 
launch.  However, once in orbit, these materials are exposed to 
the harsh space environment and their properties are strongly 
modified. Unfortunately, we do not have any robust 
methodology to assess and quantify material aging in space. 
Given the challenges of direct charging calculations in the 
Earth’s magnetosphere, we propose an inverse charging 
calculation as an alternative. The idea is to use the available 
spacecraft charging data (for instance, the spacecraft potential or 
even direct information from the booms measuring the electric 
field near the spacecraft) together with other available 
environmental parameters as input to estimate those parameters 
that are unknown or have large uncertainties.  

We note that some form of the inverse spacecraft charging 
approach has been exploited by several authors in the past, 
including Grard (1973), Pedersen et al. (1984, 1995, 2008), 
Schmidt et al. (1987), Escoubet et al. (1997), Ishisaka et al. 
(1999), Nakagawa et al. (2000), Scudder et al. (2000), Thiebault 
et al. (2006) and Boardsen et al. (2014). A common technique 
on space missions is to estimate the plasma density from the 
spacecraft potential using an inverse approach. However, in 
such approaches, it is assumed that material properties are 
known (typically from some in-orbit calibration, other space 
missions or lab). Moreover, in most works it is also assumed that 
the plasma temperature is known. To our knowledge, the 
approach presented here is the first inverse spacecraft charging 
technique that estimates both material parameters and some of 
the plasma parameters at the same time.  

II. METHODOLOGY 
To illustrate our inverse approach, we use the NASA Van 

Allen Probes (VAP) spacecraft, a modern spacecraft with state-
of-the-art measurements, as a reference for an inverse 
calculation. The measurements available from VAP include the 
spacecraft potential, total electron density, and fluxes of electron 
populations with energies larger than 15 eV. The spacecraft 
geometry is also known. The spacecraft potential, the density of 
the cold electrons (inferred from the total electron density) and 
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the geometry of the spacecraft are the inputs. The temperature 
of the cold electrons and the photoemission parameters will then 
be the output of the inverse technique. Note that we assume that 
photoemission is dominated by the VAP solar panels coated 
with ITOC (since, nominally, this is much higher than that from 
the black Kapton body (Davis, 2006)) so that photoemission can 
be characterized only by one spacecraft material. Additionally, 
at present we are only considering a single Maxwellian 
component for the photoelectrons, although it is known that 
photoelectrons from past spacecraft missions can be 
characterized by multiple Maxwellians with different energies 
[refs]. Sensitivity of the technique to this assumption will be 
assessed in future work. 

To describe our inverse approach, we use the specific 
charging example discussed above, that is, a conducting, 
positively-charged spacecraft in sunlight immersed in the cold 
magnetospheric plasma. The thermal ion current is negligible 
while the secondary electron emission is not considered here. As 
such, the spacecraft potential  is determined by cold electron 
collection balancing photoemission. The electron current 
collected by a conducting spherical spacecraft can be 
approximated using the Orbital Motion Limited (OML) theory 
(Mott-Smith & Langmuir, 1926) as  
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The photoelectron current, approximated with a single 
Maxwellian distribution (Grard, 1973), is given by 
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Here,  is the elementary charge,  is the Boltzmann 
constant, and , , are the mass, density and temperature 
of the electrons, respectively. For photoelectron emission,  
and  are the temperature and current density of the 
photoelectrons, respectively, while  is the fraction of the 
spacecraft illuminated area relative to the total surface area. 
Because of the spacecraft motion, the plasma parameters are 
expected to change on time scales of the order of seconds. 
Material parameters change on longer time scales (weeks to 
months) than plasma conditions and therefore can be kept 
constant if we use spacecraft data in hours/days periods. The 
spacecraft surface charging is then computed by solving the 
equilibrium equation (i.e. floating condition) 

𝐼*(𝜙'( , 𝑛.* , 𝑇*) + 𝐼%&8𝜙'( , 𝐽%&, 𝑇%&9 = 0  (3) 

Our inverse charging technique will take 𝜙'( , 𝑛.*  and the 
spacecraft geometry as inputs such that, through Eq. (3), we can 
write symbolically  

𝜙'( = 𝜙'(8𝑇* , 𝐽%&, 𝑇%&9   (4) 

The output of the technique is then 𝑇*, 𝐽%&, and 𝑇%&. It is worth 
to notice that both 𝜙'( and 𝑇* are both time-varying variables, 
that is, both are functions of time. 

