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ABSTRACT

This manual gives usage information for the Charon semiconductor device simulator. Charon was
developed to meet the modeling needs of Sandia National Laboratories and to improve on the
capabilities of the commercial TCAD simulators; in particular, the additional capabilities are
running very large simulations on parallel computers and modeling displacement damage and
other radiation effects in significant detail.

The parallel capabilities are based around the MPI interface which allows the code to be ported to
a large number of parallel systems, including linux clusters and proprietary “big iron” systems
found at the national laboratories and in large industrial settings.
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1. INTRODUCTION

The Charon semiconductor device simulator is based on a multi-physics code for simulating
general transport-reaction phenomena. The focus of this manual is on Charon’s capabilities for
modeling semiconductor devices. The semiconductor modeling capability in Charon was
developed to work in a manner similar to other TCAD codes such as Atlas™ and Sentarus
Device™. Additionally Charon supports massively parallel execution.

Charon allows to solve different sets of partial differential equations (PDEs), incuding the
Poisson/Laplace equation, the drift-diffusion continuity equations for electrons/holes/ions, and
the lattice temperature equation. Some of the PDEs can be solved individually or coupled
together. In this chapter, we highlight the equations and relevant physics available in Charon.

1.1. Nonlinear Poisson Equation

The first important equation for semiconductor device modeling is the nonlinear Poisson (NLP)
equation. Solving the NLP equation allows us to understand the electrostatic potential and field
profiles in a semiconductor device under thermal equilibrium, i.e., zero current flow.

The famous electrostatic Poisson equation is given by

−∇ · (ε0εr∇ψ) = q
(

p−n+N+
D −N−A

)
. (1)

where

• ψ is the electrostatic potential.

• n is the electron concentration/density.

• p is the hole concentration/density.

• N+
D is the ionized donor density.

• N−A is the ionized acceptor density.

• ε0 is the vacuum permittivity and ε0 = 8.8542×10−14 C/(V.cm).

• εr is the relative permittivity or dielectric constant of a material.

Electron and hole densities can be computed from the electron and hole quasi-Fermi energy levels
and the conduction and valence band edges. If Boltzmann statistics is assumed, the carrier
densities are given as

n = NCexp
(

EFn−EC

kBT

)
,

p = NV exp
(

EV −EF p

kBT

)
, (2)

where
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• NC is the effective density of states in the conduction band.

• NV is the effective density of states in the valence band.

• EC is the conduction band edge.

• EV is the valence band edge.

• EFn is the electron quasi-Fermi energy level.

• EF p is the hole quasi-Fermi energy level.

• kB is the Boltzmann constant and kB = 8.6173×10−5 eV/K.

• T is the lattice temperature in Kelvin.

When Fermi-Dirac statistics is used, the carrier densities expressions become

n = NCF1/2

(
EFn−EC

kBT

)
,

p = NV F1/2

(
EV −EF p

kBT

)
, (3)

where F1/2 is the Fermi-Dirac integral of 1/2 order [1]. Under thermal equilibrium, we have
EFn = EF p = constant and we choose to set EFn = EF p = 0, which serves as the zero energy
level. When solving the Poisson equation (1), since any potential with a constant offset satisfies
the equation, we need to know what potential is solved for. Following the discussions given in
Ref. [1], we have

EC =−q(ψ−ψre f )+χe f f ,

EV = EC−Eg,e f f =−q(ψ−ψre f )+χe f f −Eg,e f f , (4)

where

• q is the elemental charge.

• χe f f is the effective electron affinity.

• Eg,e f f is the effective band gap.

• ψre f is a constant reference potential. It is chosen to be the difference between the vacumm
potential and the intrinsic Fermi potential of a reference material specified in a Charon
simulation.

Therefore, under thermal equilibrium, we solve the following nonlinear Poisson equation for
Boltzmann statistics

−∇ · (ε0εr∇ψ) = q

[
NV exp

(
EV

kBT

)
−NCexp

(
−EC

kBT

)
+N+

D −N−A

]
. (5)
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For Fermi-Dirac statistics, we solve this equation

−∇ · (ε0εr∇ψ) = q

[
NV F1/2

(
EV

kBT

)
−NCF1/2

(
−EC

kBT

)
+N+

D −N−A

]
. (6)

For a dielectric material, the Laplace equation with a fixed charge profile is solved

−∇ · (ε0εr∇ψ) = ρ f ix, (7)

where ρ f ix is a fixed charge profile specified by a user.

1.2. Isothermal Drift Diffusion Model

Charon supports several carrier transport models. The fundamental components of these models
are the coupled Poisson and electron and hole continuity equations for semiconductor devices as
given below:

−∇ · (ε0εr∇ψ) = q
(

p−n+N+
D −N−A

)
,

q
∂n
∂t

= ∇ ·Jn−qR,

q
∂p
∂t

=−∇ ·Jp−qR, (8)

where

• R is the net recombination rate.

• Jn is the electron current density.

• Jp is the hole current density.

• t is the time in seconds.

The transport models differ in the expressions to compute the current densities. For isothermal
drift-diffusion model, we follow the current density formulation given in Ref. [2],

Jn = qnµnFn,e f f +qDn∇n,
Jp = qpµpFp,e f f −qDp∇p, (9)

where

• Fn,e f f is the electron effective field.

• Fp,e f f is the hole effective field.

• µn is the electron mobility.

• µp is the hole mobility.

• Dn is the electron diffusion coefficient.
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• Dp is the hole diffusion coefficient.

In Charon, the effective electric fields are computed using [2]

Fn,e f f = ∇

(
Ei−

∆Eg

2
− kBT

2
ln(γnγp)

)
,

Fp,e f f = ∇

(
Ei +

∆Eg

2
+

kBT
2

ln(γnγp)

)
, (10)

where

• Ei is the intrinsic Fermi energy level.

• ∆Eg is the band gap narrowing due to high doping.

• γn is the electron degeneracy factor.

• γp is the hole degeneracy factor.

The ∆Eg term contributes only when a band gap narrowing model is specified. Ei is defined as

Ei = qψre f −χe f f −qψ−
Eg,e f f

2
− kBT

2
ln

(
NCγn

NV γp

)
. (11)

The generacy factors γn and γp are given by

γn =
F1/2(ηn)

exp(ηn)
where ηn =

EFn−EC

kBT
,

γp =
F1/2(ηp)

exp(ηp)
where ηp =

EV −EF p

kBT
. (12)

The degeneracy factors account for the Fermi-Diract statistics which is needed for high doping.
All the terms involving the degeneracy factors have non-zero contributions only when the
Fermi-Dirac statistics is enabled and a high doping is used.

1.3. Non-isothermal Drift Diffusion Model

Another transport model supported in Charon is the non-isothermal drift diffusion model that
allows to simulate current induced self-heating responses in certain semiconductor devices. This
non-isothermal model solves the Poisson equation, the electron and hole continuity equations,
together with the lattice heat equation given below.

−∇ · (ε0εr∇ψ) = q
(

p−n+N+
D −N−A

)
,

q
∂n
∂t

= ∇ ·Jn−qR,

q
∂p
∂t

=−∇ ·Jp−qR,

∂(cLT )
∂t

−∇ · (κL∇T ) = H. (13)
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where

• cL is the lattice heat capacity.

• κL is the lattice thermal conductivity.

• H is the heat generation rate.

Within this non-isothermal transport model, the current densities are defined as

Jn = qnµnFn,e f f +qDn∇n+nµnkB∇T,
Jp = qpµpFp,e f f −qDp∇p− pµpkB∇T. (14)

The ∇T term in the current density expression accounts for the temperature gradient contribution
to the current. For the heat generation rate H, there exist many different models [3] [4] [5] [6].
Charon currently supports the following simple model

H = Jn ·Fn,e f f +Jp ·Fp,e f f +R(Eg,e f f +3kBT ). (15)

Here the first two terms account for the Joule heating effect and the third term includes
contribution from possible electron-hole recombination processes. R denotes the net
recombination rate.

The lattice heat equation in Eq. (13) can be solved independently to quickly obtain temperature
spatial distribution for any given heat source. In this case, the heat generation rate H is provided
by a user.

1.4. Isothermal Memristor Model

Charon provides two types of transport models to simulate oxide memristor devices. This section
highlights the isothermal memristor model. This model solves the Poisson equation, the electron
and hole continuity equations, and the ion or vacancy continuity equation at a given lattice
temperature. It is based on the work by Strukov et al. [7]. These equations are given below

−∇ · (ε0εr∇ψ) = q
(

p−n+N+
D −N−A + zi/vNi/v

)
,

q
∂n
∂t

= ∇ ·Jn−qR,

q
∂p
∂t

=−∇ ·Jp−qR,

qzi/v
∂Ni/v

∂t
=−∇ ·Ji/v. (16)

where

• Ni/v is the ion or vacancy density.

• Ji/v is the ion or vacancy current density.
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• zi/v is an integer number, which can be either positive or negative. zi/vq denotes the charge
of ions or vacancies.

Since vacancies are mainly concerned in oxide memristor devices, we will focus discussions on
vacancies in the remainder of this section and also next secton, Sec. 1.5. However, the discussions
are equally applicable to ions with the subscript v replaced by i. Within this model, the current
densities are given by

Jn = qnµnFn +qDn∇n,
Jp = qpµpFp−qDp∇p,

Jv = |zv|qNvµvFv− zvqDv∇Nv. (17)

where

• µv is the vacancy mobility.

• Dv is the vacancy diffusion coefficient. Dv and µv follow the Einstein relation, Dv
µv

= kBT
q .

The electric fields in this model are simply defined as

Fn =−∇ψ− 1
2

∇(∆Eg),

Fp =−∇ψ+
1
2

∇(∆Eg),

Fv =−∇ψ (18)

1.5. Non-isothermal Memristor Model

The non-isothermal memristor model in Charon solves the Poisson equation, the electron and
hole continuity equations, the ion or vacancy continuity equation, together with the lattice heat
equations. Some details of the model and its application are described by Gao et al. [8] [9]. The
equations that are solved for this model are given by

−∇ · (ε0εr∇ψ) = q
(

p−n+N+
D −N−A + zvNv

)
,

q
∂n
∂t

= ∇ ·Jn−qR,

q
∂p
∂t

=−∇ ·Jp−qR,

qzv
∂Nv

∂t
=−∇ ·Jv,

∂(cLT )
∂t

−∇ · (κL∇T ) = H. (19)

where

• Nv is the vacancy density.
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• Jv is the vacancy current density.

• zv is an integer number, which can be either positive or negative.

Note the Poisson equation given here is somewhat different from the one in Ref. ([8]). This is
because the Poisson equation for the non-isothermal memristor model in Charon was later
reformulated to be consistent with the isothermal drift-diffusion model in Sec. 1.2. The current
densities are defined as [8]

Jn = qnµnFn +qDn∇n+nµnkB∇T,
Jp = qpµpFp−qDp∇p− pµpkB∇T,

Jv = |zv|qNvνv− zvqDv∇Nv− zvqDvSvNv∇T. (20)

Here

• νv is the vacancy velocity.

• Sv is the vacancy Soret coefficient. More information on νv and Sv will be discussed in
Sec. 7.

The heat generation in Eq. (19) can be modeled at different levels of sophistication. Since it is
generally accepted that Joule heating is the most dominant heat generation source in memristive
devices, Charon models the heat generation as

H = Jn ·Fn +Jp ·Fp +Jv ·Fv +R(Eg,e f f +3kBT ). (21)

This expression includes Joule heating due to all charge carriers and contribution from possible
electron-hole recombination processes.

1.6. Discretization Methods

To numerically solve the PDEs described in the above sections, we need to discretize the
equations. Charon supports several discretization methods. The basic discretization scheme is the
finite element method (FEM) with the Streamline Upwinding Petrov-Galerkin (SUPG)
stabilization [10] denoted as FEM-SUPG. With FEM-SUPG, the current densities are not
modified and the stabilization terms are added to the Galerkin residuals. The most popular
discretization method for solving the semiconductor PDEs is the Scharfetter-Gummel (SG)
approach. Charon implements the generalized SG discretization by Bochev et al. [11] denoted as
CVFEM-SG. With CVFEM-SG, the current densities are modified according to the SG approach,
and there is no stabilization term in the equation residuals. The third discretization method
implemented in Charon is the Exponentially Fitted Flux Petrov-Galerkin (EFFPG) approach [12]
within the FEM framework denoted as FEM-EFFPG. The FEM-EFFPG discretization is a method
between FEM-SUPG and CVFEM-SG, which implements the SG current density expressions in
the FEM framework. This eliminates the need of finding optimal stabilization parameters that are
often needed for FEM-SUPG to work well. It also allows the code implementation to be fully
consistent with the FEM framework. The three discretization methods are not implemented for all
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Table 1-1 Available discretization methods for transport models.

Transport Model Available Methods Preferred Method
Laplace equation,
Sec. 1.1 FEM-SUPG, CVFEM-SG

FEM-SUPG or
CVFEM-SG

Nonlinear Poisson equation,
Sec. 1.1 FEM-SUPG, CVFEM-SG

FEM-SUPG or
CVFEM-SG

Isothermal drift diffusion
model, Sec. 1.2

FEM-SUPG, CVFEM-SG,
FEM-EFFPG CVFEM-SG

Non-isothermal drift diffusion
model, Sec. 1.3 FEM-SUPG, FEM-EFFPG FEM-EFFPG

Lattice heat model,
Sec. 1.3 FEM-SUPG FEM-SUPG

Isothermal memristor model,
Sec. 1.4 FEM-SUPG FEM-SUPG

Non-isothermal memristor
model, Sec. 1.5 FEM-SUPG, FEM-EFFPG FEM-EFFPG

the transport models. The transport models and corresponding implemented discretization
methods are listed in Table 1-1, where the preferred method is also listed.

The transport model and corresponding discretization method in a Charon simulation can be
specified via the standard discretization type line and the discretization method line
in a physics block as shown below.

start phyiscs block {physicsBlockName}
standard discretization type is {discType}
discretization method is {discMethod}
{other physics descriptions}

end physics block {physicsBlockName}

Available values for discType and disMethod are listed in Table 1-2 together with the
corresponding transport models and discretization methods.

22



Table 1-2 Available discType and discMethod values and corresponding transport
models and discretization methods

discType Value
discMethod
Value

Transport Model
Discretization
Method

laplace gfem N/A Laplace equation, Sec. 1.1 FEM-SUPG
laplace cvfem N/A Laplace equation, Sec. 1.1 CVFEM-SG

nlp or nlp gfem N/A
Nonlinear Poisson equation,
Sec. 1.1 FEM-SUPG

nlp cvfem N/A
Nonlinear Poisson equation,
Sec. 1.1 CVFEM-SG

drift diffusion gfem N/A
Isothermal drift diffusion
model, Sec. 1.2 FEM-SUPG

drift diffusion effpg N/A
Isothermal drift diffusion
model, Sec. 1.2 FEM-EFFPG

drift diffusion cvfem N/A
Isothermal drift diffusion
model, Sec. 1.2 CVFEM-SG

lattice gfem N/A
Lattice heat model,
Sec. 1.3 FEM-SUPG

ddion N/A
Isothermal memristor model,
Sec. 1.4 FEM-SUPG

ddlattice FEM-SUPG
Non-isothermal drift diffusion
model, Sec. 1.3 FEM-SUPG

ddlattice FEM-EFFPG
Non-isothermal drift diffusion
model, Sec. 1.3 FEM-EFFPG

ddionlattice FEM-SUPG
Non-isothermal memristor
model, Sec. 1.5 FEM-SUPG

ddionlattice FEM-EFFPG
Non-isothermal memristor
model, Sec. 1.5 FEM-EFFPG
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2. INSTALLATION

Charon is currently in use on many unix and unix-like systems at Sandia National Laboratories,
including multiple Linux distributions and custom operating systems on large parallel systems.
Instructions for installing it on representative systems follow. Note that each system is often
unique and this section is not meant to be exhaustive, only to give you the background knowledge
necessary to successfully install the code. Contact the authors if you are having trouble installing
on a specific system.

2.1. Prerequisites

Charon requires a modern compiler suite, including a C++ compiler that is compliant with the
C++-14 standard. The GNU 7.x and Intel 19 compiler suites are two examples that have been
successfully utilized to build Charon. Requirements of third party libraries are given in Table 2-1.
Additionally, several utilities are required by either Charon itself or the Trilinos framework.
Those are given in Table 2-2. Note that earlier or later versions of the packages and utilities listed
in Tables 2-1 and 2-2 may work but there those versions were not tested with Charon. Also note
that if at all possible the libraries and utilities in Table 2-1 and Table 2-2 should be installed via
your OS. For example, on Ubuntu Linux apt install netcdf would install netcdf on your
system alleviating the need to install it yourself from source.

Table 2-1 Packages and libraries required by Charon. Installation should be per-
formed in the order as shown in the table.

Package Name URL for Package Minimum Version
OpenMPI https://www.open-mpi.org 4.0.x
HDF5 https://www.hdfgroup.org/HDF5 1.10
boost https://www.boost.org 1.71
netCDF https://www.unidata.ucar.edu/software/netcdf/ 4.7.x
TriBITS https://tribits.org/ 769f615fafb
Trilinos https://trilinos.org 81e9581a3c5

To clone TriBITS, for example, do:

git clone https://github.com/TriBITSPub/TriBITS.git
git checkout 769f615fafb

Note that after TriBITS is cloned you must set the environemnt variable TRIBITS_BASE_DIR to
point to the location into which it was cloned prior to invoking the Charon build script,
build_charon.py.

Also note that Charon is tightly dependent on the Trilinos framework. At the present time the
build of Charon is tightly integrated with the build of Trilinos and the two cannot be separated. It
is therefore required that you obtain a copy of the develop branch of the Trilinos distribution.
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Table 2-2 Utilities required to install and run Charon.

Utility Name URL for Utility Minimum Version
cmake http://www.cmake.org 3.23.1
python http://www.python.org 3.x
git http://www.git-scm.com 2.36.1
cubit http://cubit.sandia.gov 15.5

Once the prerequisites are available, the next step is to unpack the tarball that you obtained from
the Charon team. On a Linux system a typical command to do this would be

tar xzvf charon-distrib.tar.gz

Next change to the tcad-charon directory and clone a copy of the Trilinos repository.
Instructions for cloning a development version of Trilinos can be found at the URL referenced in
Table 2-1. On a typical Linux system the commands to accomplish this are given by

cd tcad-charon
git clone https://github.com/Trilinos/Trilinos.git Trilinos
cd Trilinos
git checkout 81e9581a3c5

Note that the git checkout step above requires that you use the version that corresponds to the
distribution of charon you obtained as specified in Table 2-1.

Once the distribution is unpacked and a clone of Trilinos has been performed the resulting
directory structure should resemble the one shown in Figure 2-1.

tcad-charon
cmake
docs
scripts

build
src
test

nightlyTests
nightlyTestsOUO

Trilinos

Figure 2-1 Partial directory tree resulting from unpacking of Charon tarball and sub-
sequent cloning within that tree of the Trilinos repository.
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2.2. Building Charon

2.2.1. Using the Python Build Script

The scripts/build subdirectory within tcad-charon contains utilities and data necessary to
build Charon on various platforms. The python script scripts/build/all/build_charon.py
is the preferred method for starting a Charon build. The purpose of the script is to generate an
appropriate cmake command line and execute it. The script has a built-in help facility which
should serve as a starting point for perfomring the installation. To see the built-in documentation
invoke the script like

build_charon.py --help

The --manual-page argument will output detailed help for the script similar to what you would
see in a Unix man page. The build script should be invoked within a dedicated build directory for
the code, preferably a previously empty directory.

At a minimum you will need to create a *.opts file in

tcad-charon/scripts/build/<username>,

where <username> is replaced with your unix login ID. That file should be the name of your
system, as returned by the hostname command, and contain the location of Boost and NetCDF on
your system. A good example of the contents of that file can be found in

tcad-charon/scripts/build/all/attaway.opts.

Once the build_charon.py script has been successfully executed a simple invocation of make
should compile the code, including the necessary Trilinos packages, and build a Charon
executable. The resulting executable can be tested via the cmake utility ctest. Invoking the ctest
command within the build directory will run a set of tests used internally as nightly regression
tests and should give you some assurance that the resulting executable is working correctly.

Should the MPICH2 or IntelMPI MPI implementation be required then include the following
CXX flag in the build script.

-DMPICH_IGNORE_CXX_SEEK

The Intel Math Kernel Library is a highly optimized math library, if Intel compilers are being
used and the Intel Math Kernel Library is available then it can be linked in the build script using
the following:

TPL_ENABLE_MKL=ON
MKL_LIBRARY_DIRS:FILEPATH="${MKLROOT}/lib/intel64"
MKL_LIBRARY_NAMES:STRING="mkl_rt"
TPL_ENABLE_BLAS=ON
BLAS_LIBRARY_DIRS:FILEPATH="${MKLROOT}/lib/intel64"
BLAS_LIBRARY_NAMES:STRING="mkl_rt"
TPL_ENABLE_LAPACK=ON
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LAPACK_LIBRARY_DIRS:FILEPATH="${MKLROOT}/lib/intel64"
LAPACK_LIBRARY_NAMES:STRING="mkl_rt"

If Sandia’s optimization software, Dakota, is to be used in conjunction with Charon, support
scripts may be built with Charon to ease the use of Dakota. See Chapter 17. To incorporate those
scripts, add the following line to the opts file.

tcad-charon_ENABLE_DAKOTA_DRIVERS:BOOL=ON
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3. RUNNING CHARON

Once the code is compiled, and the resulting executable has been tested, the next step is running a
simulation. There are numerous examples, including regression tests, that are included with the
distribution. The recommended approach for a new user would be to start with one of the example
problems and modify it to suit their particular problem.

3.1. General Information

One thing to note about Charon is that it follows the example of many other finite-element like
codes in that the mesh generation phase and the analysis phase are separate entities. Specifically
Charon relies on a mesh file generated elsewhere. At Sandia this generally means that a program
called Cubit (https://cubit.sandia.gov) is used to generate the mesh and output a file in
Exodus format for input into Charon. Otherwise, any mesh generator that can produce an exodus
formatted mesh should be usable by Charon.

3.2. Conventions

Electric current is referenced as positive if it’s leaving a device contact and negative if it’s
entering.

3.3. The Charon Interpreter

All simulations in Charon require an input file to configure the run. The input file that Charon
natively reads is a parameter list that contains information that completely configures the
simulation including names of initial and output state files, physics, material models, solver
configuration, etc. These parameter lists are highly structured, but are lengthy, complex and
therefore fragile even for the simplest of simulations and require an experienced, knowledgeable
user to create and maintain. The format of the input files is either XML or YAML which incurs
additional challenges in visual acuity.

The Charon interpreter is a tool that the user can employ to make configuration of a charon
simulation much simpler. The user-supplied input files to the interpreter are composed of simpler,
more straight-forward language that is easier for the user to comprehend. Ultimately, the
interpreter will map the interpreter input file into a parameter list that Charon understands.

3.3.1. Invoking the Interpreter

The charon interpreter is invoked with arguments from the command line. To see the list of
available arguments, invoke the interpreter with the –help argument,

charonInterpreter.py --help
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When the interpreter is invoked with the -i or –input option plus a file name, the interpreter will
create the parameter list in an XML format and terminate execution. For example, if the user has
created an interpreter input called diode.inp and invokes

charonInterpreter.py -i diode.inp

the interpreter will generate the equivalent parameter list in an XML format and store it in a file
called diode.inp.xml. Advanced users can do this if they wish to see, for example, the fine details
of how the solvers are configured for their simulation. Otherwise, if the user simply wishes to run
the simulation, the interpreter may be invoked as

charonInterpreter.py -i diode.inp --run

and this will generate the parameter list and execute Charon with it. Often times, TCAD
simulations can be high in computational effort and it may be desirable to run Charon in parallel.
Domain decomposition must be completed prior to executing Charon with the scripts that are
included with the Trilinos libraries. In that instance, the interpreter may be used to execute
Charon on, say, 4 processors via

charonInterpreter.py -i diode.inp --np 4 --run

The syntax of the input file is available in this user manual. However, for a quick reference,
syntax can be obtained through the interpreter itself and will always be current with the installed
version of the interpreter. The –syntax (-s) and –longsyntax (-S) arguments will return all
available input lines the interpreter knows about. The latter will return a slightly more verbose
description of each individual line. There is presently no way to use the interpreter to search for a
specific syntax. There are easy ways to search the output, however. The output of the syntax help
is plain text. The output may be redirected to a text file and opened in any editor. Another
convenient way is to pipe the output through less in any Linux system as follows

charonInterpreter.py -S | less -i

This will allow scrolling through the syntax help. The keys /<searchTerm> will allow case
insensitive searching through the entire syntax help.

When Charon is executed in parallel, the state file must be decomposed into a number of parts
equal to the desired number of processors used to execute the run. The tools decomp (domain
decomposition) and epu (reunification of decomposed state files) may be used manually to
process state files into the desired composition. The decomposition may also be done through the
interpreter so that the decomposition is done before Charon executes. For example, if the
interpreter is executed as

charonInterpreter.py diode.inp --np 4 --run --decomp
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the state file specified by the input file to be imported will be decomposed into 4 parts prior to the
execution of Charon. If a decomposition of that size already exists, the interpreter will produce an
error and stop with a warning. This is to safeguard against accidentally overwriting states already
computed at that decomposition.

If it is desired to change the size of the decomposition of a previously computed run, this may be
done through the interpreter by

charonInterpreter.py diode.inp --np 8 --run --resize_from_nprocs 4

This will take the 4 processor decomposition and redistribute it to 8 parts prior to executing the
next run on 8 processors. This will likewise cause the interpreter to shut down with an error if a
decomposition of size 8 already exists.

3.3.2. Configuring the Interpreter

When Charon is installed in common locations for executable commands such as /usr/bin or any
other location pointed to by the PATH variable, the interpreter will be able to find and use Charon
without intervention. It is very common, however, that Charon is installed in a non-standard
location. Less frequently, it is installed with something other than its default name
(charon_mp.exe). Location and executable name may both be configured in the interpreter with
environment variables. The environment variable, CHARON_EXECUTABLE_PATH set to the
directory where the executable is installed will tell the interpreter where to find it. The variable
CHARON_EXECUTABLE can be set if the name of the executable is different than
charon_mp.exe.

3.3.3. Essential Parts of the Interpreter Input

Examples of interpreter input files will be given in later sections of this manual. There are several
hundred possible lines of input that can go into an input file. In practice, only a very small
fraction of those will ever be included. And there is a small amount of information that is required
of any Charon simulation no matter how small. The following shows essential, generic boilerplate
of an interpreter input file.

import state file <stateFile.exo>

start output parameters
output state file <stateFileOutput.exo>

end output parameters

start Physics Block Semiconductor
geometry block is <regionName>
standard discretization type is <equations to solve>
material model is <materialModelName>

end Physics Block Semiconductor
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start Material Block <materialBlockName>
material name is <material>
<Mobility Model>
<Doping Parameters>

end Material Block siliconParameter

BC is ohmic for <contact name> on <region> fixed at <voltage>

initial conditions for <Field> in <region> is <IC>

start solver block
<Solver configuration>
<termination criteria>

end solver block

Each of these items will be covered in considerably more detail later in this manual. But the
essential items are an input exodus file, an output exodus file, a block which describes the physics
to be simulated in the regions of the model (there may be more than one), the material properties
and models for each region, boundary conditions, initial conditions and a solver configuration.

Some general notes on the input file format:

• Comments are delineated with the “#” symbol.

• The keywords that make up the input file are not case senstive, but most values are case
sensitve. A good example of this would be the name of the input file. It is case senstive.

• Other than enhancing readability, indentation is not significant.

• Blocks are always delineated via start and end statements.

• Text immediately following an end statement, on the same line, is not significant but can
enhance readability.

3.3.4. Use of /include in the Interpreter Input File

In nearly every application of Charon, multiple input files, with subtle but important differences
between each, are required to arrive at the desired analysis. For example, a nonlinear Poisson
solver must be completed before a drift-diffusion solve can be attempted. Or, if a MOSFET
model is employed, one typically must sweep drain voltage up to a certain value before a
meaningful gate sweep solver can be completed...or vice versa. A great deal of information can
be identical between each solve, e.g. the doping and the mobility models. This can be particularly
fragile during the calibration stage of assembling a predictive model because identical
components must be changed identically in each of the input files.

Modifying all input files at once is most easily accomplished through the use of include files. One
file may be created that contains mobility models or doping specifications that every input file can
use. This is accomplished with the /include directive in the input file. For example, if one creates
the file doping.inp
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<Doping Parameters>

and the file mobility.inp

<Mobility Model>

then the input file as demonstrated in the previous section can be change to read

import state file <stateFile.exo>

start output parameters
output state file <stateFileOutput.exo>

end output parameters

start Physics Block Semiconductor
geometry block is <regionName>
standard discretization type is <equations to solve>
material model is <materialModelName>

end Physics Block Semiconductor

start Material Block <materialBlockName>
material name is <material>

/inlcude mobility.inp

/include doping.inp

end Material Block siliconParameter

BC is ohmic for <contact name> on <region> fixed at <voltage>

initial conditions for <Field> in <region> is <IC>

start solver block
<Solver configuration>
<termination criteria>

end solver block

and every input file in that same problem directory with the appropriate /inlcude directives will
use the same specifications.

The use of /include is unlimited. Any line or block of text that is contiguous can be placed in a
text file to be included in another file. In other words, it can likewise be used for an entire solver
block, or some subsection thereof.

What is not allowed is nesting includes. So, for example, one cannot include a file in another
include file. They are allowed only one deep to avoid making things overly confusing.
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3.4. Example Problem: Nonlinear Poisson Simulation for a Pseudo One Dimensional
Silicon PN Diode

A simple example of simulating a nonlinear-Poisson problem is given for a pseudo-1D PN diode
with a step junction. This includes the mesh generation for the problem within cubit. An
illustration of the geometry for this problem is given in Figure 3-1.

Charon can operate on either two- or three-dimensional geometries. It cannot be used for a true
one-dimensional geometry. In this example the problem is one-dimensional because there is no
variation in the geometry or the physics in the vertical direction. In a real problem with this
one-dimensional nature you could minimize the problem size by keeping the vertical dimension
one “element” thick. In this case however the vertical dimension has been extended to better
illustrate the problem.
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Figure 3-1 Geometry for a simple pseudo one-dimensional PN diode with a step junc-
tion. The metallurgical junction is at 0.5µm.

3.4.1. Mesh Generation Using Cubit

You can utilize Cubit using two methods: the first is via the graphical-user interface (GUI) and
the second is via journal commands. The second method will be utilized here. Read the Cubit
documentation for further information. Note that the journal commands can be entered from
within the GUI.

The contents of a Cubit journal file used to generate a mesh are given in Figure 3-2 and the
resulting mesh is shown in Figure 3-3. If you save the contents of Figure 3-2 as a file you can
generate the mesh using cubit via the command line with:

cubit -batch -nojou <filename>

where <filename> is the name of the file in which the journal commands are saved.

The file is heavily commented and should be self explanatory.Further information can be found
on the Cubit website (see table 2-2 for the URL) which has documentation available directly on
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1 graphics mode wireframe
2

3 # Create a three-dimensional volume. The two-dimensional diode will be
4 # created on a surface of this three-dimensional volume. By default
5 # Charon assumes the dimensions are in microns
6 create brick x 1.0 y 0.5 z 0.1
7

8 # This makes the coordinates of the resulting mesh all positive. This
9 # isn’t required but can be useful for post-processing

10 move vertex 4 location 0 0 0
11

12 # These will be the contacts, anode and cathode. The names are used in
13 # the input file to distinquish them
14 sideset 1 curve 3
15 sideset 1 name "anode"
16

17 sideset 2 curve 1
18 sideset 2 name "cathode"
19

20 # "blocks" are typically regions of different materials or distinct
21 # regions of the device. For this simple problem we only have one
22 # region
23 block 1 surface 1
24 block 1 name "si"
25

26 # Quads are currently the preferred element type for Charon
27 # simulations.
28 block 1 element type quad4
29

30

31 # The interval specifications set how dense or coarse the
32 # discretization is
33

34 ## Long side
35 curve 2 4 interval 100
36

37 ## Short side (contacts)
38 curve 3 1 interval 10
39

40 # Generate, or "mesh", the problem geometry
41 mesh surface 1
42

43 # Create the output "exodus" file, or overwrite it if it already
44 # exists.
45 export mesh "pndiode.exo" dimension 2 overwrite

Figure 3-2 Cubit journal commands for the PN diode geometry illustrated in Figure 3-1.

the web page. The last statement in Figure 3-2, at line 45, instructs Cubit to output an Exodus
mesh file named pndiode.exo. That file will be used as the input mesh file for the subsequent
Charon simulation.

3.4.2. Charon Input Deck for a NLP Simulation

In most Charon drift-diffusion device simulations it is necessary to first solve a simpler problem,
the results of which are then used as an initial guess for the more complex simulation. The
nonlinear Poisson, or NLP, simulation is used for that purpose and is mathematically described in
section 1.1.
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Figure 3-3 Mesh for PN diode generated with Cubit.

The Charon input file for the NLP simulation is shown in Listing 1 within Appendix D.1. Lines
from that file will be discussed here in detail. More specifics about the syntax available via the
input file can be found in Section 16.

The first block in the file is used to specify the input mesh.
1 # Name of the input exodus file, geometry only
2 import state file pndiode.exo

Line 1 contains a comment. Comments can increase the readability of the input files and should
be generously utilized. Line 2 specifies that the file to be imported by Charon is named
pndiode.exo. This file must exist and contain, at a minimum, the input mesh.

The next section specifies where and what output to perform.
5 start output parameters
6 output state file pndiode.nlp.exo
7 end output parameters

Line 5 illustrates the use of an input-file block. Such blocks encapsulate units of related
specifications, in this case a block of text to specify output parameters, or how Charon will
perform file output. A block begins with the start keyword, followed by the name of the
input-file block, in this case output parameters, and ends with the end keyword. The
output parameters text immediately following the end keyword is not required but can add to the
readability of input-file blocks, particularly longer blocks containing a large number of lines.

Line 6 contains the name of the Exodus file to which output will be performed, pndiode.nlp.exo.
If that file does not exist then it will be created. If the file exists then results from the simulation
will be added to the existing file.

The next block is used to describe what physics is going to be solved during the simulation and
how to associate material parameters with that physics.

9 start physics block semiconductor
10
11 # geometry block name IS case sensitive, note however that Cubit

35



12 # often downcases names prior to output so it is recommended
13 # that in Cubit you use all lower case for naming entities to
14 # avoid confusion.
15 geometry block is si
16
17 # The type of physics to be solved, in this case a nonlinear
18 # Poisson, or nlp, simulation will be performed
19 standard discretization type is nlp
20
21 # The name of the material model IS case sensitive. The name is

Line 9 is the start of the block, indicated with start physics block, followed by the name of the
block, in this case semiconductor. Line 15 specifies the geometry block associated with this
physics block. This name must correspond to an element block in the input Exodus file. Line 17
is the type of physics to simulate, in this case a nlp, or nonlinear Poisson, problem. Line 20 is the
name of the material model for this physics. The name will be used to lookup the specifications
for that material. Line 21 ends this input-file block. Note again that the only required keyword
here is end, the name of the block is not required but can add to the readability of the input file.

The next block is a material block specification. The name of this block, siliconParameter,
should be referenced in a physics block or it won’t be utilized. In this case the reference is on
line 20. Note that the material block name is case sensitive.

23 # in this input file.
24 material model is siliconParameter
25
26 end physics block semiconductor
27
28 # The material block where most material parameters for this
29 # simulation are set. It is specified in the physics block by it’s
30 # name, siliconParameter.
31 start material block siliconParameter
32
33 # Material name IS case sensitive
34 material name is Silicon
35
36 # Simple, scalar, material property
37 relative permittivity = 11.9

The first non-comment line in this block, line 26, is the name of the material as used within
Charon. This serves as a keyword by the code to look up default properties for that specific
material, in this case silicon. The name is case sensitive and must match what is used within
Charon for the specific material. Line 27 specifies the value of the relative permittivity material
property for Silicon. Materials generally have default values for common material properties,
such as relative permittivity, but those can be overridden via the input file, as in this case.

Lines 29–35 contain the doping specification for this problem. In this case the doping is a step
junction with symmetric doping of donors and acceptors at 1.0×1016/cm3, the junction located
at x = 0.5µm with the donor dopant on the left and the acceptor on the right in the x direction.
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Line 37 ends the material block specification using the end keyword along with the optional
material block siliconParameter.

The boundary conditions are specified on the following lines of the input file

39 # The doping for the diode
40 start step junction doping

Note that even though this example problem is a nonlinear Poisson simulation, an equilibrium
problem, boundary conditions must be specified in the input file with the value of zero.

The specification of boundary conditions start with the bc keyword followed by the type of
contact, ohmic in this case. Next the name of the relevant contact is given. Recall from Figure 3-1
that there were two contacts specified for the problem and they were named anode and cathode.
These names were user specified during the construction of the mesh and completely arbitrary,
although in this case they are physically significant.

Next, the name of geometry block which is adjacent to the boundary is given, in this case si. And
finally the value of the actual boundary condition is given. In this case the specification is stated
as a fixed, applied potential of zero volts. Since this is a NLP simulation and the only degree of
freedom is electric potential, and there are only two contacts, no further boundary conditions are
needed. Any boundary not specified, for example the top and bottom of the diode in this case,
have the default zero-flux boundary condition applied to all degrees of freedom.

The initial conditions are set next via the line

42 donor concentration = 1e16

In this case the stanza simply says that initial conditions for the ELECTRIC_POTENTIAL, the only
degree of freedom in this simulation, will be set using the an approximation for the equilibrium
potential.

The last section in the input file deals with techniques for solving the sets of equations resulting
from the simulation

44 dopant order is PN
45 direction is x
46 end step junction doping

Most settings are consolidated into a solver pack, in this case solver pack 1. A solver pack does
have quantities that the user can override but it is generally best to make use of the default settings
within a particular solver pack when possible. Other available solver packs, which simulation
types they’re relevant for, and how to override their settings will be covered in a subsequent
section.

37



3.4.3. Command Line Serial Execution for a NLP simulation

The two items necessary to perform a Charon simulation are now in place, the input mesh file
generated with Cubit, pndiode.exo, and an input file, pndiode.nlp.inp. The next step is to invoke
the interpreter and have it perform the simulation via the Charon executable.

The basics of using charonInterpreter.py were covered in section 3.3.1. For the specific example
here the invocation is

charonInterpreter.py -i pndiode.nlp.inp --run

If the example has never been executed before then a new Exodus output file named

pndiode.nlp-result.exo

will be created. If the file already exists then any results contained in the file will be
overwritten.

This file contains a copy of the mesh as it existed in the input Exodus file as well as the results of
the simulation, which in this case means the ELECTRIC_POTENTIAL, which was the degree of
freedom in the NLP simulation. You can use a post-processing program such as Paraview
(http://www.paraview.org) to visualize and post-process the results.

3.5. Example Problem: IV Sweep for a Pseudo One Dimensional Silicon PN Diode

This example problem builds on the example problem given in Section 3.4. The geometry is
identical and given in Figure 3-1. The results of the NLP simulation described in that section will
be used here as the initial guess for a full IV (current versus voltage) sweep of a drift diffusion
simulation for the same diode. During an IV sweep the potential at one contact is incremented
over a specified range while the potential at the other contact(s) is fixed at a specified value. At
each bias point a simulation is performed and a scalar electric current is obtained. The voltage
sweeping capability in Charon utilizes LOCA
(https://trilinos.github.io/nox_and_loca.html) to perform the sweep.

3.5.1. Charon Input Deck for an IV Sweep

The input file for the problem will be described in detail here. Note that this section will primarily
cover the differences between the input file used for the IV sweep. The detail on parameters
common to this IV sweep problem and the NLP simulation in the previous section were covered
in Section 3.4.2.

The Charon input file for the IV simulation described here is given in Listing 2 within
Appendix D.2. The first block of lines in that file to be discussed are
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1 # Name of the input exodus file, which includes the results for
2 # ELECTRIC_POTENTIAL as obtained from a previous NLP simulation
3 import state file pndiode.nlp.exo at index 1

As stated in the comments on lines 1 and 2, we want to use the ELECTRIC_POTENTIAL as obtained
from the NLP simulation as an initial guess for the IV sweep. The results from the NLP
simulation were output to the file named pndiode.nlp.exo at the first index in that file. That file
will be used for both the input geometry as well as the ELECTRIC_POTENTIAL at the first results
index in that file.

Next, the output will go to a new file created by Charon. That is specified via input-file block

5 # Output exodus file for results of this simulation
6 start output parameters
7 output state file pndiode.dd.iv.exo
8 end output parameters

Since no special output is specified the default output, which is generally outputs all the degrees
of freedom, will be output at each voltage step in the IV sweep.

The physics block for this simulation is similar to that for the NLP with the exception of lines 20
and 28.

10 start physics block Semiconductor
11
12 # geometry block name IS case sensitive, note however that Cubit
13 # often downcases names prior to output so it is recommended that
14 # in Cubit you use all lower case for naming entities to avoid
15 # confusion.
16 geometry block is si
17
18 # The type of physics to be solved, in this case a nonlinear
19 # Poisson, or nlp, simulation will be performed
20 standard discretization type is drift diffusion gfem
21
22 # The name of the material model IS case sensitive. The name is
23 # used as a key for the associated material block, also contained
24 # in this input file.
25 material model is siliconParameter
26
27 # Turn on Schokley-Reed-Hall recombination
28 srh recombination is on
29
30 end physics block

Line 20 tells the code what type of physics simulation we will be performing and what
discretization we are utilizing for that simulation. In this case we are doing a full drift-diffusion
simulation using the Galerkin finite-element discretization, or gfem. Line 28 specifies that SRH, or
Shockley-Read-Hall, recombination should be enabled.

This simulation is for the same device as that in the example NLP simulation in the previous
section, however, we are solving a different set of physics here, drift-diffusion in this case, NLP in
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the previous case. As such, the material properties specified in the material block starting on
line 32 and ending on line 49 is identical to that of the NLP problem covered in the previous
section.

32 # The material block where most material parameters for this
33 # simulation are set. It is specified in the physics block by it’s
34 # name, siliconParameter.
35 start material block siliconParameter
36
37 # Material name IS case sensitive
38 material name is Silicon
39 relative permittivity = 11.9
40
41 start step junction doping
42 acceptor concentration =1.0e16
43 donor concentration =1.0e16
44 junction location = 0.5
45 dopant order is PN
46 direction is x
47 end step junction doping
48
49 end material block siliconParameter

Next the initial conditions are specified in lines 51 through 61.

51 # This is taken from the NLP file. Note that it is read from "index 1"
52 # as specified in the input file specification. In this case there is
53 # only a single result in that file.
54 initial conditions for ELECTRIC_POTENTIAL in si is exodus file
55
56 # The NLP simulation does not include a solution for the carrier
57 # densities, therefore some other type of estimate, in this case an
58 # equilibrium calculation, is used to obtain an initial guess for
59 # the carrier densities.
60 initial conditions for ELECTRON_DENSITY in si is equilibrium density
61 initial conditions for HOLE_DENSITY in si is equilibrium density

The first thing to note is that as specified in line 54 the initial condition for ELECTRIC_POTENTIAL
is going to be read in from the exodus file that was specified as the input file in line 3.
Additionally line 3 specifies that the result in variable index 1 in that file is to be used. In this
case, since that file is the result of a NLP simulation, there is only a single variable index
contained in the file, but in more complex cases you can specify the relevant variable index. In
transient simulations a variable index corresponds to a time index. In an IV sweep simulation the
variable index corresponds to the index associated with a particular value of the voltage during
the sweep.

For the remaining degrees of freedom in the problem, ELECTRON_DENSITY and HOLE_DENSITY,
an approximation will be used to generate an initial guess internally since those variables were
not part of the NLP simulation. In this case lines 60 and 61 specify that the equilibrium density

approximation be used for the initial guess.
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The boundary conditions are set for the problem in lines 64 and 65 Next the initial conditions are
specified in lines 51 through 61.

63 # Boundary condtions at the contacts.
64 bc is ohmic for cathode on si fixed at 0.0
65 bc is ohmic for anode on si swept from 0.0 to 1.0

The boundary condition for the cathode is specified in line 64 as an ohmic type contact and is
going to have a fixed bias of 0 volts applied to it for the entirety of the sweep.

The boundary condition for the anode is specified in line 65 as the same type, ohmic, but in this
case also specifies that the value of the bias to be applied is going to be swept from 0 to 1 volt.

How the voltage on the anode is going to be swept is controlled by lines 68 through 72 of the
input file.

67 # Sweep parameter controls
68 start sweep options
69 initial step size = 0.02
70 minimum step size = 0.02
71 maximum step size = 0.02
72 end sweep options

The LOCA package which is used by Charon to perform parameter sweeps, like this voltage
sweep, is capable of very sophisticated step control. However, in this case only a simple constant
voltage step of 0.02V will be used.

As in the previous NLP example, the last section of the code deals with solver settings.
74 # Use a straightforward solver pack for this simulation.
75 start solver block
76 use solver pack 1
77 end solver block

Most settings are consolidated into a solver pack, in this case solver pack 1. A solver pack does
have quantities that the user can override but it is generally best to make use of the default settings
within a particular solver pack when possible. Other available solver packs, which simulation
types they’re relevant for, and how to override their settings will be covered in a subsequent
section.

3.5.2. Command Line Serial Execution for an IV sweep

The items necessary to perform the IV sweep are now in place, the file containing the initial guess
and input mesh, pndiode.nlp.exo and the input file, pndiode.iv.inp. In order to run the
problem simply invoke the interpreter like

charonInterpreter.py -i pndiode.iv.inp --run

An initial run, without having previously executed this command, a couple of results files will be
generated
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pndiode.dd.iv.exo
currents-loca.dat

The first file contains the results of the simulation for each voltage step. This includes the degrees
of freedom at each voltage step, ELECTRIC_POTENTIAL, ELECTRON_DENSITY and HOLE_DENSITY,
as well as the scalar electric current at the contacts. For convenience Charon also outputs scalar
electric currents to a regular text file at each of the contacts for each of the voltage steps taken
during the sweep.

For post-processing a visualization program such as Paraview (http://www.paraview.org) can
be used to examine the exodus file. If only the currents are of interest a standard plotting package,
such as gnuplot, can be used to plot the results. For this case the results are shown in
Figure 3-4.
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Figure 3-4 Results of IV sweep
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4. BOUNDARY CONDITIONS

4.1. Ohmic Contacts

Boundary conditions for Ohmic contacts are derived assuming charge neutrality and equilibrium
conditions and in relation to carrier statistics and dopant ionization. By imposing charge
neutrality and equilibrium conditions:

n0− p0 = N+
D −N−A =C,

n0 p0 = n2
i

(22)

the carrier densities and contact potential assuming fully ionized dopants and
Maxwell-Boltzmann statistics can be solved for at the Ohmic contacts. For a n-type
semiconductor they are given by:
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and for a p-type semiconductor by:
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where V is the voltage applied at the Ohmic contact and Ere f is the Fermi energy of the reference
material and χ is the electron affinity in eV .

For Fermi Dirac statistics the second equilibrium condition in Eq.(22) rewrites as n0 p0 = γnγpn2
i

where γn,γp are the electron and hole degeneracy factors. If the dopants are fully ionized, the
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carrier densities and contact potential are given by

n0 = C,

p0 = NV exp
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for a n-type semiconductor and by
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for a p-type semiconductor.

When incomplete ionization models are used for dopants (see §9.1), implicit algebraic equations
are used to solve for carrier densities instead of the explicit relations in Eq.(23), Eq.(24), Eq.(25)
and Eq.(26). The carrier densities are computed using one of the system of algebric equations,
selected by the user input:
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for a n-type semiconductor and
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i (31)
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n0− p0 = N+
D −N−A =

ND
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n1 p0
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p0
p1

,

n0 p0 = γnγpn2
i (32)

for p-type semiconductor. For Maxwell-Boltzmann statistics the electron and hole degeneracy
coefficients γn and γp become both 1.

To enable/use an Ohmic contact, a user can use one of the following methods to specify a voltage
source. The first one is to use a constant voltage value, which is done using

BC is Ohmic for {contactName} on {geometryBlock} fixed at {voltage}

The second one is to sweep a voltage source from one voltage to another voltage using the syntax
below

BC is Ohmic for {contactName} on {geometryBlock} swept from {voltage1} to
{voltage2}

where contactName is a valid sideset name to be used as an Ohmic contact, geometryBlock is a valid
geometry block name the Ohmic contact is connected to, voltage is a fixed voltage applied at the
Ohmic contact, voltage1 and voltage2 are the start and end voltages at the Ohmic contact in the
case of a voltage sweep.

The third one is to specify one sinusoidal voltage source using

BC is sinusoidal for {contactName} on {geometryBlock} with ampl = {amplitude} freq = {
frequency} phase = {phase} and dc offset = {dcoffset}

or two sinusoidal voltage sources using

BC is sinusoidal for {contactName} on {geometryBlock} with ampl = {amplitude} freq = {
frequency} phase = {phase} plus ampl2 = {amplitude2} freq2 = {frequency2} phase2 = {
phase2} and dc offset = {dcoffset}

Here amplitude is the sinusoidal voltage amplitude in Volts, frequency is the frequency in Hertz,
phase is the phase in a percentage of 2π and so its value is within [0, 1], and dcoffset is a DC
voltage applied. amplitude2, frequency2, phase2 are used to specify a second sinusoidal voltage
which is added to the first one.

The fourth method is to specify a trapezoid voltage source using the syntax given below

BC is trapezoid for {contactName} on {geometryBlock} with amplitude = {amplitude}
period = {period} rise time = {risetime} fall time = {falltime} duty cycle = {dutycycle
} dc offset = {DCoffset} delay = {delay} repeat = {repeat}

where amplitude is the peak voltage amplitude, period is the period of the pulse in seconds,
risetime is the time to reach peak voltage from DC offset in seconds and falltime is the time to
go from peak voltage to DC offset in seconds. The optional parameters are dutycycle which is the
ratio of the pulse width to the period of the waveform with a value between [0,1], DCoffset is the
DC voltage applied, delay is the time in seconds before the first period is started and repeat is the
number of periods as an integer.
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4.2. Schottky Contacts

Boundary conditions at Schottky contacts are based on the thermionic emission theory developed
by Bethe [13]. The thermionic emission theory assumes that at the metal/semiconductor interface
where the boundary conditions are derived, the barrier height is much larger than kBT , thermal
equilibrium is valid at the plane that determines emission and the net current flow through the
interface does not effect the equilibrium. The energy band diagrams of the n-type and p-type
Schottky interfaces between metal and semiconductor are shown in Figure 4-1, with the thick line
indicating the interface where the boundary conditions are imposed. Carriers at Schottky interface
are assumed to follow Maxwell-Boltzmann statistics. Under these assumptions, the boundary
conditions for a n-type or p-type Schottky contact are:

qφ = Ere f −WF +qVapp,

Jn,norm =
A∗nT 2

NC

(
n−nB

0

)
,

Jp,norm = −
A∗pT 2

NV

(
p− pB

0

)
(33)

where Ere f is the intrinsic Fermi energy level of the reference material from vacuum, A∗n and A∗p
are electron and hole Richardson constants, nB

0 = NCexp
(
− qφB

kBT

)
and pB

0 = NV exp
(
−EG+qφB

kBT

)
are

the electron and hole equilibrium densities, Jn,norm and Jp,norm are the electron and hole currents
normal to the metal/semiconductor interface, WF is the metal workfunction and Vapp is the
applied voltage at the Schottky contact.

(a) n-type (b) p-type

Figure 4-1 Band diagram of Schottky contacts

To enable/use a Schottky contact the user must specify the following blocks at the root level of the
interpreter input file:
start Schottky BC for {contactName} on {materialName}
voltage is fixed at {voltage}
type is electron/hole
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 4-1 for available parameters)

end

or
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start Schottky BC for {contactName} on {materialName}
voltage is swept from {voltage} to {voltage2}
type is electron/hole
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 4-1 for available parameters)

end

Table 4-1 Syntax and parameters for the Schottky contact.

Input file
Corresponding
variable in (33) Description Units

work function WF contact metal work function eV
electron richardson constant A∗n electron Richardson constant A

K2cm2

hole richardson constant A∗p hole Richardson constant A
K2cm2

4.2.1. Schottky Contacts Barrier Lowering

The barrier lowering model implemented by Charon accounts for two different physical
mechanisms at the Schottky contacts: image force potential and dipole effect. The barrier height
change is modeled as

∆φB = α

√
qE

4πεsemic
+βEγ (34)

where the first term is due the image force potential and the second term due to dipole effect. The
default values for the parameters in Eq.(34) are α = 1.0, β = 0.0 and γ = 1.0. When barrier
lowering model is used, the Schottky boundary conditions in Eq.(33) remains unchanged but
equilibrium electron and hole densities at the contact are modified to account for the lowering of
the barrier. For a n-type contact equilibrium densities change to:

nB
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−q(φB−∆φB(E))

kBT
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,
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(35)

and for a p-type contact to
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kBT
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,

pB
0 = NV exp
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−EG +q(φB +∆φB(E))
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)
(36)

Poisson equation is solved consistently with the real charge seeing a full barrier at the Schottky
contact, while the electron and hole continuity equations see a combined Poisson and image-force
potential.
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To activate the barrier lowering model at a Schottky contact the user must specify the following
block inside the Schottky contact block

start Schottky BC for {contactName} on {materialName}
...
start barrier lowering parameters
(one parameter per line in the form):
/*!{parameter name} = {parameter value}
(see table 4-2 for available parameters)
end
...

end

Table 4-2 Syntax and parameters for the Schottky Contact Barrier Lowering.

Input file
Corresponding
variable in (34) Description Units Default

alpha α specifies parameter alpha none 1.0
beta β specifies parameter beta none 0.0
gamma γ specifies parameter gamma none 1.0

4.2.2. Schottky Contacts Barrier Tunneling

Effects of tunneling at the Schottky contacts can be taken into account by enabling tunneling.
Charon uses a tunneling model based on Tsu-Esaki formula (see [14]) to simulate the effects of
tunneling currents through the Schottky barrier. The tunneling currents at the Schottky contact are
given by:

Je =
4πqkBT me

e f f

h3

∫ EF,M+qφBn

EF,M+qVa

TCe(ξ)Ne(ξ)dξ,

Jh =
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e f f

h3
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where
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are the transmission coefficients of the Schottky barrier and
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)
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(
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kBT

)
 (39)

are the carrier supply functions.

The transmission coefficients TCe(ξ) and TCh(ξ) are a measure of the Schottky barrier
transparency and they are functions of the electric field at the contact on the semiconductor side.
The supply functions Ne(ξ) and Nh(ξ) are the differences in the supply of carriers at the interface
and they are derived assuming Fermi-Dirac statistics for carriers. When the tunnneling model is
enabled, the tunneling currents in Eq.(37) are added to the thermionic emission currents in
Eq.(33) as a total current at the Schottky contact.

To activate the tunneling model at the Schottky contact the user must specify the following block
inside the Schottky contact block

start Schottky BC for {contactName} on {materialName}
...
start barrier tunneling parameters
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 4-3 for available parameters)
end
...

end

Table 4-3 Syntax and parameters for the Schottky Contact Tunneling.

Input file
Corresponding
variable in (37)
and (38)

Description Units

mass me
tunnel or mh

tunnel specifies carrier relative tunneling mass none

4.3. Gate Contacts

Boundary conditions at gate contacts or contacts on insulators consist of giving the electrostatic
potential as a function of the contact workfunction and applied voltage at the contact:

qφ = Ere f −WF +qVapp (40)
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where Ere f is the intrinsic Fermi energy level of the reference material from vacuum, WF is the
metal workfunction and Vapp is the applied voltage at the gate contact.

To enable/use a gate contact the user must specify the following lines at the root level of the
interpreter input file, depending on the type of biasing used:

BC is contact on insulator for {contactName} on {MaterialName} with
work function {WF} fixed at {voltage}

or

BC is contact on insulator for {contactName} on {MaterialName} with
work function {WF} swept from {voltage1} to {voltage2}

or

BC is contact on insulator for {contactName} on {MaterialName} with
work function {WF} linearly ramped from {time0} to {time1} and
voltage from {voltage0} to {voltage1}

where contactName is a valid sideset name to be used as a gate contact, materialName is a valid
insulator material name the gate contact is connected to, WF is the workfunction of the gate,
voltage is a fixed voltage applied at the gate contact, voltage1 and voltage2 are the start and end
voltages at the gate contact in the case of a voltage sweep and voltage0 and voltage1 are the
applied voltages at time0 and respectively time1 for the linear time ramp.

4.4. Constraint Boundary Conditions

There are two types of constraints supported at device contacts:

Constant Current This constraint corresponds to the user attaching a current source to one
terminal of the device. The user therefore specifies that current value in amps. There can be
at most one of these constraints on the device.

Resistor Contact This constraint corresponds to the user attaching a resistor to one terminal of
the device, with a voltage source on the far side of the resistor. The user therefore specifies
that applied voltage in volts, along with the resistance in ohms.

All constraints have the following common attributes:

• the sideset ID denoting the terminal to which the constraint is applied;

• the initial value given to the voltage parameter corresponding to this constraint; and

• the element block ID corresponding to the sideset ID.

There can be at most one constraint on any given terminal of the device.
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4.4.1. Device Contact Dimensions

In addition to the common attributes listed above, all constraints can have two other common
attributes that are only applicable in a two-dimensional simulation:

• the length of the contact in the simulation in µm; and

• the actual device contact area in µm2.

Internally Charon will deal with currents in A/cm for 2-D simulations, so these values are used to
scale the currents to Amps if you would like to compare to experimental results. The first is the
length of the sideset to which the constraint is applied. You should know this value from the mesh
you created in Cubit. The second is the surface area of the contact on the actual device you’re
simulating. Note that the units here are µm and µm2, respectively. These two quantities must be
specified together; you cannot specify one without the other.

If you choose to omit these quantities for a 2-D simulation, there will be no scaling of the currents
that takes place. If you accidentally specify these quantities for a 3-D simulation, they will simply
be ignored.

4.4.2. Constant Current

Now let’s take a look at how you would specify one of these constraints in an input deck.

bc is current for anode on silicon fixed at -3.9e-7 with initial voltage 0.1

The bc is current indicates to Charon that this contact has a constant-current applied to it for the
simulation. The for anode on silicon tells Charon what contact the constant-current will be
applied to, in this case the contact named anode, and what geometry block that contact is
associated with, silicon in this case.

At present fixed is the only valid keyword when an electric current is applied to a contact and it is
followed by the value of the fixed current, at -3.9e-7, or −0.39µA. As stated in Section 3.2, the
minus sign on the value indicates the current is flowing into the specified contact.

Finally the applied bias to use as the starting point on the contact is given,
with initial voltage 0.1. This is just a guess of the bias at the contact that would yield the given
current. Generally you can get a good estimate of this by looking at IV curves associated with the
device and picking off the voltage at the specified current. The better this estimate the more
rapidly the simulation will complete. If the value of initial voltage is too far off the actual value
then Charon may have trouble converging. You can also think of the initial voltage as the
parameter that will be iteratively solved for as the simulation proceeds, thus the need for a good
initial guess.

The full syntax for this boundary condition is given in Table 4-4.
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Table 4-4 Syntax for specifying constant current at a contact

BC is current for {contactName} on {materialName} fixed at {current}
with initial voltage {voltage} [ with area {contact area} [ and length {contact length}
[ with base doping {base doping type} ] ] ]
Option Description Required
fixed at Current is fixed at this contact Yes

with initial voltage
Voltage to start simulation with. This can be considered an
initial guess for the voltage. Yes

with area The contact area (cm2) No
and length The contact length (cm) No

with base doping
When utilized in a pseudo-1D BJT simulation, the doping at
the base contact No

Variables Description Default

contactName
Specifies a valid sideset name to be used as an
Ohmic contact none

materialName
Specifies a valid material name the Ohmic contact
is connected to. none

current Fixed current applied at the contact, in amps none

voltage
Approximate starting voltage at the contact. This can be
considered an initial guess for the voltage at the contact. none

contact area Area of the contact (cm2) 1.0
contact length Length of the contact (cm) 1.0
base doping type Type of doping at the base of a pseudo-1D BJT (acceptor or donor) none

4.4.3. Resistor Contact

The syntax used to perform a simulation with a resistor attached to a contact is similar to that used
for a constant-current constraint.
bc is resistor for cathode on silicon with resistor 1e3 fixed at -4e-3 and

initial voltage 0.1

Note that the input above would be on a single line in the input file but was broken here to avoid
running past the margins.

The is resistor indicates the boundary-condition to be used here utilizes a resistor attached to the
contact that is specified via for cathode on silicon. The resistance of the attached resistor is
specified with with resistor 1e3. The value is always in ohms so in this example the resistance is
1kΩ.

The fixed at -4e3 specifies the value of the voltage on the terminal that is not attached to the
device. The initial voltage is the same as that specified in the constant-current simulation and
can be considered an initial guess for the voltage at the device terminal to which the resistor is
attached. An illustration is shown in Figure 4-2.
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Figure 4-2 Diagram for illustration of a resistor attached to a device contact.

The full syntax for this boundary condition is given in Table 4-5.

Table 4-5 Syntax for specifying resistor attached to a contact

BC is resistor for {contactName} on {materialName} with resistor {resistance}
fixed at {voltage1} and initial voltage {voltage2} [ with area {contact area}
[ and length {contact length} [ with base doping {base doping type} ] ] ]
Option Description Required
with resistor The resistance value of the attached resistor Yes

fixed at
Voltage is fixed at the resistor contact NOT connected
to the device. See Figure 4-2. Yes

with initial voltage
Voltage to start simulation with. This can be considered an
initial guess for the voltage. Yes

with area The contact area (cm2) No
and length The contact length (cm) No

with base doping
When utilized in a pseudo-1D BJT simulation, the doping at
the base contact No

Variables Description Default

contactName
Specifies a valid sideset name to be used as an
Ohmic contact none

materialName
Specifies a valid material name the Ohmic contact
is connected to. none

resistance The resistance value of the attached resistor (ohms). none
voltage1 Voltage applied at the resistor contact (volts). none

voltage2
Approximate starting voltage at the device contact where the
resistor is attached. This can be considered an initial guess
for the voltage at the contact.

none

contact area Area of the contact (cm2) 1.0
contact length Length of the contact (cm) 1.0

base doping type
Type of doping at the base of a
pseudo-1D BJT (acceptor or donor) none
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4.4.4. Constant Current on the Base Contact of a Pseudo 1D BJT

In order to perform a simulation of a pseudo one-dimensional BJT a special boundary condition
must be utilized for the base contact due to the fact that such a contact is not physical in a pseudo
1D simulation of a BJT. When using this boundary condition often you might want to apply a
constant current to the base contact. This is possible via the input line

bc is current for base on silicon fixed at 1.5e-6 and initial voltage 0.0 with base
doping acceptor

Note that the example above was wrapped to avoid clipping. It would comprise a single line in an
actual input file.