Our technique utilizes a constrained minimization approach to 
estimate the output parameters such that the appropriate values 
of the parameters of interest is given by: 

𝑇* , 𝐽%&, 𝑇%& = argmin
-&,0$%,-$%

@𝜙'(8𝑇* , 𝐽%&, 𝑇%&9 − 𝜙'(12'@, 

subject to: 𝐼*(𝜙'( , 𝑛.* , 𝑇*) + 𝐼%&8𝜙'( , 𝐽%&, 𝑇%&9 = 0, 

where 𝜙'(  is the surface charging estimation provided by the 
OML, while 𝜙'(12'  is the observed surface charging data 
available for instance from VAP. 

The problem as stated above is under-determined since both 𝑇* 
and 𝜙'(  are time dependent variables, so considering a time 
interval with N discrete time points, we would have a problem 
of trying to estimate N+2 variables (N points in time 
corresponding to 𝑇*  plus the two material parameters that are 
constant, 𝐽%& and 𝑇%&) with N observations. To solve this issue, 
we use an expansion of 𝑇*	using polynomials (or splines) as 

𝑇* = 𝛼. + 𝛼3𝑡 + 𝛼)𝑡) +⋯ = ∑ 𝛼,𝑡,
4'
,5. ,  (5) 

where t is time, and 𝛼, are the coefficients of the polynomial to 
be determined. Reformulating the minimization problem, we 
have now more data points than unknowns, i.e. 𝑁 ≫ 𝑁- + 2, 
where the minimization is now: 

𝛼, , 𝐽%&, 𝑇%& = argmin
6(,0$%,-$%

@𝜙'(8𝛼, , 𝐽%&, 𝑇%&9 − 𝜙'(12'@, 

subject to: 𝐼*(𝜙'( , 𝑛.* , 𝛼,) + 𝐼%&8𝜙'( , 𝐽%&, 𝑇%&9 = 0 
Finally, we solve the quasi-Newton optimization with a non-
linear least-squared fit using the trust-region (Yuan, 2000) 
method with bounds.  

III. RESULTS 
The technique has been tested with synthetic experiments 

using OML for the surface charging calculations. Here, a 
spherical and perfectly conducting spacecraft is considered. The 
synthetic cases are constructed by computing the spacecraft 
surface potential with OML using given values of the 
photoemission material parameters, as well as given temperature 
and density profiles of the cold electrons as a function of time. 

A. Case I: no-noise in the observations 
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Fig. 1. Input to the optimization. Noise-free signal of spacecraft potential (top) 
and density (bottom) as a function of time. In the top panel, ‘Control’ (orange 
line) labels the spacecraft potential used as first guess in the optimization. 

 

Fig. 2. Output of the optimization using noise-free input signals. Material 
paramters presented with their respective relative errors (top), and electron 
temperature (bottom) estimated by the inverse technique. 

First, we considered noise-free input signals for the density and 
spacecraft potential. Figure 1 shows an example of input data 
for the optimization. Figure 2 shows the output of the inverse 
technique, that is, the electron temperature as a function of time 
and material parameters. When the input data is free of noise, 
the technique allows parameter estimation with high accuracy. 
In this example, the maximum relative error in the electron 
temperature is 0.9% while that of the material parameters is less 
than 0.11%. 
 
B. Case II: noise in the observations. 

 

Fig. 3. Noisy signal of the spacecraft potential (black dots) smoothed using 
Gaussian-filter (blue), Butterworth-filter (orange), and Gaussian Process 
Regressor (green). 

 

Fig. 4. Electron temperature solutions obtained from smoothing the noisy  
input data in Fig. 3 using different techniques while varing parameters in the 
smoothing filters. 

In practice, in-situ measurements are noisy. White noise was 
added to the observations to test the robustness of our inverse 
technique. Figure 3 shows an example of the spacecraft 
potential with added noise, 7% of white-noise in this case. Since 
the technique performs exceptionally well with noise-free 
signals as input, the first obvious approach was to smooth the 
noisy observations using different filters with various filter 
parameters. Colored lines in Fig. 3 represent examples of 
smoothing the noisy spacecraft potential data (black dots) using 
the Gaussian-filter, Butterworth-filter and Gaussian Process 
Regressor techniques. Then, the inverse procedure is applied on 
the smooth data and the results are presented in Figure 4, which 
shows the estimation of the electron temperature as function of 
time. Note that nine colored curves are shown in Fig. 4 as a 
result of varying the filter parameters for each of the three 
techniques presented in Fig. 3. It can be seen in Fig. 4 that some 
of the solutions are close to the truth (black dashed line), while 
some have significant errors. Indeed, we were unable to find a 
robust approach to smooth the noise in the observations that 
would lead to consistently highly accuracy estimation of the 
parameters. These results led us to conclude that the technique 
is very sensitive to noise in the input data. 
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C. Case III: statistical approach to overcome noise. 