The only difference to note between this case and the one given in Section 4.4.2 is the addition of
the with base doping acceptor. This tells Charon that the contact is a base contact in an
pseudo-1D, NPN BJT.

An illustration of a pseudo-1D BJT is given in Figure 4-3. The information for this type of
boundary condition can be found in Table 4-4.

Figure 4-3 Pseudo one-dimensional BJT.

4.4.5. Solver Specifications for Constrained Problems

Constrained problems generally require slightly different solver settings than typical steady-state
problems. At the present time those settings are encapsulated in Charon’s solver pack 3. An
example of a solver specification for a simulation with a constraint would be
start solver block

use solver pack 3
end solver block

The solver settings are constantly being refined for specific problem types and so it is generally
beneficial to examine the latest version of this manual, or contact the developers directly, to get
recommendations on solver settings for specific problem types, particularly when convergence
problems arise for your simulation.
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5. INITIAL GUESS

The initial guess is the starting solution for the nonlinear solver. The rate of convergence and
whatever the convergence is obtained or not are strongly dependent on how close the initial guess
is to the real solution. Charon can compute/estimate or read the initial guess for electrostatic
potential in semiconductor or insulator blocks and for carrier densities in semiconductor blocks.
The initial guess for lattice temperature can be set to a constant or read from a previous
simulation for all material blocks.

5.1. Initial Guess in Semiconductors

To activate the initial guess in semiconductor blocks, the user must specify one or more of the
following line at the root level of the interpreter input file
initial conditions for {DOF} in {BlockName} is {option}

where the command and its options are described in Table 5-1.

Table 5-1 Syntax for Initial Conditions.

initial conditions for {DOF} in {BlockName} is [
exodus file [

{compType} [
constant = {value} [

uninitialized ]]]]
Option Description Required

None
Variables Description Default

DOF
Choose one of: ELECTRIC_POTENTIAL, ELECTRON_DENSITY,
HOLE_DENSITY, LATTICE_TEMPERATURE None

BlockName Specify the block in which this initial condition is to be specified. None
exodus file This will read in the degree of freedom from the input exodus file. None
compType Choose equilibrium potential or equilibrium density. None
constant This specifies that a constant value will be set for this degree of freedom. None
value This will set the constant value. None
uninitialized This leaves the degree of freedom uninitialized (zero). None

To initialize the initial guess to a constant value throughout a semiconductor block the user must
use:
initial conditions for {DOF} in {BlockName} is constant = {value}

where value is a user specified constant. When the DOF is zero, the command becomes
initial conditions for {DOF} in {BlockName} is uninitialized
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To let Charon compute/estimate the initial guess in equilibrium, the user must use
initial conditions for ELECTRIC_POTENTIAL in {BlockName} is equilibrium potential

for electrostatic potential and
initial conditions for ELECTRON_DENSITY in {BlockName} is equilibrium density

initial conditions for HOLE_DENSITY in {BlockName} is equilibrium density

for carrier densities. In this case the electrostatic potential and carrier densities are computed
depending on doping type of the block. For isothermal simulations the electrostatic potential and
carrier densities are given by

y =
ND−NA

2NC
+

√(
ND−NA

2NC
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(41)

for a n-type semiconductor block and as
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for a p-type block. For non-isothermal simulations the initial guess is computed as
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for n-type semiconductors blocks and as
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+
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for p-type blocks. If the semiconductor blocks are connected to Schottky contacts, then the
potential on the Schottky contact nodes is computed as φ =

Ere f
q −

WF
q +Vapp for isothermal

simulations and φ = θ− WF
q +Vapp for non-isothermal simulations.

To use a previously computed solution and use it as an initial guess for the current simulation, the
user must specify

initial conditions for {DOF} in {BlockName} is exodus file

In this case the solution found in the input state file is used as initial guess.

Building a good initial guess requires a combination of the options described above. For instance,
to build a good initial guess for a drift diffusion simulation, the user must first solve the nonlinear
Poisson equation with the initial guess for electrostatic potential computed

initial conditions for ELECTRIC_POTENTIAL in {BlockName} is equilibrium potential

followed by solving drift diffusion equations with the initial guess for electrostatic potential
loaded from the previously solved nonlinear Poisson equation and the initial guess for carrier
densities computed by Charon

initial conditions for ELECTRIC_POTENTIAL in {BlockName} is exodus file

initial conditions for ELECTRON_DENSITY in {BlockName} is equilibrium density

initial conditions for HOLE_DENSITY in {BlockName} is equilibrium density

5.2. Initial Guess in Insulators

To activate the initial guess in insulator blocks, the user must specify the following line at the root
level of the interpreter input file

initial conditions for {DOF} in {BlockName} is {option}
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where the command and its options are described in Table 5-2. The exodus file, constant =
{value} and uninitialized options are similar to those in semiconductor blocks and described in
Section 5.1.

When equilibrium potential or equilibrium potential with semblocks = ({semBlockIds}) options
are used, Charon computes the potential on the contact gates connected to the insulator block as
φgate =V gate

app −W gate
F +Eref/q where Eref is the intrinsic Fermi energy level of the reference

material from vacuum, W gate
F is the metal workfunction and V gate

app is the applied voltage at the gate
contact. The potential on the other nodes of the insulator block is initialized to zero.

For equilibrium potential with semblocks = ({semBlockIds}) option, in addition to the
computation of the potential on the gates as described above, Charon also computes the potential
at insulator/semiconductor interfaces defined by the insulator block and the semiconductor blocks
whose block ids are specified by the {semBlockIds} list. On these interfaces, the potential is
calculated similar to the one in semiconductors (see Eq (41) for a n-type block or Eq (42) for a
p-type block) where NC and NV have the default values at 300K for the semiconductor materials
defined by {semBlockIds} list and NA or ND are given by the user as doping in the insulator
material parameter section, chosen to be close to the doping in the corresponding semiconductor
side of the interface. When this option is used, defining the doping in the insulator material
parameter section is mandatory.

Table 5-2 Syntax for Initial Conditions in Insulators.

initial conditions for {DOF} in {BlockName} is [
exodus file [

equilibrium potential [
equilibrium potential with semblocks = ({semBlockIds}) [

constant = {value} [
uninitialized ]]]]]

Option Description Required
None

Variables Description Default
DOF Choose one of: ELECTRIC_POTENTIAL, LATTICE_TEMPERATURE None
BlockName Specify the block in which this initial condition is to be specified. None
exodus file This will read in the degree of freedom from the input exodus file. None
equilibrium
potential equilibrium potential for ELECTRIC_POTENTIAL None

equilibrium
potential with
semblocks =
(semBlockIds)

equilibrium potential with potential calculation at insulator semiconductor
interfaces; semBlockIds is a list of valid semiconductor blocks having
an interface with the insulator block defined by BlockName

None

constant This specifies that a constant value will be set for this degree of freedom. None
value This will set the constant value. None
uninitialized This leaves the degree of freedom uninitialized (zero). None
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6. BAND STRUCTURE

6.1. Intrinsic Density

Effective intrinsic density in Charon is given by

nie(T ) =
√

NC(T )NV (T )exp
(
−EG(T )

2kBT

)
exp
(

∆EG

2kBT

)
(45)

where NC, NV are the conduction and valence band effective density of states, EG is the bandgap
energy and ∆EG is the bandgap narrowing.

By default no bandgap narrowing is taken into account (∆EG = 0.0). Four bandgap narrowing
models are available in Charon on user request: Old Slotboom [15], Slotboom [16], Harmon [17]
and Persson [18]. Four intrinsic models with the same names of the bandgap narrowing models
are available.

Old Slotboom model computes bandgap narrowing due to the heavy doping as a function of the
total doping [15]

∆EG = V0,bgn

ln

(
Ntot

N0,bgn

)
+

√√√√√ln

(
Ntot

N0,bgn

)2

+Cbgn

 i f Ntot > 1010cm−3,

∆EG = 0 i f Ntot < 1010cm−3 (46)

where Ntot is the total doping and parameters V0,bgn, N0,bgn and Cbgn and their description are
listed in table 6-1.

To enable Old Slotboom intrinsic density with associated bandgap narrowing model, the user
must enable bandgap narrowing in the appropriate physics section
start Physics Block {physicsBlockName}
...
band gap narrowing is on
...

end

and specify the Old Slotboom intrinsic concentration model with its parameters in the material
block section
start Material Block {materialBlockName}
start intrinsic concentration
model is old slotboom
start oldslotboom parameters

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 6-1 for available parameters)

end
end

end

59



Table 6-1 Syntax and parameters for Old Slotboom model.

Input file
Corresponding
variable in (46) Description units

V0_BGN V0,bgn V0,bgn coefficient V
N0_BGN N0,bgn N0,bgn coefficient 1

cm3

CON_BGN Cbgn Cbgn coefficient none

If no parameters are specified, default parameters for the corresponding material are used.

Slotboom model [16] is similar to Old Slotboom model and it uses the same formula to compute
the bandgap narrowing, but it has different default parameters for V0,bgn, N0,bgn (see table 6-2) and
a different Ntot cutoff

∆EG = V0,bgn

ln

(
Ntot

N0,bgn

)
+

√√√√√ln

(
Ntot

N0,bgn

)2

+Cbgn

 i f Ntot > 1015cm−3,

∆EG = 0 i f Ntot < 1015cm−3 (47)

To use Slotboom intrinsic density with associated bandgap narrowing model, the user must enable
bandgap narrowing in the appropriate physics section
start Physics Block {physicsBlockName}
...
band gap narrowing is on
...

end

and specify Slotboom intrinsic concentration model with its parameters in the material block
section
start Material Block {materialBlockName}
start intrinsic concentration
model is slotboom
start slotboom parameters

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 6-2 for available parameters)

end
end

end

If no parameters are specified, default parameters for the corresponding material are used.

Harmon model [17] calculates the bandgap narrowing as

∆EG = An (ND−NA)
1/3 +∆EG,ncor i f ND−NA > 0,

∆EG = Ap (NA−ND)
1/3 +∆EG,pcor i f ND−NA < 0 (48)
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Table 6-2 Syntax and parameters for Slotboom model.

Input file
Corresponding
variable in (47) Description units

V0_BGN V0,bgn V0,bgn coefficient V
N0_BGN N0,bgn N0,bgn coefficient 1

cm3

CON_BGN Cbgn Cbgn coefficient none

where material parameters An and Ap are described in table 6-3. ∆EG,ncor and ∆EG,pcor are
Fermi-Dirac correction terms which are activated when Fermi Dirac statistics for carriers is used.
For Boltzmann statistics, the default statistics in Charon, the corrections terms become zero. The
doping-dependent Fermi-Dirac corrections terms are given by

∆EG,ncor = kBT

(
ln
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where ND−NA > 0 (n-type) and
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< 10−4 (50)

where NA−ND > 0 (p-type).

To enable Harmon intrinsic density with associated bandgap narrowing model, the user must
enable bandgap narrowing in the appropriate physics section
start Physics Block {physicsBlockName}
...
band gap narrowing is on
...

end

and specify Harmon intrinsic concentration model with its parameters in the material block
section
start Material Block {materialBlockName}
start intrinsic concentration
model is harmon
start harmon parameters

enable fermi = {fermiCorrection}
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(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 6-3 for available parameters)

end
end

end

where fermiCorrection flag must be true to enable Fermi-Dirac corrections in (49) and (50) or
false or not specified if corrections are not used.

Harmon model has the option to calculate the bandgap narrowing directly based on a file provided
by the user with lines specifying changes in conduction and valence band due to narrowing as a
function of doping with the following format:

Doping1 ∆EC,1 ∆EV,1

Doping2 ∆EC,2 ∆EV,2

.

.

.

Dopingn ∆EC,n ∆EV,n

In this case ∆EG = ∆EC +∆EV and formulas (48), (49) and (50) are not used.

To use Harmon intrinsic density with bandgap narrowing computed from the file, the user must
enable bandgap narrowing in the appropriate physics section

start Physics Block {physicsBlockName}
...
band gap narrowing is on
...

end

and specify bgn file option in the Harmon intrinsic model parameter section

start Material Block {materialBlockName}
start intrinsic concentration
model is harmon
start harmon parameters
bgn file = {fileName}

end
end

end

with fileName the name of the file containg the bandgap narrowing data.

Persson bandgap narrowing model [18] computes doping-induced energy shifts in the conduction
and valence bands. The model takes into account the exchange energy for majority carriers,
correlation energy for minority carriers, and impurity interaction between the conduction and
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Table 6-3 Syntax and parameters for Harmon model.

Input file
Corresponding
variable in (48) Description units

an An An coefficient eV · cm
ap Ap Ap coefficient eV · cm

valence bands. The band shifts of the conduction and valence band edges for n-type materials are
given by

∆EC,n = An,C

(
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1018

)1/3
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+Cn,C

(
ND−NA

1018

)1/2

,

∆EV,n = An,V

(
ND−NA

1018

)1/3

+Bn,V

(
ND−NA

1018

)1/4

+Cn,V

(
ND−NA

1018

)1/2

(51)

and for p-type materials by

∆EC,p = Ap,C
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)1/3
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(
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+Cp,C

(
ND−NA

1018

)1/2

,

∆EV,p = Ap,V

(
NA−ND

1018

)1/3

+Bp,V

(
NA−ND

1018

)1/4
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(52)

with the parameters An,C, Bn,C, Cn,C, An,V, Bn,V, Cn,V, Ap,C, Bp,C, Cp,C, Ap,V, Bp,V and Cp,V
described in table 6-4.

Then, the total bandgap narrowing given by the Persson model for a n-type material can be
written as

∆EG = ∆EV,n−∆EC,n (53)

and for a p-type material as
∆EG = ∆EV,p−∆EC,p (54)

To use Persson intrinsic density with associated bandgap narrowing model, the user must enable
bandgap narrowing in the appropriate physics section
start Physics Block {physicsBlockName}
...
band gap narrowing is on
...

end

and specify Persson intrinsic concentration model with its parameters in the material block
section
start Material Block {materialBlockName}
start intrinsic concentration
model is persson
start persson parameters
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(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 6-4 for available parameters)

end
end

end

If no parameters are specified, default parameters for the corresponding material are used.

Table 6-4 Syntax and parameters for Persson model.

Input file
Corresponding
variable in (51), (52) Description units

ANC_BGN An,C An,C coefficient eV
BNC_BGN Bn,C Bn,C coefficient eV
CNC_BGN Cn,C Cn,C coefficient eV
ANV_BGN An,V An,V coefficient eV
BNV_BGN Bn,V Bn,V coefficient eV
CNV_BGN Cn,V Cn,V coefficient eV

6.2. Band gap and Electron Affinity

Charon computes a bandgap EG and electron affinity χ and additionally an effective bandgap
EG,eff and an effective electron affinity χeff . The bandgap EG and the electron affinity χ can be
material constants or temperature-dependent functions and they do not include any narrowing
effects. The effective bandgap EG,eff and effective electron affinity use the bandgap EG and
electron affinity χ and apply bandgap narrowing effects.

To specify a constant bandgap, the user must enter in the corresponding material block section

start Material Block {materialBlockName}
...
constant bandgap = {value}
...

end

where value is the bandgap value for the material in eV . If no bandgap is specified, Charon
automatically uses the default value for the corresponding material.

To specify a constant electron affinity, the user must enter in the corresponding material block
section

start Material Block {materialBlockName}
...
electron affinity = {value}
...

end
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where value is the electron affinity value for the material in eV . If no electron affinity is specified,
Charon automatically uses the default value for the corresponding material.

A temperature-dependent bandgap and corresponding electron affinity are also available as

EG(T ) = EG(300)+α

(
3002

300+β
− T 2

T +β

)
,

χ(T ) = χ(300)−α

(
3002

2(300+β)
− T 2

2(T +β)

)
(55)

where EG(300), χ(300), α and β parameters are described in table 6-5.

To activate the temperature-dependent bandgap model described by (55), the user must specify
the model in the corresponding material block section

start Material Block {materialBlockName}
start band gap

temperature dependence is on

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 6-5 for available parameters)

end
end

If a constant electron affinity has already been specified in the material block section as described
above, then the constant electron affinity is used and the temperature-dependent affinity
computation in (55) is neglected.

Table 6-5 Syntax and parameters for temperature-dependent bandgap.

Input file
Corresponding
variable in (55) Description units

Eg300 EG(300) Band Gap at 300 K eV
Chi300 χ(300) Electron Affinity at 300 K eV
alpha α α coefficient eV

K
beta β β coefficient K

Internally, Charon uses the effective bandgap EG,eff and effective electron affinity χeff in all
calculations. When bandgap narrowing is not used or turned off, EG,eff = EG and χeff = χ. When
bandgap narrowing is turned on in physics section block

start Physics Block {physicsBlockName}
...
band gap narrowing is on
...

end
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then narrowing effects are applied depending on the narrowing model used in the intrinsic density
section (see Sec. 6.1). In this case

EG,eff(T ) = EG−∆EG,

χeff(T ) = χ+0.5∆EG (56)

for the Old Slotboom, Slotboom and Harmon bandgap narrowing models with ∆EG being defined
in (46), (47) or (48).

For Persson model

EG,eff(T ) = EG−∆EG,

χeff(T ) = χ−∆EC (57)

where ∆EC is defined in (51) or (52) and ∆EG in (53) or (54).
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7. MOBILITY MODELS

Various models for carrier mobility, electrons and holes, are available and described here. The
mobility model is specified within the specific material contained in the Material Block section of
the input file. A synopsis of the general usage of each mobility model, along with parameters
associated with a particular mobility model, are documented in subsequent sections.

7.1. Arora Model

The Arora mobility is given by [19]

µ = µmin

(
T

300

)exp1

+
µmax

(
T

300

)exp2

1+

(
ND+NA

Nref( T
300)

exp3

)A( T
300)

exp4 (58)

for each of the carriers, holes and electrons, where T is the lattice temperature and ND and NA are
the donor and acceptor doping levels, respectively. To specify that the Arora mobility model is
utilized use

start Material Block {materialBlockName}
start arora mobility
start electron parameters

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 7-1 for available parameters)

end
start hole parameters

(same parameters as electron above)
end

end
end

Each of the parameters in (58) has a default value for a given material which can be overridden for
each carrier via the input file. The variables and the syntax to set them in the input file is given in
table 7-1 and the default values for those parameters for various materials is given in table 7-2.
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Table 7-1 Syntax and parameters for the Arora mobility model. Note setting parameter
values is optional, Charon provides defaults if a particular parameter is not specified.
See (58) for parameter meanings.

Input file
Corresponding
variable in (58) Description units

mumax µmax reference mobility parameter cm2

V s
mumin µmin reference mobility parameter cm2

V s
exp1 exp1 exponent on temperature ratio 1 none
exp2 exp2 exponent on temperature ratio 2 none
exp3 exp3 exponent on temperature ratio 3 none
exp4 exp4 exponent on temperature ratio 4 none
nref Nref reference impurity concentration cm−3

nrefexp A reference impurity concentration exponent none

Table 7-2 Default Arora mobility model parameter values for supported materials.

Electron
Si GaAs AlGaAs InGaAs AlInAs GaAsP InGaP

µmax 1252.0 8500.0 9890.0 2.73×104 2.41×104 200.0 200.0
µmin 88.0 0.0 0.0 0.0 0.0 0.0 0.0
Nref 1.26×1017 1.26×1017 1020 1020 1020 1020 1020

A 0.88 1.0 1.0 1.0 1.0 1.0 1.0
exp1 -0.57 -0.57 0.0 0.0 0.0 0.0 0.0
exp2 -2.33 0.0 0.0 0.0 0.0 0.0 0.0
exp3 2.4 0.0 0.0 0.0 0.0 0.0 0.0
exp4 -0.146 0.0 0.0 0.0 0.0 0.0 0.0

Hole
µmax 407.0 400.0 400.0 480.0 480.0 150.0 150.0
µmin 54.3 0.0 0.0 0.0 0.0 0.0 0.0
Nref 2.35×1017 2.35×1017 1020 1020 1020 1020 1020

A 0.88 1.0 1.0 1.0 1.0 1.0 1.0
exp1 -0.57 0.0 0.0 0.0 0.0 0.0 0.0
exp2 -2.23 0.0 0.0 0.0 0.0 0.0 0.0
exp3 2.4 0.0 0.0 0.0 0.0 0.0 0.0
exp4 -0.146 0.0 0.0 0.0 0.0 0.0 0.0

7.2. Albrecht Mobility Model

Monte Carlo simulations were performed by Albrecht et al. [20] of electron transport based upon
an analytical representation of the lowest conduction band of bulk, wurtzite phase GaN to develop
a set of transport parameters for devices with electron conduction in GaN. The analytic form of
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the parameters determined from the Monte Carlo results are given by:

1
µ
= a

(
NT

N0

)(
T
T0

)−3/2

ln
(

1+β
2
CW

)
+b
(

T
T0

)3/2

+
c

e(T1/T)−1
, (59)

where

β
2
CW = 3.0

(
T
T0

)2(NT

N0

)−2/3

,

NT = ND +NA.

For electrons, typical values of the constants in (7.2) are

T1 =
h̄ωLO

kB
= 1065K,

a = 2.61×10−4Vscm−2,

b = 2.90×10−4Vscm−2,

and

c = 1.70×10−2Vscm−2.

where ND and NA are the ionized donor concentration and acceptor concentrations in cm−3 and T
is the lattice temperature in Kelvin.

The Albrecht mobility model is calibrated for electrons. The model should only be used for holes
when a real set of parameters are defined.

The syntax for utilizing this model is

start Material Block {materialBlockName}
start albrecht mobility
start electron parameters

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 7-3 for available parameters)

end
start hole parameters

(same parameters as electron above)
end

end
end
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Table 7-3 Syntax and parameters for the Albrecht mobility model. Note setting pa-
rameter values is optional, Charon provides defaults if a particular parameter is not
specified. See (7.2) for parameter meanings.

Input file
Corresponding
variable in (7.2) Description Units

expa a fit parameter 1 V s
cm2

expb b fit parameter 2 V s
cm2

expc c fit parameter 3 V s
cm2

expN0 N0 reference concentration density cm−3

expT0 T0 reference temperature K
expT1 T1 reference temperature in exponent K

7.3. Farahmand Mobility Model

In [21], Farahmand et al. present a comprehensive study of the transport dynamics of electrons in
ternary III-nitride compounds. The work includes a field dependent mobility model and extracted
parameters which are included here, respectively, in equations (60 & 61) and tables 7-5 & 7-6.
The model should only be used when a real set of parameters are defined.

µ0(T,N) = µmin

(
T

300

)β1

+
(µmax−µmin)

(
T

300

)β2

1+

[
N

Nref( T
300)

β3

]α(T/300)β4
(60)

In equation (60), T is temperature in Kelvin, N is the total doping density and α, β1, β2, β3, β4,
µmin, µmax, Nref are parameters that are determined either experimentally or via Monte Carlo
simulation. In this case the parameters were taken from [21] in which the parameters were
determined using Monte Carlo simulation.

The field dependent mobility model is given by (61) where µ0 is the low field mobility as
expressed in (60) and vsat, Ec, α, n1 and n2 are parameters taken from [21].

µ =
µ0(T,N)+ vsat En1−1

E
n1
c

1+a
(

E
Ec

)n2
+
(

E
Ec

)n1 (61)

The syntax for utilizing this model is
start Material Block {materialBlockName}
start farahmand mobility
start electron parameters

(one parameter per line in the form):
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{parameter name} = {parameter value}
(see table 7-4 for available parameters)

end
start hole parameters

(same parameters as electron above)
end

end
end

The table summarizing the syntax for the Farahmand mobility model is given in table 7-4 and
tables with default values of the model parameters for various materials can be found in tables 7-5
and 7-6.

Table 7-4 Syntax and parameters for the Farahmand mobility model. Note setting pa-
rameter values is optional, Charon provides defaults if a particular parameter is not
specified. See (60) and (61) for parameter meanings.

Input file
Corresponding
variable in (60) and (61) Description Units

mu_1 µmin low-field mobility cm2

V s
mu_2 µmax maximum mobility cm2

V s
beta β1 temperature ratio exponent 1 none
delta β2 temperature ratio exponent 2 none
gamma β3 temperature ratio exponent 3 none
eps β4 temperature ratio exponent 4 none
alpha α exponent multiplier none
ncrit Nref reference impurity concentration value cm−3

vsat vsat saturation velocity cm
s

ec Ec critical field V
cm

an a fitting parameter none
n1 n1 field ratio exponent 1 none
n2 n2 field ratio exponent 2 none
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Table 7-5 Extracted parameters for the low-field mobility model (60). The reference
density is Nref = 1017 cm−3. †Ualloy = ∆Ec & ‡Ualloy = 0.

µmin µmax α β1 β2 β3 β4(
cm2/Vs

) (
cm2/Vs

)
InN 774.0 3138.4 0.68 -6.39 -1.81 8.05 -0.94

In0.8Ga0.2N † 644.3 1252.7 0.82 -1.81 -1.30 4.84 0.41
‡ 646.5 3188.7 0.66 -0.73 -3.35 2.67 0.25

In0.5Ga0.5N † 456.4 758.1 1.04 -1.16 -1.74 2.21 -0.22
‡ 493.8 2659.9 0.66 -9.11 -2.14 7.19 -0.76

In0.2Ga0.8N † 386.4 684.1 1.37 -1.36 -1.95 2.12 -0.99
‡ 360.9 1887.6 0.69 -0.95 -3.58 3.06 0.06

GaN 295.0 1460.7 0.66 -1.02 -3.84 3.02 0.81
Al0.2Ga0.8N † 132.0 306.1 0.29 -1.33 -1.75 6.02 1.44

‡ 312.1 1401.3 0.74 -6.51 -2.31 7.07 -0.86
Al0.5Ga0.5N † 41.7 208.3 0.12 -0.60 -2.08 10.45 2.00

‡ 299.4 1215.4 0.80 -5.70 -2.29 7.57 -1.08
Al0.8Ga0.2N † 47.8 199.6 0.17 -0.74 -2.04 20.65 0.01

‡ 321.7 881.1 1.01 -1.60 -3.69 3.31 0.44
AlN 297.8 683.8 1.16 -1.82 -3.43 3.78 0.86

Table 7-6 Parameters for high field mobility model in (61).
†Ualloy = ∆Ec & ‡Ualloy = 0.

vsat Ec n1 n2 a(
107 cm/s

) (
kV/cm

)
InN 1.3959 52.4242 3.8501 0.6078 2.2623

In0.8Ga0.2N † 0.8714 103.4550 4.2379 1.1227 3.0295
‡ 1.4812 63.4305 4.1330 0.6725 2.7321

In0.5Ga0.5N † 0.7973 148.9098 4.0635 1.0849 3.0052
‡ 1.6652 93.8151 4.8807 0.7395 3.7387

In0.2Ga0.8N † 1.0428 207.5922 4.7193 1.0239 3.6204
‡ 1.8169 151.8870 6.0373 0.7670 5.1791

GaN 1.9064 220.8936 7.2044 07857 6.1973
Al0.2Ga0.8N † 1.1219 365.5529 5.3193 1.0396 3.2332

‡ 2.0270 245.5794 7.8138 0.7897 6.9502
Al0.5Ga0.5N † 1.1459 455.4437 5.0264 1.0016 2.6055

‡ 2.1581 386.2440 12.5795 0.8324 8.6037
AlN 2.1670 447.0339 17.3681 0.8554 8.7253
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7.4. Philips-Thomas Unified Mobility Model

The Philips unified mobility model [22],[23] is utilized heavily for simulations involving silicon
bipolar devices. It’s usage is described in this section.

The model segregates the mobility into four parts, the lattice, donor, acceptor and electron-hole
scattering contributions. The total mobility is

µi
−1 = µi,L

−1 +µi,D
−1 +µi,A

−1 +µi, j
−1 (62)

where the subscripts are

i→ e or h,
j→ h or e,
I→ A or D,

i, j→ contribution from electron-hole,
L→ contribution from lattice,
D→ contribution from donor,
A→ contribution from acceptor.

The contribution from lattice scattering is

µi,L = µmax

(
T

300.0

)Γi

. (63)

The sum of the remaining contributions is given by

µi,D+A+ j (ND,NA,n, p) = µi,N
Ni,sc

Ni,sc.eff

(
Nref

Ni,sc

)α

+µi,c

(
n+ p

Ni,sc.eff

)
(64)

where

Ne,sc =N∗D +N∗A + p, (65)
Nh,sc =N∗A +N∗D +n, (66)

Ne,sc.eff =N∗D +G(Pe)N∗A +
p

F(Pe)
, (67)

and

Nh,sc.eff =N∗A +G(Ph)N∗D +
n

F(Ph)
. (68)

The base terms due to impurity scattering and electron-hole scattering in (64) are

µi,N =
µmax

2

µmax−µmin

(
T

300

)3α−1.5

, (69)

µi,c =
µminµmax

µmax−µmin

(
300
T

)0.5

. (70)
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The functions used in (67) and (68) are

Fi, j(Pi) =
0.7643P0.6478

i +2.2999+6.5502 mi
m j

P0.6478
i +2.3670−0.01552 mi

m j

(71)

G(Pi) = 1 − 0.89223[
0.41372+

(
m0
mi

T
300

)0.28227
Pi

]0.19778 +
0.005978[(

mi
m0

300
T

)0.72169
Pi

]1.80618 (72)

where if Pn < Pn,min then G(Pn,min) is used to avoid errors, where Pn,min is the value of Pn where
G(Pn) reaches it’s minimum.

Pi =

 2.459

3.97×1013N−2/3
i,sc

+
3.828(n+ p)

1.36×1020 mi
m0

−1(
T

300

)2

(73)

The effective impurity levels that take into account high doping effects are given by

N∗I = NI

1+
1

CI +
(

NRI
NI

)2

 . (74)

Additionally the field dependence of the mobility due to [24] can be used and is given by

µi,hf =
µi,lf[

1+
(

E
vsat

)βi
] 1

βi

(75)

where µi,lf is the low-field mobility as calculated in (62).

The syntax for utilizing this model in Charon is
start material block {materialBlockName}
...
start philips-thomas mobility
start electron parameters
high field mobility is on / off
driving force is electric field / grad quasiFermi
(one parameter per line in the form):
{parameter name} = {parameter value}
(see tables 7-7, 7-8 and 7-9 for available parameters)

end
start hole parameters
(same parameters as electron above)

end
end

...
end
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Table 7-7 Syntax and parameters for the Philips-Thomas mobility model.

Input file
Corresponding
variable as used
in section 7.4

Description Units

exponent for mobility α exponent used in model none

cref_a CA

reference acceptor density
used in calculate of effective
density (74)

#
cm3

cref_d CD

reference donor density
used in calculate of effective
density (74)

#
cm3

temperature dependence exponent Γi

exponent for temperature
dependence of lattice
scattering (63)

K

maximum mobility µmax maximum mobility cm2

V ·s
minimum mobility µmin minimum mobility cm2

V ·s
reference impurity concentration Nref (64) #

cm3

nref_a NRA (74) #
cm3

nref_d NRD (74) #
cm3

Table 7-8 Default values for dopant-related parameters used in Philips-Thomas mobility model.

Parameter
Dopant

As P B

µmax 1417.0 1414.0 470.5
µmin 52.2 68.5 44.9
Nref 9.68×1016 9.20×1016 2.23×1017

α 0.68 0.711 0.719

Table 7-9 Carrier dependent parameters used in Philips-Thomas mobility model.

Parameter
i or I

h or A e or D

Γi −2.247 −2.285
CI 0.5 0.21
NRI 7.2×1020 4.0×1020

βi 2.0 −1.0
vsat 2.4×107/(1+0.8exp

(
T/600

)
) (same)
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8. RECOMBINATION AND GENERATION

There are currently five types of recombination and two types of generation models available
within Charon. The recombination models include the mid-gap Shockley-Reed-Hall (SRH),
Radiative, Auger, generic Trap SRH models and Dynamic Traps models (time-dependent). The
generation models include various avalanche generation (also known as impact ionization) and
optical generation models. The first step in utilizing these models is to turn them on in the
Physics Blocks section of the input file as illustrated below. When these options are not specified
in the input file, they are set to Off by default in the code. The second step is to specify the
models and relevant parameters in the Closure Models section of the input file. Each model and
corresponding parameters will be described in the subsections of this chapter.
start Physics Block {physicsBlockName}

srh recombination is on/off
Auger recombination is on/off
Radiative recombination is on/off
avalanche is on/off

end

8.1. Mid-Gap SRH Recombination

The standard SRH recombination model within Charon is given by

RSRH =
np−n0 p0

τp
(
n+
√

n0 p0
)
+ τn

(
p+
√

n0 p0
) . (76)

Here n0 and p0 are equilibrium electron and hole densities, respectively. In the case of Boltzmann
statistics, the product n0 p0 is given by n2

i , where ni is the intrinsic carrier concentration in a
material. This model represents the effect of mid-band gap traps.

The parameters τn and τp represent electron and hole lifetimes, respectively. They can be constant
or dependent on either the dopant concentration or the temperature. For constant lifetimes you
can set the values in the input file. For example
start material block {materialBlockName}
...
electron/hole lifetime is constant = {value}
...

end

The lifetimes must be in units of seconds.

As noted, carrier lifetimes can also depend on the doping concentration. In this case, the lifetime
is given by

τ =
τ0

1+ ND+NA
Nsrh

, (77)

where ND and NA are the donor and acceptor concentrations, respectively, and Nsrh is a material
dependent parameter. This doping dependent lifetime can be applied to either electrons or holes.
The syntax for adding such a dependency is
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start material block
...
electron/hole lifetime is concentration dependent (with nsrh = {value})
...

end

where {value} is the numerical value of NSRH in (77). The with nsrh is optional and if that option
is not present then a default will be used as given in table 8-1.

Another common modification to the carrier lifetime is to add a temperature dependence. In
Charon, two kinds of temperature dependence are supported for the lifetime, a power law
dependence where the lifetime is given by

τ = τ0

(
T

300

)α

, (78)

and an exponential type of dependence where the lifetime is equal to

τ = τ0 exp

[
β

(
T

300
−1
)]

. (79)

The syntax for adding temperature dependence of carrier lifetimes is

start material block {materialBlockName}
...
electron / hole lifetime is temperature dependent (with exponential variation)
...

end

The concentration and temperature dependencies can be combined, but only one of the two
temperature dependencies can be specified for a given carrier. For example, you can achieve the
following variation for carrier lifetime

τn =
τ0

1+ ND+NA
Nsrh

(
T

300

)α

. (80)

using

start material block {materialBlockName}
...
electron lifetime is concentration dependent
electron lifetime is temperature dependent
...

end

where default values will be used for NSRH.
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Parameter symbol Electrons & Holes Unit
τ0 10−7 s
Nsrh 5.0×1016 #

cm3

α -1.5 1
β 2.55 1

Table 8-1 Default parameters values for doping and temperature dependent SRH lifetime.

8.2. Radiative Recombination

The radiative (a.k.a. direct) recombination model in Charon is given by

Rrad =C(np−n0 p0), (81)

where C is the radiative recombination coefficient. In the case of Boltzmann statistics, n0 p0 = n2
i .

By default, Charon uses C = 1×10−10 cm3· s−1 for GaAs and 0 for silicon. For other materials,
the default C values are often set to 1×10−10 cm3·s−1 for convenience. The user is strongly
recommended specifying the proper C value when using the model. Figure 8-1 shows an example
of setting the coefficient of radiative recomination in the radiative recombination model, where
Coefficient corresponds to the C value.

start Material Block materialBlockName
Radiative recombination coefficient = coefficient

end Material Block materialBlockName

Figure 8-1 Specification of parameters values for the radiative recombination model in the input file.

8.3. Auger Recombination

The Auger recombination model is given by

RA = (Cnn+Cp p)(np−n0 p0), (82)

where Cn and Cp are the electron and hole Auger recombination coefficient, respectively. Only
constant Auger recombination coefficients are currently supported in Charon. The default
Cn = 2.8×10−31, Cp = 9.9×10−32 cm6·s−1 for Si, and Cn =Cp = 1×10−30 cm6·s−1 for GaAs.
For other materials, the default Cn and Cp are often set to 1×10−30 cm6·s−1 for convenience. The
user is strongly recommended specifying the proper parameters values when using the model.
Figure 8-2 shows an example of specifying parameters values for the Auger recombination
model, where Electron Auger Coefficient corresponds to Cn and Hole Auger Coefficient
corresponds to Cp. By default, Charon uses Eq. (82) only if RA is positive, and replaces the value
by zero if RA is negative. To use negative RA, i.e., to allow for Auger generation of electron-hole
pairs, one can set the Boolean parameter With Generation to true.
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start Material Block materialBlockName
start Auger Recombination Parameters

Auger Coefficient electron/hole = augerCoefficient
Generation on/off

end Auger Recombination Parameters
end Material Block materialBlockName

Figure 8-2 Specification of parameters values for the Auger recombination model in the input file.

8.4. Generic SRH Recombination

For traps not located in the mid-band gap of a material, one can simulate their effects using a
generic trap SRH recombination model available in Charon. The generic trap model is given by

Rtraps = ∑
j

np−n2
ie

τ
j
p(n+n j

t )+ τ
j
n(p+ p j

t )
, (83)

where the summation runs over the total number of different types of traps (e.g., two traps located
at two different energy levels). nie is the effective intrinsic concentration in a material. The n j

t and
p j

t for the jth type of traps are equal to

n j
t = NC exp

(
− E j

t

kBT

)
, p j

t = NV exp

(
−

Eg−E j
t

kBT

)
, (84)

where NC and NV are the effective density of states in the conduction and valence bands
respectively, E j

t is the jth trap energy measured from the conduction band edge, Eg is the effective
band gap, kB is the Boltzmann constant, and T is the lattice temperature. The lifetimes τ

j
n and τ

j
p

depend on the lattice temperature and the electric field. They are given by

τ
j
n(T,F) =

τ
j
n0

1+g j
n(T,F)

, τ
j
p(T,F) =

τ
j
p0

1+g j
p(T,F)

. (85)

Here τ
j
n0 and τ

j
p0 are field-independent lifetimes, but can contain temperature dependence.

g j
n(T,F) and g j

p(T,F) are the electron and hole field enhancement factors, which capture the
recombination enhancement due to band-to-trap tunneling and will be described later in this
section. Currently, Charon supports two ways of specifying τ

j
n0 and τ

j
p0. The first one is to specify

constant values in units of seconds. The second one is to compute their values using

τ
j
n0 =

1

σ
j
nvnN j

t
, τ

j
p0 =

1

σ
j
pvpN j

t
, with vn =

√
3kBT
m∗n

, vp =

√
3kBT
m∗p

. (86)

σ
j
n and σ

j
p are the electron and hole cross sections in cm2. vn and vp are the electron and hole

average thermal velocities [25] in cm/s. N j
t is the trap density in cm−3 for the jth type of traps.

m∗n and m∗p are the electron and hole effective masses. To compute τ
j
n0 or τ

j
p0, one has to provide

the corresponding cross section value.
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The traps are categorized into two types: (i) Acceptor traps are neutral when unoccupied, and
carry the charge of one electron when fully occupied; (ii) Donor traps are neutral when
unoccupied, and carry the charge of one hole when fully occupied. The steady-state charge due to
all acceptor traps is given by

−q∑
j

N j
t f j

ta, where f j
ta =

τ
j
pn+ τ

j
n p j

t

τ
j
p(n+n j

t )+ τ
j
n(p+ p j

t )
, the acceptor trap occupation. (87)

The steady-state charge due to all donor traps is equal to

+q∑
j

N j
t f j

td, where f j
td =

τ
j
pn j

t + τ
j
n p

τ
j
p(n+n j

t )+ τ
j
n(p+ p j

t )
, the donor trap occupation. (88)

To include the trap charge in the Poisson equation, it must be enabled in the appropriate physics
as so,
start physics block {PhysicsBlockName}
trap charge is on

end physics block

By default, trap charge is off, meaning that trap charge is not included in the Poisson
equation.

The field enhancement factors, gn and gp, with the superscript j omitted for simpler notation, are
widely used to capture the stationary effects of band-to-trap tunneling (a.k.a trap assisted
tunneling). That is, band-to-trap tunneling effectively reduces carrier lifetimes and consequently
increases carrier recombination. Charon supports four variation forms of the Schenk band-to-trap
tunneling model [26] and also a new model [27] designed for heterojunction devices. The
expressions and details for gn are given in Appendix B for different band-to-trap tunneling
models. The same expressions are also applicable to gp as long as the proper hole parameters are
used. For example, one needs to replace Et with (Eg−Et) and replace m∗n with m∗p in the
expressions to compute gp.

Besides the discrete-level generic traps, Charon supports continuous energy distribution traps of
uniform, exponential or gaussian type, as described in table 8-2, where Nt is the peak density,
gt(E) is the function describing the distribution and Eσ is the width of the distribution in eV .

Table 8-2 Available energy distribution for the Generic SRH Traps model.

Distribution Type Description units
uniform gt(E) = Nt for Et−Eσ < E < Et +Eσ cm−3ev−1

exponential gt(E) = Ntexp(− |E−Et |
Eσ

) for Et−Eσ < E < Et +Eσ cm−3ev−1

gaussian gt(E) = Ntexp(− (E−Et)
2

2E2
σ

) for Et−Eσ < E < Et +Eσ cm−3ev−1

In this case the total recombination rate in (83) can be written as

Rtraps =
∫ Et+Eσ

Et−Eσ

np−n2
ie

n+nt(E)
σpvpgt(E)[1+gp(T,F)] +

p+pt(E)
σnvngt(E)[1+gn(T,F)]

dE (89)

80



where nt = NCexp(− E
kBT ), pt = NV exp(−Eg−E

kBT ), σn and σp are the electron and hole cross
sections in cm2, vn and vp are the electron and hole average thermal velocities defined by (86) in
cm/s and gn(T,F), gp(T,F) are the electron and hole field enhancement factors from (85)
described above.

Similar to (87), (88) the charge and occupation probabilities for acceptor traps are given by

QA
trapped = −q

∫ Et+Eσ

Et−Eσ

fta(E)gt(E)dE,

fta(E) =

n
σpvpgt(E)[1+gp(T,F)] +

pt(E)
σnvngt(E)[1+gn(T,F)]

n+nt(E)
σpvpgt(E)[1+gp(T,F)] +

p+pt(E)
σnvngt(E)[1+gn(T,F)]

(90)

and for donor traps by

QD
trapped = q

∫ Et+Eσ

Et−Eσ

ftd(E)gt(E)dE,

ftd(E) =

nt(E)
σpvpgt(E)[1+gp(T,F)] +

p
σnvngt(E)[1+gn(T,F)]

n+nt(E)
σpvpgt(E)[1+gp(T,F)] +

p+pt(E)
σnvngt(E)[1+gn(T,F)]

(91)

8.4.1. Model Usage

Three steps of specification are needed to enable the generic trap SRH recombination model.
First, the trap model must be toggled on by setting
start physics block {PhysicsBlockName}
trap srh is on

end

in the appropriate physics blocks.

Second, if a band-to-trap tunneling model is turned on, a driving force needs to be specified in the
appropriate physics block
start physics block {PhysicsBlockName}
Driving Force is {drForce}

end

because the tunneling model depends on the field. The drForce can be one of the three options:
gradient quasi fermi levell, effective field, or gradient potential. It is default to
effective field when not given in a physics block.

Third, we need to specify the model parameters in a trap srh material block as below.
start material block {materialBlockName}
start trap srh
start trap {trapID}

(one parameter per line in the form):
{parameter name} = {parameter value}
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(see table 8-3 for available parameters)
trap type is {type}
energy distribution is {distType}
spatial profile is uniform
spatial range is {locMin} to {locMax} [ in x [ in y [ in z]]]
start electron/hole tunneling parameters
model is {model}
direction [ is x [ is y [ is z ]]]
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 8-4 for available parameters)

end tunneling parameters
end trap

end trap srh
end material block

trapID is an integer equal or greater than 0. Multiple types of traps (up to 50) can be defined by
specifying multiple start trap blocks, type defines the trap type which can be either donor or
acceptor. distType select the energy distribution type , spatial profile and spatial range are
used to specify a spatial distribution of traps. The distType can be level, uniform, exponential or
gaussian as described in table 8-2. If the line energy distribution is distType is ommited, then
the trap has by default a level distribution. When a continuous energy distribution type is used
then the energy width line described in table 8-3 is required. Currently, only a uniform spatial
profile is supported which can be placed in a user-defined box. A spatial box is defined using a
spatial range line for each axis. The spatial profile line is optional to specify. When
spatial range is not given, traps are uniformly distributed in all element blocks which belong to
the same physics block.

The tunneling parameters block needs to be separately defined for electrons and holes. model
specifies a tunneling model which can be one of the six options: none, hightemp approx,
lowtemp approx, asymptotic field, constant field, new. none means no band-to-trap tunneling
model is enabled. hightemp approx uses the high temperature approximation of the Schenk model,
corresponding to Eq. (180). lowtemp approx uses the low temperature approximation of the
Schenk model, corresponding to Eq. (182). constant field uses the original Schenk model,
corresponding to Eq. (183) with the constant field density of states given by Eq. (187).
asymptotic field also uses the original Schenk model, Eq. (183), but uses an asymptotic form
[see Eq. (188)]for the electrooptical function. new uses a new band-to-trap tunneling model that
was developed for heterojunction devices and takes into account both electric field and
heterojunction band offset effects. The new model uses the new density of states model, Eq. (189),
in computing the field enhancement factor. When the new tunneling model is enabled, three more
parameters and their values should be given, including heterojunction location,
heterojunction band offset, and direction. The direction keyword specifies the tunneling axis
which can be is x, is y, or is y. Note that all the available band-to-trap tunneling models are
one-dimensional model. A user needs to be aware of the most important tunneling direction.

If any of the five band-to-trap tunneling models is set for electrons or holes or both carriers, the
phonon energy and huang-rhys factor parameters and their values must be specified. If the
band-to-trap tunneling model is set to none, the phonon energy and huang-rhys factor parameters
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are ignored. The energy level parameter specifies the trap energy in a positive value measured
from the conduction band edge. Note that traps are located in the band gap.

The field independent lifetimes, i.e., τn0 and τp0 in Eq. (85), can be specified in one of the two
ways. The first one is to directly specify them using the lifetime parameter in seconds. This is
not allowed for continuous distribution. Alternatively, they can be computed using Eq. (86),
where the cross sections in cm2, σn and σp, must be given through the cross section parameter.
The effective mass parameter is used to provide a value in units of m0 (the free electron mass) for
the carrier effective mass, m∗n or m∗p, in the trap model. When they are not given in an input file,
they are taken from the default material database within Charon for a given material.

Table 8-3 Available parameters for the generic SRH trap model.

Input file Corresponding variables Description units

energy level Et in Eq. (84)
trap energy level measured
from conduction band edge eV

trap density Nt in Eq. (86), Table 8-2
trap density for level traps or peak
trap density for continuous
distributions

cm−3

cm−3eV−1

energy width
Eσ in Eqs. (89),
(90), (90)

energy width for
continuous distributions eV

number of levels

number of discrete energy
levels used for continuous
distributions numerical integration;
20 if not specified

unitless

phonon energy h̄ω in Eq. (180) optical phonon energy eV
huang-rhys factor S in Eq. (180) Huang-Rhys factor unitless

Table 8-4 Available parameters for the generic SRH band-to-trap tunneling models.
m0 is the free electron mass.

Input file Corresponding variables Description units
lifetime τn0 or τp0 in Eq. (85) field independent carrier lifetime seconds
cross section σn or σp in Eq. (86) carrier cross section cm2

effective mass m∗n or m∗p in Eq. (86) effective mass m0

heterojunction location None
heterojunction location in
a simulation device µ m

heterojunction band offset e.g., ∆EV in figure B-2 conduction or valence band offset eV

An example of specifying trap parameters for the InGaP emitter in an InGaP/GaAs/GaAs HBT is
given below.

start material block InGaP-Parameter
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start trap srh
start trap 0
trap type is donor
energy level = 0.93
trap density = 1e17
phonon energy = 0.02
huang-rhys factor = 12.2

start hole tunneling parameters
model is new
direction is x
heterojunction location = 0.15
heterojunction band offset = 0.442
lifetime = 1e-9

end

start electron tunneling parameters
model is none
lifetime = 1e-9

end
end trap 0

end trap srh
end material block

Complete examples on the generic trap and band-to-trap tunneling models can be found at
tcad-charon/test/nightlyTests/b2ttunnel/.

8.5. Dynamic Traps Recombination

Another recombination mechanism handled by Charon is associated with defects in
semiconductor crystalline structure. Dynamic Traps model is an extension of the Generic SRH
Recombination (see 8.4) for modeling time-dependent deep trap states. The model explicitly
computes the capture and emission rates of the trap states with conduction and valence bands,
traps occupation probabilities, the associated bands recombinations rates due to exchange of
carriers and the density of trapped charge on the trap states.

The Dynamic Traps model allows two types of traps: acceptor and donor, and for each type, four
energy distributions: level, uniform, exponential and gaussian. The acceptor traps are neutral
when unoccupied and carry the charge of one electron when fully occupied. The donor traps carry
the charge of one hole when unoccupied and neutral when occupied. Typically, acceptor traps lie
closer to the conduction band and donor traps lie near to the valence band. An occupied acceptor
trap can emit an electron or capture a hole. An unoccupied acceptor trap can capture an electron
or emit a hole. An unoccupied donor trap can emit a hole or capture an electron. An occupied
donor trap can capture a hole or emit an electron.

The energy distributions available in the Dynamic Traps model for both acceptor and donor traps
are described in table 8-5, where Nt is density of traps for single level traps or the peak density for
continuous distributions, gt(E) is the function describing the distribution and Eσ is the width of
the distribution in eV .
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Table 8-5 Available energy distribution for the Dynamic Traps model.

Distribution Type Description units
level Nt for E = Et cm−3 or cm−2

uniform gt(E) = Nt for Et−Eσ < E < Et +Eσ cm−3ev−1 or cm−2eV−1

exponential gt(E) = Ntexp(− |E−Et |
Eσ

) for Et−Eσ < E < Et +Eσ cm−3ev−1 or cm−2eV−1

gaussian gt(E) = Ntexp(− (E−Et)
2

2E2
σ

) for Et−Eσ < E < Et +Eσ cm−3ev−1 or cm−2eV−1

The trap occupation probabilities f n for an acceptor type or f p for a donor type are given by the
trap dynamic equations:

d f n

dt
= rn

C + rn
V ,

d f p

dt
= rp

C + rp
V ,

rn
C = (1− f n)cn

C− f nen
C,

rn
V = (1− f n)cn

V − f nen
V ,

rp
C = (1− f p)cp

C− f pep
C,

rp
V = (1− f p)cp

V − f pep
V (92)

where rn
C, rn

V are the net electron capture rates due to coupling with the conduction and valence
bands, rp

C, rp
V are the net hole capture rates due to coupling with the conduction and valence

bands, f n is the trap electron occupation probability, f p is the trap hole occupation probability,
cn

C, cn
V are the electron capture rates for an empty trap and en

C, en
V are the electron emission rates

for a full trap.

Using equilibrium conditions (d f n

dt = 0 and d f n

dt = 0) and the principle of detailed balance, the trap
capture and emission rates, the net recombination rates and occupation probabilities in
equilibrium can be derived. For an acceptor trap they are given by

cn
C,A = σn,Avn

thn,

en
C,A =

σn,Avn
thγnn1,A

gA
,

cn
V,A = gAσp,Avp

thγp p1,A,

en
V,A = σp,Avp

th p,

rn
C,A =

cn
C,A(e

n
C,A + en

V,A)− en
C,A(c

n
C,A + cn

V,A)

cn
C,A + en

C,A + cn
V,A + en

V,A
,

rn
V,A =

cn
V,A(e

n
C,A + en

V,A)− en
V,A(c

n
C,A + cn

V,A)

cn
C,A + en

C,A + cn
V,A + en

V,A
,

f n
eqn =

cn
C,A + cn

V,A

cn
C,A + en

C.A + cn
V,A + en

V,A
(93)
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and for a donor trap by

cp
V,D = σp,Dvp

th p,

ep
V,D = gDσp,Dvp

thγp p1,D,

cp
C,D =

σn,Dvn
thγnn1,D

gD
,

ep
C,D = σn,Dvn

thn,

rp
C,D =

cp
C,D(e

p
C,D + ep

V,D)− ep
C,D(c

p
C,D + cp

V,D)

cp
C,D + ep

C,D + cp
V,D + ep

V,D
,

rp
V,D =

cp
V,D(e

p
C,D + ep

V,D)− ep
V,D(c

p
C,D + cp

V,D)

cp
C,D + ep

C,D + cp
V,D + ep

V,D
,

f p
eqn =

cp
C,D + cp

V,D

cp
C,D + ep

C,D + cp
V,D + ep

V.D
(94)

where σn,A, σp,A are the acceptor trap electron and hole capture cross sections, σp,D, σn,D are the
donor trap electron and hole capture cross sections, gA, gD are the acceptor trap and donor trap
degeneracy factors, γn, γp are the Fermi-Dirac degeneracy factors, n1,A = niexp(Et,A−Ei

kBT ),

p1,A = niexp(Ei−Et,A
kBT ), p1,D = niexp(Ei−Et,D

kBT ), n1,D = niexp(Et,D−Ei
kBT ) and vn

th, vp
th are the electron

and hole thermal velocities. Although the capture and emission rates were derived for
equilibrium, it is assumed that they are valid for transient states too.

In order to solve for the transient behavior of trap states and compute the trapped charge and the
carrier exchange rates with the bands, the dynamic trap equations in Eq. (92) are discretized in
time

f n(t +δt)− f n(t)
δt

= rn
C(t +δt)+ rn

V (t +δt),

f p(t +δt)− f p(t)
δt

= rp
C(t +δt)+ rp

V (t +δt) (95)

to obtain analytical relations for the trap occupation probabilities. The trap occupation probability
and the net recombination rate as a function of time and occupation probability at a previous time
are then given by

f n(tk) =
f n(tk−1)+(tk− tk−1)(cn

C,A(tk)+ cn
V,A(tk)

1+(tk− tk−1)(cn
C,A(tk)+ en

C,A(tk)+ cn
V,A(tk)+ en

V,A(tk))
,

rn
C,A(tk) = (1− f n(tk))cn

C,A(tk)− f n(tk)en
C,A(tk),

rn
V,A(tk) = (1− f n(tk))cn

V,A(tk)− f n(tk)en
V,A(tk) (96)

for acceptor traps, and by

f p(tk) =
f p(tk−1)+(tk− tk−1)(c

p
V,D(tk)+ cp

C,D(tk)

1+(tk− tk−1)(c
p
V,D(tk)+ ep

V,D(tk)+ cp
C,D(tk)+ ep

C,D(tk))
,

rp
V,D(tk) = (1− f p(tk))c

p
V,D(tk)− f p(tk)e

p
V,D(tk),

rp
C,D(tk) = (1− f p(tk))c

p
C,D(tk)− f p(tk)e

p
C,D(tk) (97)
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for donor traps.

The recursive relations (96) and (97) allow Charon to compute the trap occupation probability and
the net recombination rate for a trap if f n, rn

C,A, rn
V,A for an acceptor trap or f p, rp

V,D, rp
C,D for a

donor trap are known at t = 0. As an initial guess for the recursive equations (96) and (97) Charon
uses equilibrium relations (93), (94).

The conduction band net recombination rates due to acceptor trap Ai and donor trap Dk at time t
are

Rnet
Ai
(t) = Nt,Air

n
C,Ai

(t) = Nt,Ai[(1− f n
Ai
(t))cn

C,Ai
(t)− f n

Ai
(t)en

C,Ai
(t)],

Rnet
Dk
(t) = −Nt,Dkrp

C,Dk
(t) = Nt,Dk [ f

p
Dk
(t)ep

C,Dk
(t)− (1− f p

Dk
(t))cp

C,Dk
(t)] (98)

When multiple acceptor and donor dicrete level traps are present, the total conduction band net
recombination rate becomes

Rnet
C (t) = ∑

Ai

{Nt,Ai[(1− f n
Ai
(t))cn

C,Ai
(t)− f n

Ai
(t)en

C,Ai
(t)]}+

∑
Dk

{Nt,Dk [ f
p
Dk
(t)ep

C,Dk
(t)− (1− f p

Dk
(t))cp

C,Dk
(t)]} (99)

Similarly, the total valence band net recombination rate is given as

Rnet
V (t) = ∑

Dk

{Nt,Dk [(1− f p
Dk
(t))cp

V,Dk
(t)− f p

Dk
(t)ep

V,Dk
(t)]}+

∑
Ai

{Nt,Ai[ f
n
Ai
(t)en

V,Ai
(t)− (1− f n

Ai
(t))cn

V,Ai
(t)]} (100)

The net electron recombination rate in (99) is added as a recombination term in electron drift
diffusion equation and the net hole recombination rate in (100) is added as a recombination term
to the hole drift diffusion equation.

The total trapped charge is computed by summing over the charge trapped on each individual trap
species:

Qnet
trapped(t) = q(∑

Dk

f p
Dk

Nt,Dk−∑
Ai

f n
Ai

Nt,Ai) (101)

Charon adds total trapped charge Qnet
trapped to the right-hand side of Poisson equation to properly

account for the total charge in the device.

In the case of continuous distributions (uniform, exponential and gaussian) defined by Table 8-5
the recombination rates given by (99) and (100) change to

Rnet
C (t) =

∫ Et+EA
σ

Et−EA
σ

gA
t (E)[(1− f n

A(E, t))c
n
C,A(t)− f n

A(E, t)e
n
C,A(E, t)]dE +∫ Et+ED

σ

Et−ED
σ

gD
t (E)[ f

p
D(E, t)e

p
C,D(E, t)− (1− f p

D(E, t))c
p
C,D(t)]dE (102)
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and

Rnet
V (t) =

∫ Et+ED
σ

Et−ED
σ

gD
t (E)[(1− f p

D(E, t))c
p
V,D(t)− f p

D(E, t)e
p
V,D(E, t)]dE +∫ Et+EA

σ

Et−EA
σ

gA
t (E)[ f

n
A(E, t)e

n
V,A(E, t)− (1− f n

A(E, t))c
n
V,A(t)]dE (103)

and the total trapped charge Qnet
trapped in (101) becomes

Qnet
trapped(t) = q(

∫ Et+ED
σ

Et−ED
σ

f p
D(E, t)g

D
t (E)dE−

∫ Et+EA
σ

Et−EA
σ

f n
A(E, t)g

A
t (E)dE) (104)

To activate/use Dynamic Traps model in semiconductor bulk, the user must first set the dynamic
traps flag to on in the Physics Block as shown below

start Physics Block {physicsBlockName}
...
dynamics traps is on
...

end

Secondly, the user must specify the Dynamic Traps model along with its relevant parameters in
the Material Block section of the input file associated with the Physics Block where the model has
been turned on:

start material block {materialBlockName}
start dynamic traps
start trap {trapID}
trap type is {trapType}
energy distribution is {enDistr}
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 8-6 for available parameters)
spatial range is {locMin} to {locMax} [ in x [ in y [ in z]]]
thermal velocity calculation is {thVelType}
number of levels = {NL}

end trap
...

end dynamic traps
...

end material block

In the user input above trapID is an integer equal or greater than 0. Multiple traps (up to 50) can
be defined by specifying multiple start trap blocks. trapType defines the trap type which can be
either donor or acceptor. The trap energetic distribution is defined by the parameter enDistr which
can be level, uniform, exponential or gaussian. If energy distribution line is omitted, the enDistr

is assumed to be of level type. Each indiviual trap defined by trapID can be spatially confined in a
user-defined box, or distributed throughout the entire material block where the trap has been
defined. To limit the trap spatial distribution along an axis the user must specify spatial range for
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that particular axis. A spatial box is defined using a spatial range line for each axis. If no
spatial range line is specified then is assumed that the trap is distributed uniformly throughout
the entire material block. The thermal velocities used in calculation of capture and emission rates

(see (93) and (93)) can defined as mean velocities vn
th =

√
8kBT
πme

, vp
th =

√
8kBT
πmh

or as root mean

square velocities vn
th =

√
3kBT
πme

, vp
th =

√
3kBT
πmh

. The user can select the thermal velocity calculation
by setting thVelType to mean for mean velocity or to root mean square for root mean square
velocity. For continuous distribution traps, Charon discretize internally the enegy distribution in
equally spaced energy intervals. By default, the number of energy levels is set to 20. The user can
change the number of energy levels by setting the parameter NL. If the line number of levels is
omitted, then the default value is used. The rest of the parameters are described in table 8-6

Table 8-6 Available bulk parameters for the Dynamic Traps model.

Input file Corresponding variables Description units

energy level
Et,A, Et,D for level traps
or Et for continuous
distribution traps

trap energy level measured from
conduction band edge for acceptor
traps or from valence band edge for
donor traps; for continuous
distributions Et is the energy center

eV

trap density
Nt,A, Nt,D for level traps
or Nt for continuous
distribution traps

trap density for level traps or peak
trap density for continuous
distributions

cm−3 or
cm−3ev−1

energy width
Eσ in Eq. (102) (103) (101)
valid for continuous
distributions only

for continuous distributions, energy
spread around energy peak

ev

degeneracy factor
gA, gD in Eq. (93) and
Eq. (94)

acceptor or donor trap degeneracy 1

electron cross
section

σn,A, σn,D in Eq. (93)
and Eq. (94)

acceptor or donor electron cross
section cm2

hole cross section
σp,D, σp,A in Eq. (93)
and Eq. (94)

acceptor or donor hole cross
section cm2

An example of specifying bulk trap parameters for part of a silicon block in given below:

start Material Block {siliconParameter}
...
start dynamic traps
start trap 0
trap type is acceptor
energy distribution is uniform
energy level = 0.54
energy width = = 0.2
trap density = 1.0e13
degeneracy factor = 2.0
electron cross section = 1.7e-16
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hole cross section = 1.1e-14
# confine acceptor traps to n-region
spatial range is 0.0 to 1.0 in x
spatial range is 0.0 to 1.0 in y
thermal velocity calculation is mean
number of levels = 20

end
end
...

end

To visualize the total electron and hole recombination rates and total electron and hole trapped
charge (summation over all trap species in a certain block) the user must specify in the
start output parameters block at the root level of input file

start output parameters
...
output cell average variables in {semicBlock} for scalar "Dynamic Traps eRecombination,

Dynamic Traps hRecombination,Electron Trapped Charge,Hole Trapped Charge,Trapped
Charge"

...
end

where semicBlock is the semiconductor block where dynamic traps are located.