 
Fig. 5. Ensemble of inputs generated from the noisy input data using the 
Gaussian Process Regressor technique.  

To overcome the negative impact of noise in the observations, 
instead of using a deterministic approach, we resorted to a 
probabilistic approach. The idea is to create an ensemble of 
input functions representing the noisy input data, whose 
probability distribution respects the mean and variance of the 
original data. For this part, we use the Gaussian Process 
Regressor (GPR, Rasmussen, 2006). With M functions of the 
input probability distribution, we solve M optimization 
problems and construct an ensemble of M solutions of the 
inverse technique and the related probability distribution. We 
found that the mean of the probability distribution of the 
solution ensemble allows one to statistically recover the 
parameter solution accurately. Figure 5 shows an example of 
the ensemble of inputs generated with GPR. Using the mean 
and the variance of the input data, GPR calculates the 
probability distribution over all admissible functions that fit the 
data.  

 

Fig. 6. Solution ensemble for the electron temperature (top). The probability 
distributions at selected local times (bottom) follow a normal distribution which 
allows the computation of the electron temperature as a function of time (red 
line) by taking the mean of each of these distributions (black dots). 

Figure 6 shows the solution ensemble of the electron 
temperature as a function of time (grey lines). The red line (with 
black dots) is the solution computed as the mean of the solution 
ensemble at each local time. Examples of the probability 
distribution at two different local times are shown in the bottom 
row of Fig. 6, where one can appreciate that for these particular 
time values the probability distribution of the solution ensemble 
is well approximated by a normal distribution. We have 
determined that when the distributions follow a normal-type, 
the mean of the distribution is a good estimate of the parameter 
solution. This can be seen clearly in Fig. 6, where the reference 
solution for the Te (black line) are extremely close to each other. 
Indeed, the overall Root-Mean-Squared-Error (RMSE) is only 
5%. 
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D. Results of 21 Synthetic Experiments 

 
Fig. 7. Computed errors of the parameters estimated by the inverse technique 
applied to twenty-one synthetic cases. Relative error is shown for the material 
parameters in the first and second row, while for the electron temperature as a 
function of time the Root-Mean-Squared-Error is reported in the bottom row. 

Using the approach described in section IIIC, we applied the 
inverse charging approach to twenty-one synthetic cases where 
the density and temperature (as a function of time) were varied 
in a specific range of parameters. Figure 7 shows the relative 
errors in the parameter estimation for all cases (the example 
treated in section IIIC is labelled as Case 1 in Fig. 7). The 
estimation of the material parameters was extremely accurate, 
with no more than 4% error across all cases. As for the electron 
temperature, the RMSE remains below 15% across all cases. 
Overall, the methodology presented here allows us to robustly 
overcome the noise in input data to recover the parameters 
consistently and with high accuracy.  

IV. CONCLUSIONS 
We developed an inverse spacecraft surface charging 

technique to estimate material and some cold-plasma properties 
simultaneously. In this work we have explored it for a special 
charging situation in which a conducting spacecraft is positively 
charged in sunlight due to the balance between photoemission 
and the collection of cold electrons. The inverse technique is 
based on a statistical approach to overcome issues associated 
with noise in the input data. 

Despite the proof-of-principle nature of this study, once 
matured this technique could have important scientific and 
practical applications. It enables a method to obtain some of the 
properties of the environment (i.e. the cold plasma populations) 
that are typically very hard to obtain. This is of particular interest 
to the magnetospheric cold-plasma community and it supports 
work towards new cold-plasma space missions that are currently 
being pursued. Another key aspect is that it delivers a new way 
to study material aging in space. This technique can aid on 
spacecraft anomaly resolution, since it gives the spacecraft a 
‘material identification card’ which is a necessary ingredient in 
the forensic work to attribute anomalies to the space 
environment.  
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