To activate/use Dynamic Traps model at an semiconductor/insulator interface defined as a sideset,
the user must specify

start dynamic traps bc for {sidesetName}
geometry block is {geometryBlock}
start dynamic traps
start trap {trapID}
trap type is {trapType}
energy distribution is {enDistr}
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 8-6 for available parameters)
spatial range is {locMin} to {locMax} [ in x [ in y [ in z]]]
thermal velocity calculation is {thVelType}
number of levels = {NL}

end
...

end
...

end

where trapID is an integer equal or greater than 0 allowing multiple traps (up to 50) to be defined
by specifying multiple start trap blocks, geometryBlock is the semiconductor geometry block of
the interface and all the other parameters similar to those described for dynamic traps in bulk.

Charon also allows field-dependent capture cross sections for Dynamic Traps in bulk or on
interface. Two models are available for cross sections dependence on electric field, Kimpton and
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saturation. The Kimpton cross section field-dependence are expressed as

σ(E) =


(3
√

π

4Nt
)3/2 f or E ≤ 106[ σ

1 MV
cm

( 3
√

π

4Nt
)3/2

]1/x

σ
1 MV

cm ( E
106 V

cm
)−x f or E > 106[ σ

1 MV
cm

( 3
√

π

4Nt
)3/2

]1/x
(105)

for bulk traps and as

σ(E) =


1
Nt

f or E ≤ 106[Ntσ
1 MV

cm ]1/x

σ
1 MV

cm ( E
106 V

cm
)−x f or E > 106[Ntσ

1 MV
cm ]1/x (106)

for interface traps. For the saturation model, the cross sections field-dependence for both bulk and
interface are given by

σ(E) =

 σ
1 MV

cm f or E < 106

σ
1 MV

cm ( E
106 V

cm
)−x f or E ≥ 106 (107)

In Eqns. (105), (106) and (107) above E =−∇φ, Nt is the dynamic traps density in bulk or on
interface, σ

1 MV
cm is the capture cross section at E = 1.0 MV/cm, x is the power dependency of the

cross section on the electric field.

To activate/use the field-dependent capture cross sections, the user must specify inside the
start trap blocks the power dependency factors:

start trap {trapID}
...
electron electric field power dependency = {ePowerDep}
hole electric field power dependency = {hPowerDep}
...

end

where ePowerDep and hPowerDep are positive numbers.

To select a dependency model, besides the power dependency line, the user has to select the
model with electron electric field power dependency and hole electric field power dependency

lines:

start trap {trapID}
...
electron electric field power dependency = {ePowerDep}
hole electric field power dependency = {hPowerDep}
electron field dependence is {eDepModel}
hole field dependence is {hDepModel}
...

end
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where eDepModel and hDepModel can be either kimpton or saturation. If any of the line
electron field dependence or hole field dependence is not specified, then automatically the
saturation model is selected. The electron and hole capture cross sections can be made
field-dependent independently. For example, if only electron electric field power dependency

line is specified, then the trap will have a field dependent electron cross section and a constant
hole cross section.

The syntax described above is valid for both bulk and inteface dynamic traps.

Complete examples on dynamic trap recombination model can be found at
tcad-charon/test/nightlyTests/dynamic_traps/.

8.6. Avalanche Generation

A few models for avalanche generation (impact ionization) are available in Charon. The
generation rate of electron-hole pairs produced by these models is described by

G = αn(Fn)
|Jn|
q

+αp(Fp)
|Jp|

q
(108)

where αn(Fn) and αp(Fp) are the electron and hole ionization coefficients, Fn, Fp are electron and
hole driving forces and Je, Jh are the electron and hole current densities.

An avalanche generation model in Charon computes the electron and hole ionization coefficients
αn(Fn) and αp(Fp) as functions of driving forces Fn and Fp.

To activate/use an avalanche model, the user must first set the avalanche flag to on and specify the
driving force in the Physics Block as shown below
start Physics Block {physicsBlockName}
...
avalanche is on
driving force is {drForce}
...

end

where drForce can be one of three options: effective field, gradient potential or gradient quasi
fermi level. By default driving force is set to effective field when it is not given in the input file.

Secondly, the user must specify the avalanche model used along with its relevant parameters in
the Material Block section of the input file
start Material Block {materialBlockName}
...
start avalanche generation
threshold behavior model is {avalancheModel}
driving force is {drForceType}
minimum field = {minField}
start {avalancheModel} parameters
critical field is fixed
(one parameter per line in the form):
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{parameter name} = {parameter value}
end

end
...

end

Charon implements two avalanche models, Selberherr and Crowell-Sze, which can be selected by
avalancheModel above. To select Selberherr model avalancheModel must be set to selberherr.
For Crowell-Sze model avalancheModel must be set to crowell-sze.

The driving force drForceType above must match the drForce in the Physics Block section. If
drForce in the Physics Block is effective field then drForceType can be either effective field J or
effective field Jtot. If drForce is gradient potential then drForceType can be either gradient
potential J or gradient potential Jtot. Finally, if drForce is gradient quasi fermi level then
drForceType must be gradient quasi fermi level.

minField sets the minimum value of the electric field from which the avalanche model is turn on
internally.

More details about the avalanche model specification will be described in the following
sections.

8.6.1. Selberherr Model

Selberherr avalanche generation model computes the electron and hole ionization coefficients
αn(Fn) and αp(Fp) in Eq.(108) as

αn = α
∞
n (T )exp

−(Fcrit
n
Fn

)δn
 ,

αp = α
∞
p (T )exp

−(Fcrit
p

Fp

)δp
 (109)

The critical fields Fcrit
n and Fcrit

p in Eq. (109) can be set to a fixed value specified in the input file
or computed using

Fcrit
n =

Eg (T )
qλn (T )

,

Fcrit
p =

Eg (T )
qλp (T )

. (110)

where λn and λp are the optical-phonon mean free paths for electrons and holes, given by

λn (T ) = λ
0
n tanh

(
h̄ωn

2kBT

)
,

λp (T ) = λ
0
p tanh

(
h̄ωp

2kBT

)
(111)
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The coefficients α∞
n and α∞

n are polynomial functions of temperature

α
∞
n (T ) = a0n +a1nT +a2nT 2

αp (T ) = a0n +a1nT +a2nT 2 (112)

with the constant coefficients a0n, a1n, a2n,a0p, a1p and a2p specified by the user.

To improve numerical stability, the driving fields, Fn and Fp in Eq. (109) can be computed as
nFn

n+nre f
and pFp

p+pre f
where n, p are the electron and hole densities and nre f , pre f are numerical

damping density parameters. Using positive values for nre f and pre f may improve convergence
for problems where strong generation-recombination occurs in regions with small carrier
densities.

To use Selberherr avalanche model the user must first turn the avalanche on and specify the
driving force in the Physics Block

start Physics Block {physicsBlockName}
...
avalanche is on
driving force is {drForce}
...

end

Secondly, the user must specify Selberherr avalanche model along with parameters in the
Material Block section of the input file

start Material Block {materialBlockName}
...
start avalanche generation
threshold behavior model is selberherr
driving force is {drForceType}
minimum field = {minField}
electron driving force reference density = {eDFRefDens}
hole driving force reference density = {hDFRefDens}
start selberherr parameters

critical field is {critField}
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 8-7 for available parameters)

end
end
...

end

For a description of drForceType and minField see 8.6. Critical field can be either specified in the
input file or computed. To specify critical field in the input file set critField to fixed. To force
computing critical field according to Eq. (110) set critField to computed. The other Selberherr
avalanche model parameters and their description are listed in table 8-7.

If electron driving force reference density and/or hole driving force reference density are specified
in the list of avalanche generation parameters (see above) then the driving fields, Fn and Fp are
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computed as nFn
n+nre f

and pFp
p+pre f

where n, p are the electron and hole densities and nre f , pre f are
numerical damping density parameters which can be set by the user (eDFRefDens and
hDFRefDens).

Table 8-7 Syntax and parameters for the Selberherr avalanche model.

Input file
Corresponding
variable in (109),
(110), (111), (112)

Description units

electron a0 a0n α∞
n coefficient 1

cm
electron a1 a1n α∞

n coefficient 1
cmK

electron a2 a2n α∞
n coefficient 1

cmK2

hole a0 a0p α∞
p coefficient 1

cm
hole a1 a1p α∞

p coefficient 1
cmK

hole a2 a2p α∞
p coefficient 1

cmK2

electron delta δn electron field ratio exponent none
hole delta δp hole field ratio exponent none

electron E0 Fcrit
n

electron critical field
when critField is fixed

V
cm

hole E0 Fcrit
p

hole critical field
when critField is fixed

V
cm

electron lambda300 λ0
n

Phonon mean free path
for electrons at 300K cm

hole lambda300 λ0
p

Phonon mean free path
for hole at 300K cm

electron h bar omega h̄ωn
Optical phonon energy
for electrons eV

hole h bar omega h̄ωp
Optical phonon energy
for holes eV

8.6.2. Crowell-Sze Model

Crowell-Sze avalanche generation model [28] estimates the electron and hole ionization
coefficients αn(Fn) and αp(Fp) in Eq.(108) based on Baraff’s theory [29] in terms of physical
parameters Eopt,ph, the Raman optical phonon energy, Eioniz, the ionization energy and λ, the
carrier free path for optical generation. The ionization coefficients are computed as

αn =
1
λn

exp
[
C0(rn)+C1(rn)xn +C2(rn)x2

n

]
,

αp =
1

λp
exp
[
C0(rp)+C1(rp)xp +C2(rp)x2

p

]
(113)
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where the coefficients C0, C1 and C2 are given by the polynomials

C0(r) = −1.92+75.5r−757r2,

C1(r) = 1.75×10−2−11.9r+46r2,

C2(r) = 3.9×10−4−1.17r+11.5r2 (114)

and

rn =
Eopt,ph

En
ioniz

,

rp =
Eopt,ph

E p
ioniz

,

xn =
En

ioniz

qλnFn
,

xp =
E p

ioniz

qλpFp
(115)

Similar to Selberherr model (see Eq.(112)), the carrier free paths depend on Raman optical
phonon energy

λn (T ) = λ
0
n

tanh
(

Eopt,ph
2kBT

)
tanh

(
Eopt,ph

2kB300K

) ,
λp (T ) = λ

0
p

tanh
(

Eopt,ph
2kBT

)
tanh

(
Eopt,ph

2kB300K

) (116)

To use Crowell-Sze avalanche model the user must first turn the avalanche on and specify the
driving force in the Physics Block
start Physics Block {physicsBlockName}
...
avalanche is on
driving force is {drForce}
...

end

Secondly, the user must specify Crowell-Sze avalanche model along with parameters in the
Material Block section of the input file
start Material Block {materialBlockName}
...
start avalanche generation
threshold behavior model is crowell-sze
driving force is {drForceType}
minimum field = {minField}
electron driving force reference density = {eDFRefDens}
hole driving force reference density = {hDFRefDens}
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start crowell-sze parameters
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 8-8 for available parameters)

end crowell-sze parameters
end
...

end

For a description of drForceType and minField see 8.6. The other Crowell-Sze avalanche model
parameters and their description are listed in table 8-8.

If electron driving force reference density and/or hole driving force reference density are specified
in the list of avalanche generation parameters (see above) then the driving fields, Fn and Fp are
computed as nFn

n+nre f
and pFp

p+pre f
where n, p are the electron and hole densities and nre f , pre f are

numerical damping density parameters which can be set by the user (eDFRefDens and
hDFRefDens).

Table 8-8 Syntax and parameters for the Crowell-Sze avalanche model.

Input file
Corresponding
variable in (113),
(114), (115), (116)

Description units

electron lambda300 λ0
n

Phonon mean free path for
electrons at 300K cm

hole lambda300 λ0
p

Phonon mean free path for
hole at 300K cm

optical phonon energy Eopt,ph Raman optical phonon energy eV
electron ionization energy En

ioniz ionization energy for electrons eV
hole ionization energy E p

ioniz ionization energy for holes eV

8.7. Optical Generation

The effect of electron-hole pair generation due to photon absorption and/or ionizing radiation can
be modeled by adding optical generation to the carrier continuity equations. Charon supports
analytical and tabulated optical generation profiles. Any number of analytical and tabulated
profiles can be specified, and are added together when they are located at the same position. To
enable optical generation, we must first turn it on in the Physics Block

start Physics Block {physicsBlockName}
...
optical generation is on
...

end
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8.7.1. Tabulated Optical Generation

The simplest tabulated optical generation profile is a two-column table read from an external file.
The first column is the time in seconds, while the second column is the optical generation rate in
cm−3.s−1. Such a time-dependent optical generation profile can be applied to an entire simulation
domain or a user-specified spatial region. When there is only one time-dependent optical
generation file, we can use this syntax

start Material Block {materialBlockName}
...
start optical generation named Function{i}
read optical generation from {temporalFile}
spatial range is {min} to {max} in x / y / z

end
...

end

Here i is an integer number, temporalFile is a time-dependent optical generation file, min and max

are the minimum and maximum coordinate values. If the optical generation is applied to an entire
simulation domain, the spatial range line can be removed. However, when there are multiple
time-dependent files to be used in a simulation, we need to use

start Material Block {materialBlockName}
...
start optical generation named Function{i}
read temporal file from {temporalFile}
spatial range is {min} to {max} in x / y / z

end
...

end

The second approach can be expanded to include a tabulated spatial dependence, which is either
1D or 2D. A 1D space dependent profile is a two-column table, where the first column contains
position values in µm and the second column is unitless factors. These spatial dependent factors
are multiplied to the time-dependent optical generation rates to produce spatially dependent
optical generation profile. This feature is used via

start Material Block {materialBlockName}
...
start optical generation named Function{i}
read temporal file from {temporalFile}
read 1d spatial file from {space1DFile}
spatial direction is in x / y / z
spatial range is {min} to {max} in x / y / z

end
...

end

Here space1DFile is a 1D space dependent file, spatial direction specifies the axis direction
along which the coordinate values in space1DFile are located, spatial range defines the spatial
range along the axes that are perpendicular to the spatial direction axis. A 2D space dependent
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profile is a three-column table, where the first two columns are the position values in µm, while
the third column is unitless factors. To multiply 2D spatial factors to time-dependent optical
generation rates, one can use the following syntax
start Material Block {materialBlockName}
...
start optical generation named Function{i}
read temporal file from {temporalFile}
read 2d spatial file from {space2DFile}
spatial buffer = {value}

end
...

end

where spatial buffer is to expand the spatial range contained in space2DFile by an amount of
value in µm along both x and y axes.

An example of reading multiple time- and space-dependent optical generation files is given
below
start Material Block SiliconParameter

start optical generation named Function1
read temporal file from timeDepOpt.txt
read 1d spatial file from space1DFile1.txt
spatial direction is in y
spatial range is 0.0 to 5.0 in x

end optical generation named Function1

start optical generation named Function2
read temporal file from timeDepOpt.txt
read 1d spatial file from space1DFile2.txt
spatial direction is in y
spatial range is 5.0 to 10.0 in x

end optical generation named Function2

start optical generation named Function3
read temporal file from timeDepOpt.txt
read 2d spatial file from space2DFile.txt
spatial buffer = 0.05

end optical generation named Function3

start optical generation named Function4
read temporal file from timeDepOpt.txt
spatial range is 0.0 to 1.0 in x
spatial range is 0.5 to 1.5 in y

end optical generation named Function4
end Material Block SiliconParameter

8.7.2. Analytical Optical Generation

In addition to a tabulated radiation pulse as outlined in Section 8.7.1, a radiation pulse for optical
generation may be specified analytically. As of this version, only a Gaussian temporal profile is
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implemented. The syntax to specify an analytical pulse appears in the same type of material block
as the tabulated input and the same spatial extents for the pulse are likewise honored. The full
specification for an analytical pulse requires the function to be named as Gauss or Gaussian, the
time of the peak of the pulse, time extents of the pulse, the maximum and optionally the minimum
of the magnitude of the pulse and the width of the Gaussian.

start Material Block {materialBlockName}
...
start optical generation named Function{i}
temporal function is gauss
temporal range is {startTime} to {endTime}
maximum pulse...
minimum pulse...
pulse peak time = {peakTime}

end
...

end

The specification of the temporal range specifies hard start and hard stop times of the generation
of carriers and has no bearing on the functional form of the Gaussian. It will cut off the tails of the
Gaussian if it is desired. The specification of pulse peak time is the time at which the Gaussian
hits its peak value.

The magnitude of the pulse can be specified in two ways; it can be either the maximum and
minimum of the pulse in terms of the total number of electron-hole pairs created per unit volume
per second,

maximum pulse rate = {maxPulseRate}
minimum pulse rate = {minPulseRate}

with the maximum occurring at the peak time and the minimum the asymptotic value at infinite
time, or it can be specified in units of rad(Si),

maximum pulse rate RadSi = {maxPulseRate}
minimum pulse rate RadSi = {minPulseRate}

with the same implications for maximum and minimum.

The width of the Gaussian can likewise be specified in two ways. The most common way to
specify a Gaussian pulse for radiation is by the full-width, half max of the pulse. In other words,
it is the full time width of the pulse at the midpoint between the minimum and maximum
magnitudes of the pulse:

pulse time FWHM = {pulseWidth}

Alternatively, the time width of the pulse may be specified by a more generic time pulse time
width,

pulse time width = {pulseWidth}
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which is approximately equal to 4.71× f ull−width−hal f −max.

The time integrator will automatically discretize the pulse in time to ensure that the pulse is
accurately captured in the integration. By default, the pulse between +/- 5 standard deviations of
the peak will be discretized into 25 time steps. This may be modified in one of two ways. To
specify a number of guaranteed time steps iver the pulse, use the line:
pulse time integrator steps = {pulseDiscretization}

where pulseDiscretization is the number of guaranteed time steps within the pulse. A second
way to do this is to specify the maximum step time step size taken through the pulse:
Pulse maximum time step size = {timestep}

where the timestep is an evenly space time between time integrator points through the pulse. Note
that the integrator may capture more points than this if it is required to meet error tolerances
specified in the time integrator.

8.8. Band-to-Band Tunneling

Band-to-band tunneling (BTBT) is an important effect in highly doped and/or high field regions
in semiconductor devices, especially in tunneling field effect transistors (TFET) where current
conduction relies on BTBT. In principle, BTBT is a nonlocal quantum tunneling process [30],
which is very challenging to model within any MPI (Message Passing Interface) parallel TCAD
device simulator. Over the years, researchers have developed simplified BTBT models
[31][32][33] that depend on local electric fields and are easy to be implemented in TCAD codes.
Charon currently supports two such local models for modeling BTBT.

The first one is the well-known model by Kane [31],

Gbbt = D
A√
Eg

Fγexp
(
−E3/2

g
B
F

)
, (117)

where Gbbt is the band-to-band tunneling generation rate in unit of cm−3.s−1, Eg is the band gap
in eV, F is the electric field magnitdue in F/cm, A, B, and γ are user-defined parameters which are
often used as fitting parameters. It was found [32] that γ = 2 for direct transitions and γ = 2.5 for
indirect transistions including phonon assisted band-to-band tunneling. The D factor is given by
[32]

D =
n2

ie−np
(n+nie)(p+nie)

(1−|α|)−α, (118)

where nie is the effective intrinsic concentration, n and p are the electron and hole concentration,
respectively, with all concentrations in unit of cm−3. The value of α can be 0, -1, or 1. When
α = 1, we have D =−1, Gbbt < 0, which indicates the BTBT is a pure recombination process.
When α =−1, we have D = 1, Gbbt > 0, which indicates the BTBT is a pure generation process.
When α = 0, we have

D =
n2

ie−np
(n+nie)(p+nie)

, (119)
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which can be either positive or negative, indicating that the BTBT can be a either generation or
recombination process.

The second supported BTBT local model was proposed by Hurkx et al. [32],

Gbbt = DAFγexp
(
−B

F

)
. (120)

This model is essentially identical to Kane’s model, except lumping the band-gap contribution
into the adjustable parameters.

The D expression in Eq. (119) was derived under multiple assumptions including the Boltzmann
statistics assumption. At the thermal equilibrium condition and under the Boltzmann statistics
assumption, the n2

ie−np is equal to zero, which ensures zero BTBT rate at equilibrium as
expected physically. However, due to the Boltzmann statistics and other assumptions, the D
expression is not sufficient to ensure zero BTBT rate at equilibrium in simulations with high
doping and/or high field regions. Additionally, since the D expression introduces more
nonlinearlity in the system of transport equations, it may cause difficult conergence problem in
certain simulations. To address this issue, we have followed the empirical approach by Hiu-Yong
et al. [34] and introduced an additional field factor as given below

Gbbt =

(
|F−F0|

F0

)β

αAFγexp
(
−B

F

)
. (121)

Here α is either 1 or -1, and β is a user-defined parameter. F0 is the simulated, position-dependent
electric field (magnitude) in a device at a zero-current condition. For field effect transistors, a
zero-current condition includes any non-zero gate voltage condition. The same additional field
factor is also applicable to the Kane model in Eq. (117) with the D factor removed.

To use the BTBT model in a Charon simulation, we need to first turn on the model and its driving
force in a physics block as follows,
start physics block {PhysicsBlockName}
band2band tunneling is on
driving force is {drForce}

end physics block

The drForce can be one of the three options: gradient potential, effective field, or
gradient quasi fermi level. It is default to effective field when not given in a physics block.
The drForce is the electric field strength used in the model. Next we specify the model and its
relevant parameters in a material block shown below,

Charon currently supports either Hurkx or Kane model. drForce here needs to loosely correspond to
the drForce given a physics block. Specifically, if drForce = gradient potential in a physics block,
then drForce here can be one of three options: grad potential, grad potential parallel J, or
grad potential parallel Jtot. Similary, if drForce = effective field given in a physics block,
then drForce here needs to be one of three options: effective field, effective field parallel J,
or effective field parallel Jtot. The last possibility is that, if drForce = grad quasi fermi level

in a physics block, then drForce in the model block is grad quasi fermi. When driving force is
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start Material Block {materialBlockName}
start band2band tunneling

behavior model is Hurkx / Kane
driving force is {drForce}
min field = {Fmin}
Hurkx / Kane A = {valueA}
Hurkx / Kane B = {valueB}
Hurkx / Kane alpha = {alpha}
Hurkx / Kane beta = {beta}
Hurkx / Kane gamma = {gamma}
spatial range is {locMin} to {locMax} in x / y / z

end band2band tunneling
end Material Block {materialBlockName}

Figure 8-3 Specification of the BTBT local model and its relevant parameters in the input file.

not specified by a user, it defaults to effective field. The min field provides a field value in
V/cm below which the band-to-band tunneling rate is set to 0. When it is not given by a user, it
defaults to 103 V/cm. The spatial range is to limit the BTBT model to a user-defined box region.
The default values for other parameters are listed in Table 8-9. It’s noted that, to make the Hurkx
and the Kane models produce similar results for a device, one needs to modify their A and B
values. For example, since the band gap of silicon is about 1 eV, we need to change Kane A and
Kane B values to match the values in the Hurkx model to achieve similar results for the two
models. In addition, to use the modified model in Eq. (121), one needs to (i) specify the value of
beta in the input file, (ii) set alpha to -1 or 1, (iii) save the equilibrium potential gradient obtained
from an input Exodus file to be used in the modified BTBT calculation. The latter is done by
setting save initial potential gradient is true in a material block.

Table 8-9 Default parameters values for the band-to-band tunneling local models.

Parameter Name Default Value Unit

Hurkx A 4.0×1014 1/(cm.V2.s) if gamma=2.0;
1/(cm

1
2 .V

5
2 .s) if gamma=2.5

Hurkx B 1.9×107 V/cm
Hurkx alpha 0 or -1 or +1 1
Hurkx beta 0.0 1
Hurkx gamma 2.5 (indirect) or 2.0 (direct) 1

Kane A 3.5×1021 (eV)
1
2 /(cm.V2.s) if gamma=2.0;

(eV)
1
2 /(cm

1
2 .V

5
2 .s) if gamma=2.5

Kane B 2.25×107 V/(cm.(eV)
3
2 )

Kane alpah 0 or -1 or +1 1
Kane beta 0.0 1
Kane gamma 2.5 (indirect) or 2.0 (direct) 1

Below is an example of using the Kane model with the additional field factor in Eq. (121).

103



Complete examples on the band-to-band tunneling local models can be found at
tcad-charon/test/nightlyTests/b2btunnel/.

start Material Block siliconParameter
start band2band tunneling

behavior model is Kane
driving force is grad potential
min field = 1e5
Kane A = 4.15e14
Kane B = 1.69e7
Kane alpha = -1.0
Kane beta = 1.5
Kane gamma = 2.5
spatial range is 0.23 to 0.26 in x

end band2band tunneling
save initial potential gradient is true

end Material Block siliconParameter

Figure 8-4 An example of using the Kane model.
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9. INCOMPLETE IONIZATION

In silicon the energy levels of dopants are shallow compared to the thermal energy kBT at room
temperature. At room temperature, the dopants in silicon can be regarded for practical purposes
as fully ionized. For materials where the dopant levels are deep or for silicon at low temperatures,
the dopant species are only partially ionized and incomplete ionization must be accounted for in
order to determine the correct effective doping concentrations.

9.1. Model Implementation

The densities of the ionized dopants are derived based on the Fermi-Dirac distribution of the
dopant energy level:

N+
D =

ND,0

1+gD exp
(

EFn−ED
kBT

) ND,0 ≤ ND,crit,

N−A =
NA,0

1+gA exp
(

EA−EF p
kBT

) NA,0 ≤ NA,crit. (122)

where N+
D is the ionized donor density, N−A is the ionized acceptor density, ND,0 and NA,0 are the

substitutional dopant densities, gD, gA are the dopant energy level degeneracy factors, ED, EA are
the donor and acceptor ionization energies and ND,crit and NA,crit are the dopant critical densities
above which the dopants are considered fully ionized.

Using the Fermi-Dirac expressions for the carrier densities expressed as pertubations in Maxwell
Boltzmann approximation:

n = NCF1/2 (ηn) = γnNC exp(ηn) ,

p = NV F1/2
(
ηp
)
= γpNV exp

(
ηp
)
,

ηn = (EFn−EC)/kBT,
ηp =

(
EV −EF p

)
/kBT.

where γn and γp are the electron and hole degeneracy factors, the ionized dopant densities in (122)
are expressed as a function of Charon solution variables (carrier concentrations):

N+
D =

ND,0

1+gD
n

γnn1

ND,0 ≤ ND,crit,

N−A =
NA,0

1+gA
p

γp p1

NA,0 ≤ NA,crit. (123)

where n1 = NC exp
(
−∆ED

kBT

)
and p1 = NV exp

(
−∆EA

kBT

)
are two computational energy levels

depending on ∆ED, the energy difference between conduction band edge and donor energy level
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and respectively ∆EA, the energy difference between the acceptor energy level and the valence
band edge.

For the case where the Maxwell-Boltzmann approximation is used instead of Fermi-Dirac integral
for computing the carrier densities, γn = 1 and γp = 1 and (123) degenerates into:

N+
D =

ND,0

1+gD
n
n1

ND,0 ≤ ND,crit,

N−A =
NA,0

1+gA
p
p1

NA,0 ≤ NA,crit. (124)

When incomplete ionization models are enabled (for donor, acceptor or both), Charon uses
ionized dopant densities defined by (123) and (124) instead of the substitutional dopant densities
(ND,0 and NA,0) for all closure models except mobility, intrinsic density and SRH lifetime models.
For mobility, intrinsic density and SRH lifetime models the fully ionized dopant densities
(substitutional densities) ND,0 and NA,0 are always used.

For contacts, ionized dopant densities are also used instead of substitutional dopant densities ND,0
and NA,0 when the corresponding ionization model is turned on. In the most general case, with the
incomplete ionization, the charge neutrality and equilibrium conditions at the contact become:

n0− p0 = N+
D −N−A +Nion =C,

n0 p0 = γnγpn2
i . (125)

where Nion is ion charge (zero if the ionic transport is not used).

Depeding on the contact type (n-type or p-type) and the statistics used for carrier densities
(Maxwell-Boltzmann or Fermi-Dirac) implicit algebraic equations of order 4, 3 or 2 have to be
solved for carrier densities at the contacts. Charon allows three types of approximations for
minority carrier dopant in charge neutrality condition in (125). In the first case, the minority
carrier dopant is assumed to be fully ionized, N+

D = ND,0 for a p-type contact or N−A = NA,0 for a
n-type contact. In the second case, the minority carrier dopant is ignored, N+

D ' 0 for a p-type
contact or N−A ' 0 for a n-type contact. Finally, for the third case, the minority carrier dopant can
be speciifed by the exact formula in (124).

9.2. Model Usage

The incomplete ionization model can be activated independently for donor and acceptor species.
To activate the ionization model for either carrier first the appropriate incomplete ionization

parameter has to be set to on in the relevant physics block section of the input file. For example,
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start physics block {physics name}
.
acceptor incomplete ionization is on
donor incomplete ionization is on
.

end

Next the blocks setting parameters for the incomplete ionization, for each carrier that was enabled
in the physics block, must be added to the relevant material block section of the input file. For
example,
start material block {materialBlockName}
.
start incomplete ionization acceptor
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 9-1 for a list of parameters)

end
.
start incomplete ionization donor
(same parameter set as acceptor)

end
.

end

Table 9-1 Syntax and parameters for the incomplete ionization model.

Input file
Corresponding variables
in (122) through (125) Description Units

critical doping ND,crit or NA,crit doping value #
cm2

degeneracy factor gD or gA dopant energy level degeneracy factors none
ionization energy ED or EA ionization energies eV

file none
existing file containg doping versus
ionization energy data none

approximation none
I - fully ionized
II - no ionization
III - use full model

none

As an option, the ionization energies ED and EA can be defined as doping-dependent quantities
rather than constant values. The ionization energies versus doping concentration are specified in
two separate files with two columns, the first column being the doping concentration in cm−3 and
second the corresponding ionization energy for that doping in eV . Internally, for a certain raw
doping concentration (fully ionized) the ionization energy used in incomplete ionization model is
computed based on the tabulated data defined in the file. If the raw doping concentration matches
a value in the file then the corresponding ionization energy is used. If the doping level is outside
the doping range specified in the file then the closest doping level from file is taken and the
corresponding ionization is used. For the other values of the raw doping concentration within the
range defined in the file a logarithmic interpolation on doping concentration scale is used to
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compute the corresponding ionization energy. If using the file option Charon expects the file to
be a standard text file with the following format:

Doping1 Eioniz,1

Doping2 Eioniz,2

.

.

.

Dopingn Eioniz,n
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10. MOLE-FRACTION DEPENDENT MATERIALS

Charon has added support for binary and ternary compound semiconductors with the composition
defined by the user-specified mole fractions. Three material properties, bandgap, relative
permittivity and effective density of states are allowed to have all parameters mole-fraction
depedent. Although Charon provide a general framework for mole-fraction dependence of binary
and ternary compound materials, for the time being only one binary material Si1−xGex and one
ternary material AlxGa1−xN are available for use.

10.1. Model Implementation

For binary compound materials, the mole-fraction dependent parameters are computed as a
function of the mole fraction x and their values for side materials (for x = 0 and x = 1). If p is a
mole-fraction dependent parameter, p = p(x) and pA and pB are the values of the parameter on
the side materials A and B then Charon interpolates p from the side material values. For a binary
compound of the type A1−xBx the parameter p is computed as:

p(x) = (1− x)pA + xpB +bx(x−1) (126)

where b is a parameter defined by the user which is by default zero. Default values are used for
side parameters pA and pB unless specified by the user in the input file. If parameter b is zero,
p(x) becomes a linear interpolation of the side parameters. It should be noted that for x = 0 and
x = 1 the parameter p takes the values of the side materials, p(0) = pA and p(1) = pB.
Calculation of the mole-fraction parameter p(x) in Eq. (126) is valid for any binary compound
provided that the mole fraction multiplying each side material corresponds to the mole fraction
associated with the side material in the definition of the compound. A binary compound can be
one of the following types: A1−xBx or AxB1−x.

For ternary compound materials, the mole-fraction dependent parameters are computed as a
function of the mole fraction x and their values for side materials (for x = 0 and x = 1). If
AxB1−xC is a ternary compound material composed of the side materials AC and BC and pAC, pBC
are the values of the parameter p for the side materials AC, BC then p(x) is computed as:

p(x) = xpAC +(1− x)pBC +bx(x−1)+ cx(x2−1) (127)

where b and c are parameters defined by the user which are by default zero. Default values are
used for side parameters pAC and pBC unless specified by the user in the input file. If parameters b
and c are zero, p(x) becomes a linear interpolation of the side parameters pAC and pBC. For x = 0
and x = 1 the parameter p takes the values of the side materials, p(0) = pBC and p(1) = pAC.
Calculation of the mole-fraction parameter p(x) in Eq. (127) is valid for any ternary compound
provided that the mole fraction multiplying each side material corresponds to the mole fraction
associated with the side material in the definition of the compound. A ternary compound can be
one of the following types: AxB1−xC or A1−xBxC or AB1−xCx or ABxC1−x.

The mole-fraction x has a spatial dependence and is a number between 0.0 and 1.0. Charon allows
a few spatial profiles for the mole-fraction x: uniform, linear, erfc, gaussian, mgaussian and
halo.
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10.2. Model Usage

To activate the mole-fraction dependence of the materials available (Si1−xGex and AlxGa1−xN for
now), first, the the material name of the mole-fraction dependent compound has to be specified in
the material block section of the input file. For instance, to use Si1−xGex material in a device, the
user must specify in the input file:

start material block {materialBlockName}
.
material name is Si(1-x)Ge(x)
.

end

Secondly, the mole-fraction spatial profile or profiles throughout the device must be provided in
the material block section of the input file. For instance, to define a uniform mole-fraction with
the value 0.5 in a square region from 0.0 to 0.3 µm in x direction and from 0.0 to 0.6 µm in y
direction the user must specify:

start material block {materialBlockName}
.
material name is Al(x)Ga(1-x)N
.
start uniform mole fraction Function1

xmole value = 0.5
spatial range is 0.0 to 0.3 in x
spatial range is 0.0 to 0.6 in y

end
.

end

In order to make the parameters EG(300), α, β and χ(300) defining the bandgap and affinity (see
Section 6.2) mole-fraction dependent, the user must specify the interpolating coefficients b for
binary compounds and b and c for ternary compounds in the mole fraction parameters block of
the band gap block

start material block {materialBlockName}
.
material name is Al(x)Ga(1-x)N
.
start band gap
start mole fraction parameters
start Eg300
b = val1
c = val2

end Eg300
start Chi300
b = val3
c = val4

end Chi300
start alpha
b = val5
c = val6
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end alpha
start beta
b = val7
c = val8

end beta
end mole fraction parameters

end band gap
.

end

If the parameters b and c are not specified then by default are zero.

Relative permittivity can be made mole-fraction dependent and interpolated from its side
materials by specifying the interpolating coefficients b for binary compounds and b and c for
ternary compounds in the mole fraction parameters block of the relative permittivity block

start material block {materialBlockName}
.
material name is Al(1x)Ga(1-x)N
.
start relative permittivity
start mole fraction parameters
start value
b = val1
c = val2

end value
end mole fraction parameters

end relative permittivity
.

end

If the parameters b and c are not specified then by default are zero.

The effective electron and hole densities of states given by NC = NC,300(
T

300)
NC,F and

NV = NV,300(
T

300)
NV,F can be made mole-fraction depedent through the parameters NC, NC,F , NV ,

NV,F . To interpolate NC, NC,F , NV , NV,F parameters from their side materials, the user must
specify the interpolating coefficients b for binary compounds and b and c for ternary compounds
in the mole fraction parameters block of the effective DOS block:

start material block {materialBlockName}
.
material name is Al(x)Ga(1-x)N
.
start effective DOS
start mole fraction parameters
start Nc300
b = val1
c = val2

end Nc300
start Nc_F
b = val3
c = val4

end Nc_F
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start Nv300
b = val5
c = val6

end Nv300
start Nv_F
b = val7
c = val8
end Nv_F

end mole fraction parameters
end effective DOS
.

end

If the parameters b and c are not specified then by default are zero.

For all available mole-fraction dependent quantities (bandgap, relative permittivity, effective
densities of states), the side materials values of the mole-fraction parameters are taken internally
from Charon. For instance, in the case of AlxGa1−xN, the permittivity for x = 0 (GaN) is 8.9 and
for x = 1 (AlN) is 8.5, the default values for GaN and respectively AlN. The user can change the
default values of the side materials parameters in the the input file by specifying the parameter
values at x = 0 and x = 1. For instance, to change EG(300) parameter of the bandgap to 3.4 for
GaN and 6.2 for AlN the user must specify:
start material block {materialBlockName}
.
material name is Al(x)Ga(1-x)N
.
start band gap
start mole fraction parameters
.
start Eg300
b = val1
c = val2

end Eg300
.
eg300 for x at 0 is 3.4
eg300 for x at 1 is 6.2

end mole fraction parameters
end band gap
.

end

Mole-fraction spatial profiles are similar to doping profiles (see §16.7) expect that concentration
line is replaced with xmole value and there is no type line. To define a mole-fraction with a er f c
profile in Si1−xGex with a peak at x = 0.5, negative direction, x from 0.0 to 1.0 µm, y from 0.0 to
0.5 µm and the mole fraction variation from 0.001 to 1.0, the user must specify:
start material block {materialBlockName}
.
material name is Si(1-x)Ge(x)
.
start erfc mole fraction named Function1

gradient center = 0.5 in x
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gradient width = 0.5 in x
direction is Negative in x
spatial range is 0.0 to 1.0 in x
spatial range is 0.0 to 0.5 in y
x mole fraction range is 0.001 to 1.0

end
.

end

When defining multiple profiles, the total mole fraction at a spatial point will the sum of the
individual mole-fractions ath that location. The total mole fraction must be less or equal to 1.0.
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11. QUANTUM MODELS

11.1. Density Gradient Model

As the features of the modern devices becomes smaller and smaller, the wave nature of the charge
carriers cannot be neglected any longer. To simulate the effects of quantum mechanical
confinement, Charon introduces the density gradient model which accounts for the quantization
effects using potential-like perturbations in the classical expressions of electron and hole
densities:

n = NCF1/2

(
EFn−EC−qΛn

kBT

)
,

p = NV F1/2

(
EV −EF p−qΛp

kBT

)
, (128)

where Λn and Λp are the electron and hole quantum correction potentials derived in [35] and
given by

Λn = − h̄2

12mnm0kT

[
∆(ψ+ γnΛn)+

1
2kT

(∇ψ+ γn∇Λn)
2
]
,

Λp =
h̄2

12mpm0kT

[
∆
(
ψ− γpΛp

)
− 1

2kT

(
∇ψ− γp∇Λp

)2
]
, (129)

with γn and γp fitting parameters.

Typical applications for the density gradient model are simulations of threshold voltage shifts and
reductions in gate capacitance in HEMT devices and thin-gate oxide MOSFETs.

Charon implements the density gradient model by solving for quantum correction potentials in
Eqn. (129) and correcting the drift parts of the current density terms given by Eq. (9) of the drift
diffusion equations in [Eqn. (8)]. The corrected current densities are then given by:

Jn = −qnµn∇(ψ+Λn)+qDn∇n,
Jp = −qpµp∇

(
ψ−Λp

)
−qDp∇p, (130)

To activate/use density gradient model, the user must specify the quantum correction block with
its relevant parameters in the Physics Block section of the input file.The electron density
correction is turned on with the line electron density correction is on. Similarly, the hole
density correction is turned on with the line hole density correction is on. Simplified versions
of the model with the quadratic terms (field terms) in Eqns. ((129) neglected are possible by
specifying the line electron simplified formulation is on for electron and the line
hole simplified formulation is on for hole. Currently, the density gradient model only works for
drift diffusion cvfem discretization.
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start Physics Block {physicsBlockName}
standard discretization type is drift diffusion cvfem
...
start quantum correction

electron density correction is on
hole density correction is on
electron simplified formulation is on
(one parameter per line in the form):
(see table 11-1 for available parameters)

end quantum correction
...

end

Table 11-1 Available parameters for the Density Gradient Model.

Input file Default Value Corresponding Variable Description Unit
electron fit parameter 0.3 γn fitting parameter 1
hole fit parameter 0.3 γp fitting parameter 1
electron effective mass 1.08 mn effective mass 1
hole effective mass 0.81 mp effective mass 1
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12. HETEROJUNCTION

Carrier transport across a heterojunction (HJ) interface in a semiconductor heterostructure such as
heterojunction bipolar transistor (HBT) requires special treatment. Conventional transport
equations become invalid at a HJ, and the current at an abrupt HJ between two materials should
be defined by interface condition at the junction.

Taking the InGaP/GaAs/GaAs NPN HBT illustrated in Fig. 12-1(a) as an example, the
corresponding band diagram in the emitter and base regions is sketched in Fig. 12-1(b). Due to
the wider band gap of InGaP than GaAs, the emitter-base (E-B) junction has discontinuities in
both the conduction and valence bands, which cause discontinuities in electron and hole densities
at the junction. Current across the E-B junction is determined by electron forward injection from
the emitter to the base through the thermionic emission and tunneling processes and hole
backward injection from the base to the emitter through the thermionic emission process. Given
the valence band profile in Fig. 12-1(b), there is no hole tunneling across the E-B junction.
Currently, Charon supports thermionic emission (TE) and local tunneling (LT) models for
electrons and holes at a HJ.

N, Emitter
InGaP

EG1 > EG2

P+, Base 
GaAs
EG2

N
Collector 

EG2

N+

EG2

(a)

(b)

EC1

EV1

EC2

EV2

(n1, p1) 

(n2, p2) 

∆EC

∆EV

Figure 12-1 (a) Schematic of a InGaP/GaAs/GaAs NPN HBT device. (b) Band diagram
in the emitter and base regions.

Implementation of the TE and LT models in Charon requires the support of discontinuities in
carrier densities and material properties at an abrupt HJ. This is made possible by Panzer, the
Trilinos package on which Charon is built. Panzer provides the heterojunction infrastructure that
allows for adding different suffix to the carrier densities and material properties names for the two
sides at a HJ, which enables Charon to access carrier densities and material properties of both
sides. For example, given the E-B junction shown in Fig. 12-1, the emitter side is defined as side
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1 and the electron (hole) density on side 1 is denoted as n1 (p1), while the base side is defined as
side 2 and the electron (hole) density on side 2 is denoted as n2 (p2). It is noted that since the
collector has the same material as the base, there is no carrier discontinuity at the base-collector
junction, hence the electron (hole) density in collector is also denoted as n2 (p2). For simpler
implementation, the left side of a HJ is always defined as side 1, while the right side of a HJ is
always defined as side 2. The conduction band offset is defined as ∆EC = EC1−EC2 where EC1
(EC2) is the conduction band of side 1 (side 2), whereas the valence band offset is defined as
∆EV = EV 2−EV 1 where EV 2 (EV 1) is the valence band of side 2 (side 1). It is noted that ∆EC and
∆EV can be either positive or negative depending on the band diagram, as described in Sec. 12.1

The TE and LT models are based on the foundational work by Wu and Yang [36]. In the
following, the final forms of the models are described, while derivation of the models is detailed
in Appendix C.

12.1. Thermionic Emission

Given the conduction and valence band diagram in Fig. 12-1(b), the net electron and hole current
densities due to thermionc emission across the E-B junction are given by [see the Eq. (191) ]

JT E,n = A∗nT 2

[
−exp

(
EFn1−EC1

kBT

)
+ exp

(
EFn2−EC2−∆EC

kBT

)]
,

JT E,p = A∗pT 2

[
exp
(

EV 1−EF p1

kBT

)
− exp

(
EV 2−EF p2−∆EV

kBT

)]
. (131)

Where A∗n and A∗p are the electron and hole Richardson constants, EFn and EF p are the electron
and hole quasi-Fermi levels, EC and EV are the conduction and valence band edges, respectively,
kB is the Boltzmann constant, T is the temperature, 1 and 2 denote side 1 and side 2. Note that
∆EC and ∆EV here are both positive. The current densities here are scalar quantities and represent
the normal components perpendicular to the HJ. The Richardson constants are defined as

A∗n =
4πqk2

Bm∗n
h3 ,

A∗p =
4πqk2

Bm∗p
h3 , (132)

where m∗n and m∗p are the electron and hole effective mass, respectively, and h is the Planck
constant. There is an inconsistency in literature [36, 37, 38] regarding which side of effective
mass should be used in computing the Richardson constant. In Charon, the effective mass used in
computing the Richardson constant is not taken from either side of a HJ, but set to be a
user-defined parameter. It is worthy of noting that, under the thermal equilibrium, the quasi-Fermi
levels are constant, i.e., EFn1 = EFn2 and EF p1 = EF p2, then JT E,n = 0 and JT E,p = 0 as it should
be.

Since the fundamental basic variables in Charon are electric potential, electron and hole densities,
we need to rewrite Eq. (131) in terms of carrier densities and material properties. For Boltzmann
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statistics, the electron and hole densities are given by n = NCexp
(

EFn−EC
kBT

)
and

p = NV exp
(

EV−EF p
kBT

)
, from which Eq. (131) can be rewritten as

JT E,n = A∗nT 2

[
− n1

NC1
+

n2

NC2
exp
(
−∆EC

kBT

)]
,

JT E,p = A∗pT 2

[
p1

NV 1
− p2

NV 2
exp
(
−∆EV

kBT

)]
. (133)

If one defines vn = A∗nT 2/qNC and vp = A∗pT 2/qNV , Eq. (133) becomes

JT E,n = −qvn1n1 +qvn2n2exp
(
−∆EC

kBT

)
,

JT E,p = qvp1 p1−qvp2 p2exp
(
−∆EV

kBT

)
(134)

From Eq. (134), one can interpret the electron thermionic emission current density for the band
diagram given in Fig. 12-1(b) as follows: electrons do not see a ∆EC energy barrier when
thermionically emitting from side 1 to side 2, hence the electron current density from 1 to 2 is
(−q)vn1n1 where the minus sign is due to the negative charge of an electron; whereas, electrons
going from side 2 to side 1 do see a ∆EC energy barrier, hence the electron current density is
reduced by exp

(
−∆EC

kBT

)
and becomes (−q)vn2n2exp

(
−∆EC

kBT

)
; the difference of the two current

densities determines the net electron current across the HJ. A similar interpretation is applicable
to the hole thermionic emission current density except that the charge of holes is positive.

For Fermi-Dirac statistics, the electron and hole densities are given by

n = NCF1/2

(
EFn−EC

kBT

)
,

p = NV F1/2

(
EV −EF p

kBT

)
, (135)

where F1/2(·) is the one-half Fermi-Dirac integral [39]. From the above equations, one can
inversely solve for the arguments of the Fermi-Dirac integrals, i.e.,

ηn =
EFn−EC

kBT
= F−1

1/2

(
n

NC

)
,

ηp =
EV −EF p

kBT
= F−1

1/2

(
p

NV

)
, (136)

where F−1
1/2(·) is the inverse of the one-half Fermi-Dirac integral [40]. Substituting ηn and ηp into

Eq. (131), we obtain

JT E,n = A∗nT 2

[
−exp(ηn1)+ exp(ηn2)exp

(
−∆EC

kBT

)]
,

JT E,p = A∗pT 2

[
exp(ηp1)− exp(ηp2)exp

(
−∆EV

kBT

)]
. (137)
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The application of either Eq. (133) or Eq. (137) is determined by a single user-defined cutoff
density. When the electron or hole density is larger than this cutoff density, Eq. (133) is used;
otherwise, Eq. (137) is used.

Due to some limitation in the heterojunction implementation infrastructure, it is not
straightforward to automatically compute the band offset at a HJ, therefore, the band offset is
provided as a user-defined parameter in the input xml. Since the left (right) side always
corresponds to side 1 (side 2), ∆EC = EC1−EC2, and ∆EV = EV 2−EV 1, as mentioned earlier, the
band offsets can be either positive or negative. The equations described above are applicable to
positive ∆EC and ∆EV . For other cases of ∆EC and ∆EV , the equations require some modification.
Figure 12-2 summarizes the different cases of ∆EC and ∆EV , the corresponding band structures,
and the corresponding net thermionic emission current densities for Boltzmann statistics (similar
modifications hold for Fermi-Dirac statistics). All the four scenarios in Fig. 12-2 are taken into
account in Charon.
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∆𝐸𝐸𝐶𝐶 > 0, ∆𝐸𝐸𝑉𝑉 > 0

𝐽𝐽𝑇𝑇𝑇𝑇,𝑛𝑛 = 𝐴𝐴𝑛𝑛∗ 𝑇𝑇2 −
𝑛𝑛1
𝑁𝑁𝐶𝐶𝐶

+
𝑛𝑛2
𝑁𝑁𝐶𝐶2

𝑒𝑒𝑒𝑒𝑒𝑒
−∆𝐸𝐸𝐶𝐶
𝑘𝑘𝐵𝐵𝑇𝑇

𝐽𝐽𝑇𝑇𝑇𝑇,𝑝𝑝 = 𝐴𝐴𝑝𝑝∗ 𝑇𝑇2
𝑝𝑝1
𝑁𝑁𝑉𝑉1

−
𝑝𝑝2
𝑁𝑁𝑉𝑉2

𝑒𝑒𝑒𝑒𝑒𝑒
−∆𝐸𝐸𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

∆𝐸𝐸𝐶𝐶 > 0, ∆𝐸𝐸𝑉𝑉 < 0

𝐽𝐽𝑇𝑇𝑇𝑇,𝑛𝑛 = 𝐴𝐴𝑛𝑛∗ 𝑇𝑇2 −
𝑛𝑛1
𝑁𝑁𝐶𝐶𝐶

+
𝑛𝑛2
𝑁𝑁𝐶𝐶2

𝑒𝑒𝑒𝑒𝑒𝑒
−∆𝐸𝐸𝐶𝐶
𝑘𝑘𝐵𝐵𝑇𝑇

𝐽𝐽𝑇𝑇𝑇𝑇,𝑝𝑝 = 𝐴𝐴𝑝𝑝∗ 𝑇𝑇2
𝑝𝑝1
𝑁𝑁𝑉𝑉1

𝑒𝑒𝑒𝑒𝑒𝑒
∆𝐸𝐸𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

−
𝑝𝑝2
𝑁𝑁𝑉𝑉2

∆𝐸𝐸𝐶𝐶 < 0, ∆𝐸𝐸𝑉𝑉 < 0

𝐽𝐽𝑇𝑇𝑇𝑇,𝑛𝑛 = 𝐴𝐴𝑛𝑛∗ 𝑇𝑇2 −
𝑛𝑛1
𝑁𝑁𝐶𝐶𝐶

𝑒𝑒𝑒𝑒𝑒𝑒
∆𝐸𝐸𝐶𝐶
𝑘𝑘𝐵𝐵𝑇𝑇

+
𝑛𝑛2
𝑁𝑁𝐶𝐶2

𝐽𝐽𝑇𝑇𝑇𝑇,𝑝𝑝 = 𝐴𝐴𝑝𝑝∗ 𝑇𝑇2
𝑝𝑝1
𝑁𝑁𝑉𝑉1

𝑒𝑒𝑒𝑒𝑒𝑒
∆𝐸𝐸𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

−
𝑝𝑝2
𝑁𝑁𝑉𝑉2

∆𝐸𝐸𝐶𝐶 < 0, ∆𝐸𝐸𝑉𝑉 > 0

𝐽𝐽𝑇𝑇𝑇𝑇,𝑛𝑛 = 𝐴𝐴𝑛𝑛∗ 𝑇𝑇2 −
𝑛𝑛1
𝑁𝑁𝐶𝐶𝐶

𝑒𝑒𝑒𝑒𝑒𝑒
∆𝐸𝐸𝐶𝐶
𝑘𝑘𝐵𝐵𝑇𝑇

+
𝑛𝑛2
𝑁𝑁𝐶𝐶2

𝐽𝐽𝑇𝑇𝑇𝑇,𝑝𝑝 = 𝐴𝐴𝑝𝑝∗ 𝑇𝑇2
𝑝𝑝1
𝑁𝑁𝑉𝑉1

−
𝑝𝑝2
𝑁𝑁𝑉𝑉2

𝑒𝑒𝑒𝑒𝑒𝑒
−∆𝐸𝐸𝑉𝑉
𝑘𝑘𝐵𝐵𝑇𝑇

(a)

(b)

(c)

(d)

EC1

EV1

EC2

EV2

Figure 12-2 Different cases of ∆EC and ∆EV , the corresponding band diagrams,
and the corresponding net thermionic emission current densities for Boltzmann
statistics.

12.2. Local Tunneling

If the potential barrier at an abrupt HJ is sufficiently narrow, carrier tunneling will contribute
significantly to the net carrier flux across the junction. This occurs when the doping in one side is
high causing a large electric field in the depletion region adjacent to the junction and therefore a
thin barrier. For the conduction band profile of the NPN HBT in Fig. 12-1, electrons can tunnel
from the emitter (side 1) to the base (side 2) due to the high electric field in the emitter. Tunneling
across a HJ can be categorized into local and non-local tunneling. The local tunneling (LT) model
is basically a simplified version of the more accurate non-local tunneling model, with the local
model being much easier to implement than the non-local one, especially in a distributed parallel
running environment. Charon currently supports only the LT model. The LT model is derived in
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detail from the original paper [36] in Appendix C, and its final form is given below.

Taking the conduction band profile in Fig. 12-2(a) as an example, the net electron current density
across the HJ including both thermionic emission and local tunneling is given by

JHJ,n = JT E,n(1+δn), (138)

where the tunneling factor δn takes the form of [see Eq. (192)]

δn =
1

kBT

∫
∆EC

0
exp
[
− 8π

3hqξ

√
2m∗nt (∆EC−E)3/2

]
exp
(

∆EC−E
kBT

)
dE.

In this equation, h is the Planck constant, q is the elemental charge, ξ is the larger electric field of
the two sides [i.e., the electric field in side 1 for Fig. 12-2(a)], and m∗nt is the electron tunneling
effective mass. To perform the integration over energy efficiently, one can rewrite δn in the
following form:

δn =
∫ ∆EC

kBT

0
exp

u−
(

u
u0

) 3
2

du, (139)

where u and u0 are defined as

u =
∆EC−E

kBT
,

u0 =
1

kBT

(
3hqξ

8π
√

2m∗nt

) 2
3

. (140)

The above tunneling model is also applicable to the electron tunneling over the conduction band
profile in Fig. 12-2 (c), except that the absolute value of ∆EC and the larger electric field in side 2
should be used in computing δn.

For hole tunneling through the valence band profiles in Fig. 12-3, the same equations [Eqs. (138)
and (139)] are applicable, except that ∆EC and m∗nt are replaced by ∆EV and m∗pt , respectively.
Note that the valence band profiles in Fig. 12-2(a) and (c) do not allow for hole tunneling, while
hole tunneling over the valence band profiles in Fig. 12-2(b) and (d) is negligible due to the fact
that the tunneling source side has a smaller electric field which is used in computing the local
tunneling factor δp.

12.3. Model Implementation

Implementation of the TE and LT models in Charon consists of two main parts: (i) compute the
net current density across a HJ according to the models described above, (ii) add the HJ current
density to the residual of the carrier continuity equations as an interface flux condition. The
carrier continuity equations are discretized using both the finite element method with the
streamline upwinding Petrov-Galerkin stabilization (FEM-SUPG) [10], and the control volume
finite element method with the Scharfetter-Gummel stabilization (CVFEM-SG) [11]. Hence the
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EV1

EV2

∆EV > 0

EV2

EV1

∆EV < 0

(a) (b)

Figure 12-3 Examples of valence band diagrams that allow for hole tunneling.

HJ models are implemented for the two discretization schemes. In the following, the
implementation of the HJ models is highlighted for the FEM-SUPG discretization, and a similar
implementation is also done for the CVFEM-SG method.

The dimensionless carrier continuity equations take the form of

∂n
∂t
−∇ ·Jn +R = 0,

∂p
∂t

+∇ ·Jp +R = 0. (141)

For implementation purpose, the equations need to be rewritten in the FEM weak forms.
Considering the two element blocks (e.g., eb1 and eb2) that share a HJ as illustrated in Fig. 12-4,
the carrier densities are discontinuous at the HJ, hence the basic variables are (n1, p1,φ) for eb1,
and (n2, p2,φ) for eb2, where φ is the to-be-solved electric potential which is continuous across
the HJ. The Galerkin finite element weak forms of the continuity equations are

eb1 eb2

(𝑛𝑛1, 𝑝𝑝1, 𝜙𝜙) (𝑛𝑛2, 𝑝𝑝2, 𝜙𝜙)

HJ

𝐽𝐽𝐻𝐻𝐻𝐻,𝑛𝑛

𝐽𝐽𝐻𝐻𝐻𝐻,𝑝𝑝

Figure 12-4 Schematics of two element blocks with a heterojunction, showing the ba-
sic variables in each element block and the currents across the junction.
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∫
Ω

(
∂n1

∂t
+R
)

wdΩ+
∫

Ω

Jn1 ·∇wdΩ−
∫

HJ
JHJ,nwdΩ = 0,∫

Ω

(
∂n2

∂t
+R
)

wdΩ+
∫

Ω

Jn2 ·∇wdΩ+
∫

HJ
JHJ,nwdΩ = 0,∫

Ω

(
∂p1

∂t
+R
)

wdΩ−
∫

Ω

Jp1 ·∇wdΩ+
∫

HJ
JHJ,pwdΩ = 0,∫

Ω

(
∂p2

∂t
+R
)

wdΩ−
∫

Ω

Jp2 ·∇wdΩ−
∫

HJ
JHJ,pwdΩ = 0, (142)

where w is the FE nodal basis function, JHJ,n and JHJ,p are the net heterojunction current density
for electrons and holes respectively, with JHJ,n given in Eq. (138). The same JHJ,n is applied to
the n1 and n2 equations except for the opposite sign, and the same holds true for JHJ,p

12.4. Model Usage

To use the TE and LT models for simulating a heterodevice, besides the common settings used for
simulating a homojunction device such as a silicon pn diode provided in an input file, we need
two additional settings: (i) specify discontinuous suffix numbers in physics blocks; (ii) specify a
heterojunction block. Taking the InGaP/GaAs/GaAs NPN HBT device in Fig. 12-1 as an
example, the emitter-base junction can have electron and hole thermionic emission currents and
electron tunneling current, but does not support hole tunneling.

First, the discontinuous suffix numbers are specified for the InGaP and GaAs physics blocks, as
shown in the following snippet. The InGaP physics block corresponds to the emitter InGaP region
which is defined as side 1, while the GaAs physics block corresponds to the base and collector
regions which are defined as side 2.
start Physics Block InGaP

discontinuity for hbt with suffix 1
geometry block is emitter-ingap
material model is InGaP-Parameter
...

end

start Physics Block GaAs
discontinuity for hbt with suffix 2
geometry block is base-gaas
geometry block is collector-gaas
material model is GaAs-Parameter
...

end Physics Block GaAs

Second, one needs to specify the heterojunction block as follows
start heterojunction on {sidesetName}

junction is between blocks {block1var} and {block2var}
start electron

discretization method is fem or cvfem
local tunneling is on or off
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(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 12-1 for available parameters)

end electron
start hole

discretization method is fem or cvfem
local tunneling is on or off
(same parameters as electron above)

end hole
end

The sidesetName keyword specifies the sideset at which the heterojunction BC is applied. The
sideset needs to be defined in Cubit as a one-sided sideset. block1var and block2var are the two
element blocks that touch the same sideset defined by sidesetName. discretization method

specifies the discretization method for computing heterojunction current density, which can be
either fem (finite element discretization) or cvfem (Scharfetter-Gummel discretization).
local tunneling specifies if one wants to include tunneling current in heterojunction BC
calculation. When it is on, Eq. (138) is used; otherwise, Eq. (131) is used in computing
heterojunction current density.

Table 12-1 Syntax and parameters for the heterojunction boundary condition. m0 is
the free electron effective mass.

Input file Corresponding variables Description units

fermi dirac density None
carrier density above which
the Fermi-Dirac approach is used
in computing current density

cm−3

effective mass m∗n or m∗p in Eq. (132)
carrier effective mass for computing
the Richardson constants m0

band offset ∆EC or ∆EV in Eq. (131) conduction or valenche band offset eV

loca tunneling mass m∗nt or m∗pt in Eq. (140)
carrier effective mass for
local tunneling calculation m0

For the InGaP/GaAs/GaAs NPN HBT example in Fig. 12-1, the heterojunction block looks like
start heterojunction on ebjunction
junction is between blocks emitter-ingap and base-gaas
start hole
effective mass = 0.58
band offset = 0.444
fermi dirac density = 1e11
discretization method is fem

end hole
start electron
effective mass = 0.088
band offset = 0.064
fermi dirac density = 1e11
discretization method is fem
local tunneling is on
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tunneling effective mass = 0.088
end electron

end heterojunction

Complete examples on the heterojunction BC can be found at tcad-charon/test
/nightlyTests/b2ttunnel/.

12.5. Fixed Charge at Interface

In GaN/AlGaN/GaN-based HEMTs an important cause of electrons in the 2DEG channel is the
existence of a fixed charge at the boundary between the wide bandgap semionductors bordering
the channel. Charon provides the capability to place fixed positive or negative charge at
semiconductor/semiconductor interfaces (heterointerfaces).

When adding charge at heterointerfaces, the electric field on both sides of the interface is affected
in accordance with the Gauss’s Law. Given the charge density σ in units of cm−2 at the interface
between materials 1 and 2, the Gauss’s Law determines a relation between the normal components
of electric field displacements or gradients of potential on each side of the interface:

−D1 ·η1−D2 ·η2 = qσ,

ε0εr2∇φ2 ·η2 + ε0εr1∇φ1 ·η1 = qσ (143)

where we used

D1 = −ε0εr1∇φ1,

D2 = −ε0εr2∇φ2 (144)

Here, q is the elemental charge in units of Coulombs (C), ε0 is the vacuum permittivity with ε0 =
8.8542×10−14 CV−1 cm−1, εr1 and εr2 are the relative permittivity of materials 1 and 2, ∇φ1 and
∇φ2 are the potential gradients in units of Vcm−1 in materials 1 and 2 respectively, η1 is the
normal unit vector of side 1 pointing toward side 2 and η2 is the normal unit vector of side 2
pointing toward side 1.

The boundary conditions on each side of the interface are derived by expressing the normal
component of the electric displacement field of a function of the electric displacement field on the
opposite side and the charge on the interface using Eq. (143):

D1 ·η1 = ε0εr2∇φ2 ·η2−qσ,

D2 ·η2 = ε0εr1∇φ1 ·η1−qσ (145)

or scaled, as used internally by Charon

Ds
1 ·η1 = εr2∇φ

s
2 ·η2−

qσX0

ε0V0
,

Ds
2 ·η2 = εr1∇φ

s
1 ·η1−

qσX0

ε0V0
(146)
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Here the superscript s denotes that the electric field displacements and potential gradients are
scaled and X0 and V0 are the length and voltage scaling factors.

Then the contributions to the non-linear Poisson equation residual for side 1 and side 2 are given
by

−λ
2(−qσX0

ε0V0
+ εr2∇φ

s
2 ·η2) =

σ

X0C0
−λ

2
εr2∇φ

s
2 ·η2,

−λ
2(−qσX0

ε0V0
+ εr1∇φ

s
1 ·η1) =

σ

X0C0
−λ

2
εr1∇φ

s
1 ·η1 (147)

where λ2 = V0ε0
qX2

0 C0
and C0 is the concentration scaling factor.

Under the assumption that the potential is continuous at the hetero interface (single point), the
total residual contribution due to the interface charge to the non-linear Poisson is given by sum of
the individual contributions from each side in Eq. (147):

2
σX0

ε0C0
− λ2

ε0V0
X0

(εr2∇φ2 ·η2 + εr1∇φ1 ·η1) (148)

Using the second expresssion in Eq. (145) in its scaled form, the total residual contribution due
the interface charge reduces to σX0

ε0C0
.

Two steps are required to add charge at heterointerfaces. First, we need to define the charge
interface as a single-sided sideset in Cubit. Second, details about interface BC need to be
specified in the Charon’s input file, inside thr potential heterojunction block, as follows
start potential heterojunction on {sidesetName}

junction is between blocks {block1var} and {block2var}
start potential

discretization method is {discMethod}
fixed charge = {surfCharge}

end potential
end

Here, the sidesetName keyword specifies the sideset at which the potential heterojunction BC is
applied. The sideset needs to be defined in Cubit as a one-sided sideset. block1var and block2var

are the two element blocks that touch the same sideset defined by sidesetName. discMethod
specifies the discretization method for computing heterojunction charge induced flux, which can
be either fem (finite element discretization) or cvfem (Scharfetter-Gummel discretization).
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13. HARMONIC BALANCE

Frequency domain simulation of the coupled Drift-Diffusion and Poisson equations is possible in
Charon via the harmonic balance (HB) method. All physical discretization schemes are
supported, and either a small-signal or large-signal analysis can be chosen for the
frequency-domain analysis method. Some boundary conditions, such as the ohmic contact and
contact on insulator, are presently supported. In this section, we will refer to the standard Charon
formulation as the time-domain (TD) formulation to distinguish it from the HB formulation.

13.1. Formulation

For brevity, we outline Charon’s harmonic balance method for the electron drift-diffusion
equation in a Galerkin finite-element spatial discretization; the treatment is similar for the hole,
Poisson, and lattice temperature equations in any discretization scheme. In the time domain, the
electron drift-diffusion equation can be expressed as

∂n
∂t

+Fn(n, p,φ) = 0, (149)

where n(t), p(t), and φ(t) is the electron density, hole density, and electric potential, respectively
at time t. The quantity Fn consists of terms which are not explicitly time-dependent. Explicit
time-dependent terms do not appear here, but will arise numerically as boundary condition
forcing terms through periodic time-varying voltage boundary conditions. Using a spatial basis
function Λ(~x) on a spatial discretization element V , a component of the residual is∫

V

∂n
∂t

Λ(~x)d~x+R Λ
n (n(t), p(t),φ(t)) = 0. (150)

Note that R Λ
n (t) denotes the spatial residual of the steady-state TD equation. The term ∂n

∂t is
approximated using a time discretization method (e.g., backward-Euler) for a TD transient
simulation, or else omitted for a steady-state simulation. In the harmonic balance method, this
term is transformed into the frequency domain.

The HB method (in either the small-signal and large-signal modes) has a solution ansatz whose
form depends on the applied contact voltage frequencies ω1 Hz, ω2 Hz, . . . ,ω` Hz, called the
fundamental frequencies of a simulation. Without loss of generality, we assume that
ω1 < ω2 < · · ·< ω`, and write ~ω = (ω1, . . . ,ω`) for conciseness. A choice is made for the degree
of intermodulation frequencies to be captured by the HB method, and the collection of those
intermodulation frequencies is called a truncation scheme. Truncation schemes T are recorded as
integer lattice points~k = (k1,k2, . . . ,k`) ∈ Z` which correspond to a linear combination ~ω ·~k of the
fundamental frequencies. Thus, the HB solution ansatz takes the form

n(~x, t) = N0(~x)+ ∑
~k∈T

[
Nc
~k
(~x)cos

(
2π~ω ·~kt

)
+Ns

~k
(~x)sin

(
2π~ω ·~kt

)]
(151)
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Note that the physical solution contains more frequencies than those fundamental frequencies
applied, and the ansatz captures this but necessarily truncates the frequencies observed [41].
Common truncation schemes interpolate between the Box and Diamond truncation schemes
[42].

To arrive at the HB equations, we first multiply (150) by a Fourier basis function, i.e.,

cos
(

2π~ω ·~kt
)

or sin
(

2π~ω ·~kt
)

for~k ∈ T ,

and integrate over a period. This results in 2|T |+1 residual equations, disregarding sin(2π0t). In
the following, we explicitly describe the procedure involving cos(2πωit) because all other cases
are similar. We next integrate the time-derivative summand analytically, and the time-independent
summand numerically using a trapezoidal rule (which converges exponentially for periodic
functions [43]). Thus, we obtain the cos(2πωit) HB residual equation:

0 =πωi

∫
V

Ns
ωi
(~x)Λ(~x)d~x+

L

∑
m=0

wm
ωi

R Λ
n (n(tm), p(tm),φ(tm)) (152)

involving time collocation points and quadrature weights

tm =
m
L

and wm
ωi
≡ 2−δ0m−δmL

2
cos(2πωitm)

where δab = 1 when a = b and δab = 0 otherwise, and L = 2ω` by the Nyquist Sampling
Theorem.

Note that the arguments n(tm), p(tm), and φ(tm) of R Λ
n are evaluated via the ansatz expression

(151). For this evaluation, the small-signal and large-signal formulations differ slightly: for the
small-signal analysis, the summation is restricted to only~k which yields ~ω ·~k = ωi; for the
large-signal analysis, the summation ranges over all~k ∈ T . This has the following effect: the
small-signal response at the ωi frequency is only influenced by the contact voltage amplitudes at 0
and ωi hertz, whereas the large-signal response at any frequency is influenced by the contact
voltage amplitudes of all frequencies and their intermodulations.

Since the HB residual equation (152) is assembled through evaluation of the steady-state TD
model R Λ

n at multiple collocation points (with the corresponding value of the HB solution ansatz
(151) at that time), any discretization method and physical models that are implemented for the
TD analysis can be carried over into the HB residual. Practically, the HB residual involves orders
of magnitude more computation than a TD residual, but parallelization accelerates the summation
operations which appear in the ansatz (151) and the residual (152).

The Nyquist Sampling Theorem recommends a minimum of 2ω`+1 time collocation points,
which is too great for large frequencies. This makes the transform (152) prohibitively expensive.
To address this, frequency remaping is typically leveraged for harmonic balance methods. We
have developed an efficient minimal iso-frequency remapping as an alternative to various
frequency mapping methods in the literature [44]. For example, if the fundamental frequencies
for an order 3 box truncation scheme hb analysis are 1.0MHz and 1.3MHz, the algorithm shows
that the remapped frequencies 3Hz and 4Hz yield an equivalent problem.
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Applying the isofrequency remapping algorithm to

omega = [1000000.0, 1130000.0]
with a truncation order = 3
There are 25 truncation coefficients.

Determining the cone N and annihilators A ... 0.005552053451538086s
Creating input deck for Normaliz ... 0.02010822296142578s
Running Normaliz to find the Hilbert basis ... 0.013696670532226562s
Using Hilbert basis to find minimal element ... 0.008527994155883789s

Complete! The minimal eta is: [4 5]

Important note: if remapped frequencies are used, the boundary conditions should be specified
with respect to these remapped frequencies.

13.2. Usage

The specificationun of a harmonic balance analysis is similar to that of a time-domain simulation,
except for input deck specifications in the

• physics block frequency domain options (as a sub-block),

• boundary conditions (possibly applying a small-signal DC sweep), and

• initial conditions (which can come from a previously steady-state simulation).

The output of the HB Charon simulation will be in the frequency domain. Thus, the Fourier
coefficients of the current and degrees of freedom are returned. For example, where a TD
simulation returns ELECTRIC_POTENTIAL, an HB simulation returns
ELECTRIC_POTENTIAL_CosH0.000000_, ELECTRIC_POTENTIAL_SinH1.000000_,
ELECTRIC_POTENTIAL_CosH1.000000_, etc. In particular, the
ELECTRIC_POTENTIAL_CosH0.000000_ field is the DC component of the solution field; in a
small-signal analysis, ELECTRIC_POTENTIAL_SinH1.000000_ and
ELECTRIC_POTENTIAL_CosH1.000000_ are the small-signal components of the solution field. In
the following, we will describe the three necessary input deck blocks in order to perform a
harmonic balance analysis in Charon.

13.2.1. Physics Block

A harmonic balance analysis needs to be specified in the physics block, choosing either a
small-signal or large-signal analysis. A physics sub-block specifying frequency domain
parameters is also required. Within a physics block corresponding to one named
physicsBlockName, this has form:
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start Physics Block physicsBlockName
apply harmonic balance
start harmonic balance parameters
..

end
end

In Table 13-1, we provide a description of the options and parameters which can be set for a
harmonic balance analysis.

Table 13-1 Syntax for HB analysis in physics block.

apply harmonic balance [for small signal analysis [for large signal analysis]]
start harmonic balance parameters

truncation order = {truncationOrder}
truncation scheme is {truncationScheme}
fundamental harmonics = {fundamentalHarmonics}
remapped harmonics = {remappedHarmonics}

end
Option Description Required
for small signal analysis Specify a small-signal frequency domain analysis. No

for large signal analysis
Specify a large-signal frequency domain analysis.
This is the default mode of harmonic balance analysis,
if neither option is specified.

No

remapped harmonics =
Specify a sequence of remapped fundamental harmonics.
If remapped frequencies are used, then the boundary conditions
should be specified with respect to these values.

No

Variables Description Default
truncationOrder Specify the order of truncation scheme. None

truncationScheme
Specify the type of truncation scheme to use,
chosen among: box, diamond. None

fundamentalHarmonics Space-separated sequence of fundamental harmonics. None
remappedHarmonics Space-separated sequence of remapped fundamental harmonics. None

13.2.2. Boundary Conditions

In place of the standard boundary condition option which takes the form
BC is bcType for contactName on materialName

we have instead, for a harmonic balance analysis, a block which takes the form
start hb boundary conditions for contactName on materialName
type is bcType
..

end
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Within this block, the kind of boundary condition applied can be specified. The parameters
omitted in ellipses are described in Table 13-2, and pertain to the parameterization of the periodic
voltage boundary condition for the analysis. In the case of a small-signal analysis, a DC voltage
boundary condition around which the small-signal perturbation is applied can be swept. Where
the TD boundary voltage sweep is specified with

BC is bcType for contactName on materialName swept from potential1 to potential2

we have instead, for a small-signal harmonic balance analysis with a DC bias sweep, a block
which takes the form

start hb boundary conditions for contactName on materialName
type is bcType
small signal sweep from {potential1}to potential2 with amplitude ssAmplitude /with phase shift

ssPhaseShift with frequency ssFrequencyend

We emphasize: the frequency specified for the small-signal analysis needs be entered with respect
to the remapped fundamental frequencies. The small-signal HB boundary condition parameters
are described in Table 13-3.

Table 13-2 Syntax for HB Boundary Conditions. Note that the list of frequencyValues,
amplitudeValues, and phaseshiftValues must have the same number of parameters.

start Harmonic Balance BC for contactName on materialName
type is bcType
frequencies = “frequencyValues”
amplitudes = “amplitudeValues”
phase shifts = “phaseshiftValues”

end
Option Description Required

None
Variables Description Default
contactName Specify a contact name on which to apply this boundary condition. None
materialName Specify the material name on which the contact is provided. None
bcType Choose among: ohmic, ... (additional parameters may be required) None
frequencyValues Space-separated values of (remapped) frequencies, in quotes. None
amplitudeValues Space-separated values of amplitudes, in quotes. None
phaseshiftValues Space-separated values of phase shifts, in quotes. None

To specify an ohmic contact boundary condition, the following syntax is used:

start Harmonic Balance BC for contactName on materialName
type is ohmic for anode on silicon

end Harmonic Balance BC for contactName on materialName

To specify a gate contact or contact on insulator, the following syntax is used:
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Table 13-3 Syntax for HB Boundary Conditions for performing a DC sweep for a small-signal analysis.

start Harmonic Balance BC for contactName on materialName
type is bcType
small signal sweep from potential1 to potential2 with amplitude ssAmplitude /

with frequency ssFrequency with phase shift ssPhaseShift
end
Option Description Required

None
Variables Description Default
contactName Specify a contact name on which to apply this boundary condition. None
materialName Specify the material name on which the contact is provided. None
bcType Choose among: ohmic, ... (additional parameters may be required) None
ssFrequency single (remapped) frequecy value in Hz for the small-signal perturbation None
ssAmplitude single voltage value for small-signal perturbation. None
ssPhaseShift single percentage value for small-signal phase shift None

start Harmonic Balance BC for contactName on materialName
type is ohmic for contact on inulator for silicon with work function {workFunction}

end Harmonic Balance BC for contactName on materialName

Note that boundary conditions can be mixed, so that, for example, a MOS capacitor can be
analyzed using harmonic balance. Please see 13.3.3 for this use case.

13.2.3. Initial Conditions

In place of the TD boundary condition option which takes the form
initial conditions for degreeOfFreedom in materialName is icType

for HB the specification takes the form described in Table 13-4.

13.3. Example usage

13.3.1. Modifying a steady-state time-domain input deck for frequency-domain analysis

After a drift-diffusion equilibrium simulation, the solution degrees of freedom can be used to
initialize the steady-state solution components of a harmonic balance small-signal analysis. In
this example, we describe the procedure of modifying the input deck for a (time-domain)
equilibrium simulation of a p-n diode in order to apply a small-signal analysis on the same p-n
diode to obtain its steady-state frequency-domain behavior. Although the small-signal analysis
can be performed without first simulating the time-domain equilibrium simulation, solution
initialization may be too far for convgence.
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Table 13-4 Syntax for HB Initial Conditions.

Harmonic Balance Initial Conditions for {degreeOfFreedom} in {materialName} is [
Exodus File [

constant = constValue [
remapped named remapDOF [

DC remapped [
uninitialized for higher harmonics ]]]]]

Option Description Required
None

Variables Description Default

degreeOfFreedom
Choose one of: ELECTRIC_POTENTIAL, ELECTRON_DENSITY,
HOLE_DENSITY, LATTICE_TEMPERATURE None

materialName Specify the material in which this initial condition is to be specified. None
exodus file This will read in the degree of freedom from the input exodus file. None

constant
This specifies that a constant value equal to constValue
will be set for this degree of freedom. None

DC remapped
This will use ELECTRIC_POTENTIAL from the input exodus file to
initialize the ELECTRIC_POTENTIAL_CosH0.000000_ field, etc. None

uninitialized for
higher harmonics

This leaves the degree of freedom uninitialized (initialized to 0.0)
for any harmonic not specified. Typically, the DC remap option
described above will be used in conjunction with this.

None

In the following, we refer to the two nightly test input files:
tcad-charon/test/nightlyTests/capability/pndiode.sg.equ.inp
tcad-charon/test/nightlyTests/freqdom/pndiode/pndiode.hb-sgcvfem-dd.inp

for these p-n diode simulations. Note that both input decks use the common discretization type of
drift-diffusion cvfem. As described in the preceding usage section, modifications need to be made
to the physics block, initial conditions, and boundary conditions to adapt the former input deck
into the latter input deck to execute this change of analysis.

The equilibrium (time-domain) simulation of the p-n diode as specified in
tcad-charon/test/nightlyTests/capability/pndiode.sg.equ.inp

applies the boundary conditions

Vanode = 0.0V and Vcathode = 0.0V

whereas the small-signal (frequency-domain) simulation of the same pn-diode as specified in
tcad-charon/test/nightlyTests/freqdom/pndiode.hb-sgcvfem-dd.ac1-linear-SS.inp

applies the boundary conditions

Vanode = (4.0+2.0 · sin(2π ·1Hz · t))V and Vcathode = 0.0V
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In the following excerpt from
tcad-charon/test/nightlyTests/capability/pndiode.sg.equ.inp

we highlight the commands in violet which were modified to support a harmonic balance
analysis.
start Physics Block Semiconductor

geometry block is silicon
standard discretization type is drift diffusion cvfem
material model is siliconParameter
...

end Physics Block Semiconductor
...
BC is ohmic for anode on silicon fixed at 0
BC is ohmic for cathode on silicon fixed at 0
...
initial conditions for ELECTRIC_POTENTIAL in silicon is Exodus File
Initial Conditions for ELECTRON_DENSITY in silicon is Equilibrium Density
Initial Conditions for HOLE_DENSITY in silicon is Equilibrium Density

In the following excerpt from
tcad-charon/test/nightlyTests/freqdom/pndiode/pndiode.hb-sgcvfem-dd.inp

we highlight the commands in teal which were added to, or modified from, the excerpt above.
start Physics Block Semiconductor

geometry block is silicon
standard discretization type is drift diffusion cvfem
apply harmonic balance for large signal analysis
start harmonic balance parameters
truncation order = 1
truncation scheme is box
fundamental harmonics = 1

end harmonic balance parameters
material model is siliconParameter
...

end Physics Block Semiconductor
...
start Harmonic Balance BC for anode on silicon
type is ohmic
frequencies “0 1”
amplitudes “4 2”
phase shifts “0 0”

end Harmonic Balance BC for anode on silicon
start Harmonic Balance BC for cathode on silicon
type is ohmic
frequencies “0”
amplitudes “0”
phase shifts “0”

end Harmonic Balance BC for cathode on silicon
...
Harmonic Balance initial conditions for ELECTRIC_POTENTIAL in silicon is uninitialized for higher
harmonics
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Harmonic Balance Initial Conditions for ELECTRON_DENSITY in silicon is uninitialized for higher
harmonics
Harmonic Balance Initial Conditions for HOLE_DENSITY in silicon is uninitialized for higher harmonics
Harmonic Balance Initial Conditions for LATTICE_TEMPERATURE in silicon is uninitializedfor higher
harmonics

13.3.2. PN diode small-signal capacitance-voltage profiling

Using the harmonic balance formulation, a small-signal perturbation to a contact DC voltage
sweep can be performed to obtain the capacitance-voltage profile of a p-n diode. Sinuoidal
steady-state analysis, equivalent to a specific configuration of harmonic balance analysis, has
been demonstrated to accurately capture the small-signal capacitance of a p-n diode [45],
comparing favorably in numerical experiment to measurement for both a long-base and short-base
diode. We will refer to these input decks and their corresponding test in this example:
tcad-charon/test/nightlyTests/freqdom/loca_pndiode_cv/pndiode.hb-dd.loca.longbase.inp
tcad-charon/test/nightlyTests/freqdom/loca_pndiode_cv/pndiode.hb-dd.loca.shortbase.inp

These tests produce the Charon HB values plotted as a solid curve in Figure 13-1, matching the
values obtained in [45] using sinusoidal steady-state analysis.

Figure 13-1 Capacitance-voltage profile comparison between example long-base and
short-base PN diodes. Obtained using a small-signal perturbation to a contact DC
voltage sweep, applied with a harmonic balance boundary condition.

In order to perform the small-signal perturbation of a contact DC voltage sweep, these input
decks specify the following boundary conditions. The anode contact voltage is held at 0V and a
1e−3V amplitude sinusoidal small-signal perturbation is applied to the cathode contact DC
voltage, which itself is swept from −0.55V to 0.55V.
start Harmonic Balance BC for anode on silicon
type is ohmic
small signal sweep from -0.55 to 0.55 with amplitude 1e-3

end Harmonic Balance BC for anode on silicon
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start Harmonic Balance BC for cathode on silicon
type is ohmic
frequencies "0"
amplitudes "0"
phase shifts "0"

end Harmonic Balance BC for cathode on silicon

13.3.3. MOS capacitor small-signal capacitance-voltage profiling

As in the previous p-n diode capacitance-voltage profiling example, a small-signal DC sweep can
be performed using a hamonic balance analysis to obtain the frequency-dependent
capacitance-voltage characteristic of a MOS capacitor. However, unlike the p-n diode where the
coupled Poisson-drift-diffusion equations are simulated throughout the device, the MOS capacitor
requires a Laplace equation set simulated in the oxide and a Poisson-Drift-Diffusion equation set
simulated in the substrate. We will refer to the input decks:
tcad-charon/test/nightlyTests/freqdom/loca_moscap_cv/moscap.hb.locaOxide.1e0Hz.inp
tcad-charon/test/nightlyTests/freqdom/loca_moscap_cv/moscap.hb.locaSubstrate.1e6Hz.inp

In the first input deck, the substrate contact is fixed at 0V while the gate contact DC voltage is
swept with a small-signal perturbations. In the second input deck, the gate contact is fixed at 0V
hile the substrate contact DC voltage is swept with a small-signal perturbation. In Figure 13-2, the
small-signal capacitance is plotted versus the DC Vgs voltage bias across the MOS capacior from
the gate contact to the substrate contact. Note that the frequecy dependence of the capacitance is
captured.

Figure 13-2 Frequency-dependent capacitance-voltage profile of an example MOS ca-
pacitor. Obtained using a small-signal perturbation to a contact DC voltage sweep,
applied with a harmonic balance boundary condition.

Here is the small signal analysis boundary condition specification for this analysis, with the
substrate contact held at 0V and the gate contact swept from 0.29V to 0.47V. Note that Vgs takes
values in the positive range [0.29,0.47]:
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start Harmonic Balance BC for substrate on silicon
type is ohmic
frequencies "0"
amplitudes "0"
phase shifts "0"

end Harmonic Balance BC for substrate on silicon
start Harmonic Balance BC for gate on oxide
type is contact on insulator with work function 4.05
small signal sweep from 0.29 to 0.47 with amplitude 1e-4

end Harmonic Balance BC for gate on oxide

The physically equivalent analysis can be performed with the gate contact held at 0V and the
substrate contact swept from −0.29V to −0.47V. Again, Vgs takes positive values in the same
range. Although numerically different, the output should be the same. This equivalent analysis is
specified through a different set ofboundary conditions:
start Harmonic Balance BC for substrate on silicon
type is ohmic
small signal sweep from -0.29 to -0.47 with amplitude 1e-4

end Harmonic Balance BC for substrate on silicon
start Harmonic Balance BC for gate on oxide
type is contact on insulator with work function 4.05
frequencies "0"
amplitudes "0"
phase shifts "0"

end Harmonic Balance BC for gate on oxide
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14. RADIATION MODELS

Charon includes capabilities to model what the effects of various forms of radiation are on
semiconductor devices.

14.1. Empirical Displacement Damage Model

As the name implies the empirical radiation model utilizes data obtained from experiments to
model the effects of displacement damage radiation [46]. To accomplish this a table representing
this data must be input into the code.

In order to utilize the empirical model first the physics block sections for the portion of the
problem in which it is active must be specified, for example

start physics block {physicsBlockName}
...
empirical damage model is on / off
...

end

Next a start empirical model parameters section is used to specify parameters for the model.
That section has the following format

start empirical model parameters
mu table data file is {fileName}
emitter base junction bounding box is {min} to {max} in x / y / z
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 14-1 for available parameters)

end

Table 14-1 Syntax and parameters for the empirical radiation damage model.

Input file Description units
thermal velocity thermal velocity of carriers cm

s
cross section collison cross sectional area cm2

emitter-base voltage override voltage across the emitter-base junction V
Parameters for Analytic Radiation Pulse

pulse start time set the start time of the radiation pulse s
pulse end time set the end time of the radiation pulse s
pulse magnitude magnitude of the peak of the radiation pulse —
pulse resolution pulse is sampled at this integer value —
pulse waveform analytic form of the pulse (see table 14-2) —
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Table 14-2 Analytic pulse definitions. Unless otherwise noted the pulses are sampled
over the range t = [pulse start,pulse end] at the resolution given by the user-specified
pulse resolution parameter.

Function name Equation
delta

pulse(t) = (pulse magnitude)δ(t−pulse start)

square

pulse(t) = pulse magnitude

gaussian

Tm =
1
2
(pulse start+pulse end)

Pw =
(pulse start−pulse end)

6

pulse(t) = (pulse magnitude) exp

(
−(t−Tm)

2

2P2
w

)

gaussianlog

Tm =
1
2
(
log(pulse start)+ log(pulse end)

)
Pw =

log(pulse end)− log(pulse start)
6

pulse(t) = (pulse magnitude)exp

(
−(t−Tm)

2

2P2
W

)

NOTE: for this waveform log(t) is incremented rather than t such that the
data can encompass large time spans, possibly many decades, for example
t = [10−6 : 10−3].

14.2. Total Ionizing Dose Models

Charon provides several models to simulate total ionizing dose (TID) effects.
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14.2.1. Fixed Oxide Charge Model

The simplest TID model is to assign positive or negative fixed charges in oxide regions. The
effect of fixed charges is included through the Laplace equation for insulators. Currently, only a
uniform spatial distribution in a specified box is supported. New analytic spatial profiles can be
easily added.

To use the model, one needs to specify it in two places. The first step is to specify

bulk fixed charge is on/off

in an insulator physics block. When neither option is given, it defaults to off. The second step is
to add the following block

start bulk fixed charge parameters
distribution is uniform
charge density = {value} or is swept from {value1} to {value2}
spatial range is {locMin} to {locMax} in x or in y or in z

end

inside a material block. The distribution keyword specifies the spatial profile and currently only
supports uniform. The charge density keyword specifies the fixed charge density in units of cm−3,
which can be positive for positive charges or negative for negative charges. The charge density

can also be swept from one density to another density. This is done by using

charge density is swept from {value1} to {value2}

The spatial range keyword specifies a box region where bulk fixed charges are located. The
spatial range line can be defined for each spatial axis.

An example of specifying a fixed charge density in a defined box is given below. Two complete
examples are oxide.lapl.bq-.inp for negative charges and oxide.sg.lapl.bq.inp for positive
charges, located under tcad-charon/test/nightlyTests/oxidecharge/.

start Material Block SiO2Parameter
material name is SiO2
relative permittivity = 3.9

start bulk fixed charge parameters
distribution is uniform
charge density = -1e17
spatial range is 0.2 to 0.8 in x
spatial range is 0.1 to 0.3 in y

end bulk fixed charge parameters
end Material Block

An example of sweeping charge density in a defined box is given by

start Materal Block SiO2Parameter
material name is SiO2
relative permittivity = 3.9

start bulk fixed charge parameters
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distribution is uniform
charge density is swept from -1e16 to -1e17
spatial range is 0.2 to 0.8 in x
spatial range is 0.1 to 0.3 in y

end bulk fixed charge parameters
end Material Block

In addition to the fixed charge block, one also needs to specify a sweep options block with an
example given below. Two complete examples are oxide.lapl.bq-.loca.inp for negative charge
sweeping and oxide.sg.lapl.bq.loca.inp for positive charge sweeping, located under
tcad-charon/test /nightlyTests/oxidecharge/.
start Sweep Options

Initial Step Size = -1e16
Minimum Step Size = 1e13
Maximum Step Size = 5e16
continuation method is Arc Length
predictor method is tangent
successful step increase factor = 2
failed step reduction factor = 0.5
Step Size Aggressiveness = 0.5

end Sweep Options

Here the values for initial step size, maximum step size, maximum step size are all in units of
cm−3 for a charge sweeping option.

14.2.2. Interface Fixed Charge Model

TID effects in MOSFETs are often modeled by radiation induced charges at
semiconductor/insulator interfaces. Charon provides the capability to place fixed positive or
negative charges at outer surfaces and/or internal interfaces.

When there exist charges at an interface, the charges affect the electric field at the interface
according to Gauss’s Law. Given a charge density of σ, in units of cm−2, at an interface between
materials 1 and 2, Gauss’s Law determines that the gradient of the electric potential needs to
satisfy:

(ε0εr2∇φ2− ε0εr1∇φ1) ·η1 = qσ. (153)

Here, q is the elemental charge in units of Coulombs (C), ε0 is the vacuum permittivity with ε0 =
8.8542×10−14 CV−1 cm−1, εr1 and εr2 are the relative permittivity of materials 1 and 2
respectively. ∇φ1 and ∇φ2 are the potential gradient in units of Vcm−1 in materials 1 and 2
respectively, and η1 is a normal unit vector pointing from 2 to 1. If the charges are located at an
outer surface of a simulation device, the potential gradient at the surface is given by:

ε0εr∇φ ·η = qσ, (154)

where η is a normal unit vector pointing outward from the device.

Two steps are required to use the Neumann charge BC. First, we need to define the charge
interface as a sideset in Cubit. Care should be taken to capture the correct potential gradient when
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specifiying the mesh density in the vacinity of the interface. For example, if σ = 1011 cm−2 is
specified at an interface, the mesh interval adjacent to the interface should not be greater than 1
nanometer (nm). If a higher σ is specified, a mesh size finer than 1 nm at the interface would be
required. The general rule of thumb is, the higher the charge density is, the finer the mesh interval
required. Next, we need to specify the details of the BC in Charon’s input file. The syntax for
doing this is
start surface charge bc for {sidesetName}
geometry block is {geometryBlockName}
fixed charge = {chargeValue}

end

where {sidesetName} is the name of the sideset as given during mesh generation in Cubit,
{geometryBlockName} is the name of the element block that is adjacent to the surface charge, again,
as assigned during mesh generation in Cubit. If a charge sideset is located at the outer boundary
of an element block, the associated element block is uniquely defined. If charges are located at an
internal interface in a simulation domain then two element blocks are needed at the shared
interface. When specifying the interface charge, either of the two element blocks can be used for
{geometryBlockName} without affecting the simulation

To verify the accuracy of the charge BC, we first need to consider that all the quantities except
energy related fields from Charon are scaled by scaling factors. The scaling factors are internally
defined except the Concentration Scaling which can be specified in the Charon input file. Taking
into account the scaling factors, the charge BC at an internal interface becomes:

(εr2∇φ
s
2− εr1∇φ

s
1) ·η1 =

qσX0

ε0V0
, (155)

and the charge BC at an outer surface becomes:

εr∇φ
s ·η =

qσX0

ε0V0
. (156)

Here the superscript s denotes that the potential gradient is scaled and therefore is unitless. X0 and
V0 are the length and voltage scaling factors respectively. All the scaling factors’ values are output
to the screen at the beginning of a Charon simulation. In Charon, X0 is hard-coded to be 10−4 cm,
and V0 = kBT/q with kB being the Boltzmann constant and T being the lattice temperature. If
Lattice Temperature is set to 300 K, V0 is approximately 0.0258 V.

Figure 14-1 Scaled electric potential at equilibrium for a n-channel silicon MOSFET
with a positive charge density of 1011 cm−2 at the Si/SiO2 interface

Figure 14-1 shows the scaled electric potential profile for the n-channel MOSFET example given
in tcad-charon/test/nightlyTests/surfacecharge/nmosfet.ifq+.sg.equ.xml. The example has
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positive charge with a surface density of 1011 cm−2 at the Si/SiO2 interface. The scaled potential
gradient along the white line is shown in figure 14-2. Using the potential gradient values at the
Si/SiO2 interface in figure 14-2, the left hand side of Eq. (155) is equal to
11.9×31.49−3.9× (−83.27) = 699.48 Vcm−1, while the right hand side of Eq. (155) is given
by qσX0/(ε0V0) = (1.602×10−19×1011×10−4)/(8.854×10−14×0.0258) = 700.75 Vcm−1.
Therefore, the potential gradient at the Si/SiO2 interface obtained from Charon indeed satisfies
the theoretical relation in Eq. (155).
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Figure 14-2 Scaled potential gradient along the white line in figure 14-1. The Si/SiO2

interface is located at y = 0. The y < 0 region is the Si region, while y > 0 is the
SiO2 region. The denoted numbers are the potential gradients at the Si/SiO2 interface
obtained from Charon.

14.2.3. Interface Static Trap Model

Charon also provides an interface static trap model that allows to capture voltage dependent
threshold voltage shift in MOSFETs due to TID effects. Discrete interface traps act as carrier
recombination centers. Traps induced surface recombination rate is given by

Rsur f = ∑
j

np−n2
ie

(n+n j
t )/s j

p +(p+ p j
t )/s j

n
, (157)

where the summation runs over the total number of discrete of traps (e.g., two traps located at two
different energy levels). For simpler notation, the superscript j is omitted in the following. nie is
the effective intrinsic concentration in a material. sp (sn) is the hole (electron) surface
recombination velocity. nt and pt for the jth trap are equal to

nt = nie exp
(

Et

kBT

)
, pt = nie exp

(
− Et

kBT

)
, (158)
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where Et is the trap energy measured from the intrinsic Fermi level, Ei. Et is positive for traps
above Ei and negative for traps below Ei. kB is the Boltzmann constant, and T is the lattice
temperature. The carrier surface recombination velocity can be specified directly by user or
computed from the following expression

sν = σνvνNit , ν = n, p. (159)

σ is the carrier capture cross section in cm2, v is the carrier thermal velocity in cm/s, Nit is the
interface trap density in cm−2. In Charon, the thermal velocity is computed using

vν =

√
3kBT
m∗ν

, ν = n, p, (160)

where m∗ is the carrier effective mass.

Charon supports two types of interface traps, i.e., Acceptor and Donor traps. Acceptor traps are
electron traps which are neutral when unoccupied and carry the charge of electrons when
occupied. Donor traps are hole traps which are neutral when empty and carry the charge of holes
when occupied. The occupation probability of the jth Acceptor trap is given by

ftn =
spn+ sn pt

sn(n+nt)+ sp(p+ pt)
. (161)

The occupation function of the jth Donor trap is

ft p =
sn p+ spnt

sp(n+nt)+ sn(p+ pt)
. (162)

The charge density due to occupied acceptor or donor traps contributes to the right hand side
(RHS) of the Poisson equation. The charge contribution is equal to −q∑ j N j

t ftn for acceptor traps,
and it is q∑ j N j

t ft p for hole traps, with q being the elemental charge.

Besides the discrete level interface traps, Charon supports continuous energy distribution traps of
uniform, exponential or gaussian type, as described in table 14-3, where Nit is the peak density,
git(E) is the function describing the distribution and Eσ is the width of the distribution in eV .

Table 14-3 Available energy distribution for the interface trap model.

Distribution Type Description units
uniform git(E) = Nit for Et−Eσ < E < Et +Eσ cm−2ev−1

exponential git(E) = Nitexp(− |E−Et |
Eσ

) for Et−Eσ < E < Et +Eσ cm−2ev−1

gaussian git(E) = Nitexp(− (E−Et)
2

2E2
σ

) for Et−Eσ < E < Et +Eσ cm−2ev−1

In the case of continuous distributions, the total recombination rate in (157) can be written as

Rsur f =
∫ Et+Eσ

Et−Eσ

np−n2
ie

n+nt(E)
σpvpgit(E)

+ p+pt(E)
σnvngit(E)

dE (163)
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where nt(E) = nieexp( E
kBT ) and pt(E) = nieexp(− E

kBT ). The occupation probabilities in
(161),(162) become in this case

ftn(E) =
n

σpvpgit(E)
+ pt(E)

σnvngit(E)
n+nt(E)

σpvpgit(E)
+ p+pt(E)

σnvngit(E)

(164)

for Acceptor traps and

ft p(E) =
p

σnvngit(E)
+ nt(E)

σpvpgit(E)
n+nt(E)

σpvpgit(E)
+ p+pt(E)

σnvngit(E)

(165)

for Donor traps. Finally, the charge contributions can be written as

QA
trapped =−q

∫ Et+Eσ

Et−Eσ

ftn(E)gti(E)dE (166)

for Acceptor traps and

QD
trapped = q

∫ Et+Eσ

Et−Eσ

ft p(E)gti(E)dE (167)

for Donor traps.

Specification of the interface trap model is similar to that of the interface fixed charge model
except that trap related parameters must be given. The mesh size near the interface of interest
should be fine as in the interface fixed charge model. The syntax for specifying the model is given
below
start surface charge bc for {sidesetName}
geometry block is {geometryBlockName}
start surface trap
effective mass for electrons = {eMass}
effective mass for holes = {hMass}
start trap {trapID}
type is {trapType}
energy distribution is {distType}
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 14-4 for available parameters)

end
end
start surface recombination

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 14-4 for available parameters)

end
end

effective mass for electrons (holes) corresponds to m∗n (m∗p) in Eq. (160). Its value must be
given in units of the free electron mass m0. Multiple types of traps can be given by specifying
multiple start trap blocks with different trapID numbers. trapID is an integer equal or greater
than 0. trapType must be either Acceptor or Donor. Acceptor traps are electron traps which are
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neutral when empty and carry the charge of one electron when occupied. Donor traps are hole traps
which are neutral when empty and carry the charge of one hole when occupied. distType select
the energy distribution type for the traps. The distType can be level, uniform, exponential or
gaussian as described in table 14-3. If the line energy distribution is distType is ommited, then
the trap has by default a level distribution. When a continuous energy distribution type (uniform,
exponential or gaussian) is used, then the energy width line described in table 14-4 is required.

Another way of modeling surface recombination due to traps is by specifying the carrier surface
recombination velocity directly. This is done by specifying the start surface recombination

block which has three parameters, i.e., energy, surface velocity for electrons, and
surface velocity for holes.

Table 14-4 Available parameters for the interface trap model.

Parameter name Corresponding variables Description units

energy Et in Eq. (158)

trap energy level measured
from the intrinsic Fermi level Ei,
positive above Ei and negative
below Ei

eV

density
Nit in Eq. (159),
Table 14-3

trap density for level traps or peak
trap density for continuous
distributions

cm−2

cm−2ev−1

cross section
for electrons σn in Eq. (159) electron capture cross section cm2

cross section
for holes σp in Eq. (159) hole capture cross section cm2

energy width Eσ in table 14-3
energy width for
continuous distributions eV

surface velocity
for electrons TBW

electron surface
recombination velocity cm/s

surface velocity
for holes TBW

hole surface
recombination velocity cm/s

An example of specifying the interface trap model with two types of traps is given below.
start surface charge bc for sheet

geometry block is silicon
start surface trap

effective mass for electrons = 0.25
effective mass for holes = 0.50
start trap 0

type is Acceptor
density = 1e11
energy = 0.3
cross section for electrons = 1e-12
cross section for holes = 1e-12

end trap 0
start trap 1
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type is Donor
density = 1e10
energy = -0.2
cross section for electrons = 1e-12
cross section for holes = 1e-14

end trap 1
end surface trap

end surface charge bc for sheet

Several complete examples on the model can be found at test/nightlyTests/surfacecharge
including nmosfet.sg.it.equ.inp, nmosfet.sg.it.loca.inp, and nmosfet.dd.it.a1e11.equ.inp.

14.2.4. Kimpton Model

Kimpton model is a more advanced TID model for radiation tolerant insulators where
radiation-induced charge and threshold voltage shift depend not only on the radiation dose but
also on the electric fields. It is a trapping-detrapping model taking into account interface and
volume traps distributed within the irradiated insulator.

The Kimpton model assumes that the exposure to ionizing radiation results in excess positive
charge trapping in the insulator (gate oxides in MOSFETs) due to the predominance of hole traps.
In radiation-tolerant insulators the hole traps behave as energy wells with no significant bonding
allowing reversible trapping-detrapping processes. Detrapping process of the trapped carriers is
assisted by the energy released from the recombination of some of the electron-hole pairs
generated during irradiation.

For positive electric fields (holes are pushed towards the interface by the field) inteface traps and
hole trapping/detrapping at the interface account for the threshols voltage shifts for positive
electric fields greater than 0.1 MV

cm . The trapping, detrapping and conservation equations for
interface traps are given by

pi
ttp =

(
Ni

t −Ni
tf

)
σE-x

ins f(ins)n
gen
pairs,

pi
tde = Ni

tfσE−x
ins

(
1− f(ins)

)
ngen

pairs,

pi,net
ttp = Ni

tf + pi
ttp− pi

tde (168)

where pi
ttp is the interface density of new holes trapped after a small dose irradiation, pi

tde is the
interface density of detrapped holes assisted by the energy released from geminate recombination
of electron-hole pairs after the small dose irradiation, pi,net

ttp is the net interface density of trapped
holes, Ni

t is the interface trap density, Ni
tf is the interface occupied trap density before irradiation,

σ is the trap capture cross section for a positive field of 1 MV
cm , Eins is the electric field in the

insulator, x is a constant depending on technology, ngen
pairs is the electron-hole pair density

generated during irradiation and f(ins) is the fractional hole yield.

Electron-hole pairs density ngen
pairs generated during irradiation is given by

ngen
pairs = ρins10−5Dose

CDEF

qEform
(169)
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where ρins is the insulator mass density in g
cm3 , Dose is the radiation dose in rad, CDEF is the

effective dose enhancement factor and Eform is the effective electron-hole pair formation
energy.

The fractional hole yield f(ins) also depends on the electrical field in the insulator Eins as

f(ins) =

[(
1.35
Eins

)
−1

]−0.9

(170)

Charon computes the net interface density of trapped holes pi,net
ttp and add the charge to the

Laplace equation solved in the irradiated insulator. The user can visualise the induced charge in
the irradiated insulator and perform subsequent simulations for computing the threshold voltage
shifts due to radiation induced charge.

To use the Kimpton model with interface traps in an insulator, the user must first turn on the TID
model in the appropriate physics section

start Physics Block {physicsBlockName}
...
tid is on
...

end

and specify the Kimpton model with general parameters defined in table 14-5 and interface
parameters defined in table 14-6 inside the tid section of the material block section

start Material Block {materialBlockName}
start tid
start kimpton model

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 14-5 for available parameters)

start interface traps
sideset id is {tidInterface}

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 14-6 for available parameters)

end
end

end
end

where tidInterface is the sideset name of the interface between the irradiated insulator and the
semiconductor where the interface traps are located.

For small positive electric fields (< 0.1MV
cm ) and negative electric fields the Kimpton model with

interface traps only fails to match experimental data. The difference can be accounted for by
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Table 14-5 Syntax and general parameters for Kimpton model.

Input file
Corresponding
variable in (168), (169), (170) Description units

dose Dose ionizing radiation dose applied rad
effective dose
enhancement factor CDEF

effective dose
enhancement factor none

electron-hole pair
formation energy Eform

electron-hole pair
formation energy eV

electric field
power dependency x

electric field
power dependency none

Table 14-6 Syntax and parameters for Kimpton interface trap model.

Input file
Corresponding
variable in (168), (169), (170) Description units

total density Ni
t interface trap total density cm−2

initial filling factor Ni
tf

Ni
t

initial filling factor none

capture cross
section σ

trap capture cross
section at 1MV

cm
cm2

considering trapping/detrapping in oxide volume. The trapping, detrapping and conservation
equations for volume traps are given by

pv
ttp = Pcapt

(
Nv

t −Nv
tf
)

T
1MV
cm

vol E-1.5x
ins f(ins)n

gen
pairs,

pv
tde =

(
1−Pcapt

)
Nv

tfT
1MV
cm

vol E−1.5x
ins f(ins)n

gen
pairs,

pv,net
ttp = Nv

tf + pv
ttp− pv

tde (171)

where T
1MV
cm

vol is the capture volume of the trap at 1MV
cm , Pcapt is the probability of hole capture from

an electron-hole pair generated within a trap volume, pv
ttp is the volume density of the new holes

trapped after a small dose irradiation, pv
tde is the volume density of the detrapped holes after the

small dose irradiation, pv,net
ttp is the net volume density of trapped holes after irradiation, Nv

t is the
volume trap density and Nv

tf is the occupied trap volume density before irradiation.

Because the effective trap capture cross section σeff = σE−x
ins , then the effective capture volume of

the trap becomes also field dependent T eff
vol =

4
3π

(
σeff
π

) 3
2
= T

1MV
cm

vol E−1.5x
ins . For small electric fields

the effective trap volume saturates to the value
(

T eff
vol

)
max

= 1
2Nv

t
by imposing the condition that

the total maximum capture volume for the traps to be limited to half of the volume of the
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insulator. The probability Pcapt is computed as

Pcapt =
Vcrit

Vcrit +T eff
vol

,

Vcrit =
4
3

π

(
σcrit

π

) 3
2

(172)

where Vcrit represents the core volume around the trap within T eff
vol where the probability of

capturing the hole is greater than pair recombination and σcrit is a user specified parameter.

In general volume traps are used in addition to interface traps in Kimpton model. To do this, the
user must specify in addition to what has been specified for the interface traps a volume parameter
section for the Kimpton model
start Material Block {materialBlockName}
start tid
start kimpton model

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 14-5 for available parameters)

start interface traps
sideset id is {tidInterface}

(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 14-6 for available parameters)

end

start volume traps
(one parameter per line in the form):
{parameter name} = {parameter value}
(see table 14-7 for available parameters)

end
end

end
end

Table 14-7 Syntax and parameters for Kimpton volume trap model.

Input file
Corresponding
variable in (171), (172) Description units

total density Nv
t volume trap total density cm−3

initial filling factor
Nv

t f
Nv

t
initial filling factor none

capture cross
section σ

volume trap capture cross
section at 1MV

cm
cm2

critical capture cross
section σcrit

critical capture cross
section cm2
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To enable threshold voltage shift evaluation or the impact of the ionizing radiation dose on the
device functionality, Charon allows the positive charge trapped on the interface and volume traps
in the insulator to be frozen after a radiation dose and be used as fixed charge for a bias sweep.
For instance, if a radiation dose is applied to the gate oxide at zero bias and then removed, by
sweeping the gate bias the Id−Vg curve can be obtained and the threshold voltage shift can be
evaluated.

To freeze the trapped charge after an irradiation dose the user must specify in the general section
of the Kimpton model
start Material Block {materialBlockName}
start tid
start kimpton model

...
freeze traps at voltage = {V} on {contact}
...

end
end

end

where V is the bias voltage on contact such that for voltages greater than V, trapped charge in the
insulator becomes fixed charge for a voltage sweep on contact.
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15. SOLVERS

The solvers in Charon are supplied by the Trilinos set of solver libraries. Because the
drift-diffusion equations are nonlinear and must be solved iteratively, a nonlinear Newton solver
implemented in the NOX package of Trilinos is used. Within each Newton iteration, a matrix
equation set must be solved for the Newton update. This linear problem is solved using various
iterative solvers, and preconditioners for those solvers, all of which are also contained within
Trilinos. For the current release of Charon the preferred suite of linear solvers is based around the
Trilinos package Tpetra. The minimum necessary specification of solver settings for a given
problem type is

start solver block
start tpetra block
problem type is {problemType}

end tpetra block
end solver block

Currently supported problem types are summarized in table 15-1.

Table 15-1 Available problem types for Tpetra solver settings

Problem Type Description
steady state A steady state problem with no transient, parametric, or bound-

ary variations
constrained steady state A steady state problem with some type of constraint placed on

it. Examples include a resistor attached to a contact or a speci-
fied constant current at a contact.

parameter sweep An automated simulation of a sequence of steady state prob-
lems obtained by sweeping some parameter. Examples include
increasing the applied potential on a contact or increasing the
concentration of a dopant.

constrained parameter sweep A combination of a problem with a constraint and a parameter
sweep.

transient Typical transient simulation. For example, a sinusoidal voltage
being applied to a contact.

When possible it is best to leave the settings at their default values for a given problem type, as
shown above. General syntax for the settings block is

start tpetra block
(see table 15-2 for more information)
problem type is {problemType}
verbosity level is low / medium / high / extreme
(see equation 175 for details on WRMS)
start nonlinear solver wrms block

test is on / off
relative tolerance = {relTolerance}
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absolute tolerance = {absTolerance}
alpha = {alphaVal}
beta = {betaVal}

end nonlinear solver wrms block
maximum number nonlinear iterations = {maxIters}
nonlinear residual norm convergence = {normF}
linear solver is aztecOO / belos
linear solver tolerance = {tolerance}
preconditioner is ilut / riluk / schwarz
(for transient simulations)
final time = {fTime}
time step size is fixed at {deltaT} / variable
(for variable time stepping)
initial step size = {initDeltaT}
minimum step size = {minDeltaT}
maximum step size = {maxDeltaT}

end tpetra block

Table 15-2 Available problem types for Tpetra solver settings

Solver setting Description
verbosity level How much screen output should be performed giving

details about solver performance.
maximum number nonlinear iterations An integer specifying how many Newton steps to take

during a nonlinear solve. If the number is reached
without achieving convergence of all the other spec-
ified nonlinear convergence tests the nonlinear solver
step is marked as a failure (Default: 30).

nonlinear residual norm convergence The value of the nonlinear residual at which to con-
sider the test converged. Note there may be other
tests such that even if this test is converged the nonlin-
ear solver iteration itself may not be considered con-
verged. (see eq. 173) (Default: 1.0e-4).

WRMS convergence test details
relative tolerance εrel in eq. 175
absolute tolerance εabs in eq. 175
beta The achieved linear solver tolerance must be less than

beta for convergence. (see eq. 176) (Default: 1.0).
alpha If a line-search based solver is used the step size must

be greater than alpha for convergence. (see eq. 177)
(Default: 0.0)

Variable time stepping settings
initial step size Initial value of time step.
maximum step size The maximum size of the time step.
minimum step size The minimum size of the time step.
final time Final value of time at which to stop the simulation.
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The stopping criteria for Newton iterations determines when the nonlinear iterations are declared
converged. The first convergence criterion is that the norm of the residual be smaller than a
specified value,

||F||< εnormF (173)

where ||F|| is the norm of the residual.

The second criterion is that a WRMS norm is satisfied,

||δxk||wrms < εwrms (174)

The WRMS norm is:

||δxk||wrms :=

√√√√ 1
N

ΣN
i=1

(
xk

i − xk−1
i

εrel|xk−1
i |+ εabs

)2

(175)

In this equation, xk is the vector of degrees of freedom in the system at the kth nonlinear iteration.
xk

i is the ith component of that vector, N is the number of degrees of freedom in the system and
εrel and εabs are user-specified relative and absolute error tolerances. Two additional parameters
can also be specified.

Even when the linear solver mentioned above doesn’t satisfy its solver tolerance, Charon will still
try to use that solution as a Newton update. If the linear solver isn’t converging to a sufficient
degree, the WRMS stopping criterion can cause stagnation in nonlinear iterations. This can be
mitigated by specifying the β parameter for the WRMS criterion such that,

η < β (176)

where η is the norm of the residual of the linear solver. Setting β = 1 removes this criterion.

Sometimes when Newton iteration updates are very small, the WRMS norm will detect stagnation
in the solver process. This can be mitigated when the line search method is used by requiring the
fraction of the Newton update as determined by the line search to be greater than a specified
value, α.

λ > α (177)

The quantity λ is the fraction of the Newton step calculated by the line search method. Setting
α = 0 eliminates this criterion.
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16. CHARON INPUT FILE REFERENCE

The following sections are a reference to the various models in Charon and how they’re called out
in the input file. All of the input file lines are case insensitive except where the input is a variable.
In the tables that describe the syntax, these are bracketed in the main syntax line and italicized in
every case. The top cell in each of the tables represents a single line—indeed, it must occupy a
single line in the input file with no line breaks.

Occasionally, the syntax may required that at least one option be specified–On/Off for example.
In the Required column of each table, it will indicate when an option is required. This does not
mean that each option is required, only that at least one of the options is required. For example,
the line

unscale variables is on

could equally be specified

unscale variables is off

This a case where “is on” and “is off” represent two different options for the interpreter line and
at least one of them must be specified.

16.1. Import State File

File I/O is a critical part of any Charon execution. At a minimum, Charon must import a file that
contains a mesh. It can also include a state, i.e. a full set of potential, carrier concentration,
temperature, etc at a given parameter set. This file is called a state file even when the state is
null—in other words, contains only a mesh. The mesh is a necessary part of any simulation
employing finite element or finite volume methods as Charon does. The state will be used as an
initial guess of the solution being sought in the present simulation.

Often times, a state file can contain multiple states. For example, the state file may have been
produced by a previous simulation that swept over a range of contact voltage. If states were
calculated at ten different values of the voltage in the previous simulation, then there will be ten
states in the file that it produced numbered 0-9. By default, Charon will import the final state in
the file.

The input file line to import the state file into the present simulation exists at the root level of the
interpreter input file.
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Table 16-1 Import state file syntax

Import State File {filename} [ at Index {index}]
Option Description Required

at Index Specifies that a specific state will be used as an initial guess No
Variables Description Default
filename Specifies the name of the state file none
index integer index of the state file to use. -1

16.2. Output Parameters

The data generated by Charon execution are written to output files of two different types. The
primary output file is an exodus formatted record of all states generated during execution plus
other user-requested output. Text files are generated for tabulated output of current as a function
of time for transient simulations and as a function of parameter for parameter sweeps.

User control of how the output is configured is done in the output parameters block. The block
sits at the root level and is formatted in the input file as:

start output parameters
output specifications

end output parameters

The output specifications are individual lines contained in the block and are described in the
remainder of this section.

Table 16-2 Output state file syntax

Output State File {filename}
Option Description Required

None
Variables Description Default
filename Specifies the name of the exodus formatted state file for output none

By default, degree-of-freedom variables (potential, carrier concentration, temperature) are written
to the exodus file at node locations in the underlying mesh. The global variables of contact
current are also written to the exodus file by default. Other incidental variables are not written by
default, but can be requested. The variables can be requested as output in two different ways. One
is at nodal locations just as the degree of freedom variables are recorded. The other is as a cell
average quantity. Some quantities, particularly those that are gradients of other variables are not
well defined at nodes. These must be output as cell averaged quantities.

In the output variables lines, any number of variables may be specified. This requires a special
form of input. When specifying the variables, the full section must be in s̈. And the variable
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names must be comma separated. As in all interpreter variables, the output variable names are
case sensitive.

Table 16-3 Output nodal variables syntax

Output nodal variables in {regionName} for {variableNames}
Option Description Required

None
Variables Description Default

regionName This is the geometry block where the variable is defined None
variableNames Names of the variable to be output to the exodus file None

Table 16-4 Output cell averaged variables syntax

Output cell average variables in {regionName} for [
scalar {variableNames} [

vector {variableNames} ]]
Option Description Required

scalar The variables are all scalars Yes
vector The variables are all vectors Yes

Variables Description Default
regionName This is the geometry block where the variable is defined None
variableNames Names of the variable to be output to the exodus file None

Any simulation that produces multiple states are either transient or they are sweeps of some
parameter in the model. As stated earlier, the current at each contact can be printed as a function
of time or parameter value to a text file. The name of the file to which these values are printed can
be specified by the appropriate line as described in Tables 16-5 and 16-6.

Table 16-5 Specify filename of tabulated currents for transient simulations

Output tabulated transient currents to {filename}
Option Description Required

None
Variables Description Default
filename Name of the file where currents in a transient simulation are printed None

Finally, because the scaling of the drift-diffusion equations is somewhat unwieldy, the solution of
them can be numerically difficult. For this reason, the variables of the equations are scaled by
characteristic quantities. They are also written to the exodus file as scaled quantities. If the user
wishes unscaled quantities in the exodus file, they can request it in the output parameters block.
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Table 16-6 Specify filename of tabulated currents for parameter sweep simulations

Output tabulated parameter currents to {filename}
Option Description Required

None
Variables Description Default
filename Name of the file where currents in a parameter sweep simulation are printed currents-loca.dat

Table 16-7 How to request unscaled quantities in the exodus file.

Unscale Variables [ is on [ is off ]]
Option Description Required

is on Turn unscaling on Yes
is off Turn unscaling off Yes-Default
Variables Description Default

None

16.3. Physics Block

This section describes input lines that appear at the level of the physics block. Any description of
physics in a semiconductor or insulating region of a device simulation must have a physics block
associated with it. Any one physics block can be associated with multiple regions of a device. For
instance, two semiconducting regions may be separated by an insulator. The physics block will
contain a description of all physical mechanisms represented in the simulation for that region.
Because there may be multiple physics blocks, each one must have a unique name—no spaces
please—to differentiate it from the others. The syntax to create a physics block follows:

begin phsyics block {physicsBlockName}
geometry block is {geometryBlockName}
material model is {materialModelName}
standard discretization type is {discType}
discretization method is {discMethod}
{other physics descriptions}

end physics block {physicsBlockName}

16.3.1. Geometry Block

One of the elements that must always be in a physics block is the geometry block specification
using the geometry block is {geometryBlockName} line. This line ties the physics block to
at least one region of the device as it was created and named during the meshing stage of creating
a simulation. Table 16-8 describes the line in the physics block that specifies the geometry block.
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In an instance where there are multiple regions the have identical physics descriptions, this line
may be repeated for each named region,

geometry block is geometryBlockName
Option Description Required

None
Variables Description Default

geometryBlockName
Name that corresponds to a geometry block specified
in the meshing step. None

Table 16-8 Specificy the geometry block to which these physics apply.

16.3.2. Material Block

Each phsyics block must be accompanied by a material model block located elsewhere in the
input file. This is done using the material model is {materialModelName} line. As in the
case of the physics block, there can be a plurality of material blocks each with a unique name.
The phsyics block and material block are linked by specifiying the name of the material model
name in the appropriate physics block. Only one material block may be specified for each physics
block and it is done so in a single line inside the phsyics block as described in Table 16-9.

material model is materialModelName
Option Description Required

None
Variables Description Default

materialModelName Name that corresponds to a named material model block None

Table 16-9 Specify the material model that accompanies a phsyics block.

16.3.3. Discretization

The transport models and discretization methods available in Charon are described in Chapter 1.
They are specified using the lines of standard discretization type is {discType} and
discretization method is {discMethod}. Available discType and discMethod values are
listed in Table 1-2.

16.4. Material Block

The material block is a complement to the physics block. Between the two, they give a complete
description of the material properties and physical mechanisms of the device in the simulation.
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The material block contains all properties associated with the material contained in its associated
physics block which in turn is associated with the geometry block specified in the physics block.
Because there can be multiple materials in any one simulation, the material block must be
uniquely named. The syntax to create a material block is

begin material block {materialBlockName}
{material descriptions}

end material block {materialBlockName}

where materialBlockName is the unique name of the material model.

16.4.1. Material Name

In some instances, common materials have properties pre-programmed into Charon, e.g. silicon
and Gallium Arsenide. To associate those properties with the material block, the name of the
material is specified in the material block. Note that the material name, specified in the material
name line is case sensitive. The syntax is described in Table 16-10.

Table 16-10 Specificy the name of a material.

Material name is materialName
Option Description Required

None
Variables Description Default

materialName Specify the name of the known material for default properties None

16.4.2. Relative Permittivity

Relative permittivity is a material parameter that must be specified for all materials in a Charon
simulation. For some materials that have properties already programmed into Charon, there will
be an associated default value. In practice, it’s a good idea to specifiy the value explicitly and it
can always be specified as a value to supercede the default value. The relative permittivity is
specified in the material block in a single line in the syntax descritbed in Table 16-11.

16.5. Carrier Recombination

Charon presently supports four types of carrier recombination models. They are
Schockley-Reed-Hall (SRH) in both mid-gap and generic forms, direct and auger recombination.
For details on how each is implemented, refer to section 8. To enable any type of recombination,
entries are required in both the physics blocks associated with the region where recombination
takes place and in the accompanying material model block. In the physics block, individual types
of recombination are toggled on and off,
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Table 16-11 Specificy the relative permittivity of a material.

Relative Permittivity = relativePermittivity
Option Description Required

None
Variables Description Default

relativePermittivity
Numerical value of the relative permittivity
of the material

default for known
material, 0 otherwise

start physics block {physicsBlockName}
<recombinationType> is on/off

end physics block

recombination toggle end physics block Parameters for each type of recombination are specified
in the relevant material model block. The following sections tabulate the input lines required to
toggle recombination on and off and set relevant parameters.

16.5.1. Shockley-Reed-Hall Recombination

SRH recombination is enabled for mid-gap traps or generic traps wherein the trap energy may be
specified for any energy level in the band gap. The mid-gap recombination model is toggled on
and off in the physics block via,

Table 16-12 Mid-gap SRH recombination toggle

srh recombination [ is on [ is off]]
Option Description Required

is on Toggle mid-gap recombination on Yes
is off Toggle mid-gap recombination off Yes
Variables Description Default

None

Parameters for mid-gap SRH recombination are set in the carrier lifetime block inside the
material model block,

start Material Block {materialBlockName}
start Carrier Lifetime Block

<set parameters>
end Carrier Lifetime Block

end Material Block

For mid-gap SRH traps, the carrier lifetimes may be constant or concentration or temperature
dependent. If the carrier lifetimes are concentration dependent.
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Table 16-13 Mid-gap SRH constant carrierlifetime

carrierType lifetime is constant = lifetime
Option Description Required

None
Variables Description Default

carrierType Specified as either elctron or hole None
lifetime Numerical value of the lifetime in seconds Material Dependent

Table 16-14 Concentration dependent SRH carrier lifetime

carrierType lifetime is concentration dependent [with Nsrh = NsrhParameter]
Option Description Required

with Nsrh
Use a specified the parameter value for the
concentration dependent recombination No

Variables Description Default
CarrierType Specified as either elctron or hole None

Nsrh
Numerical value of the parameter for
concentration dependent lifetime Material Dependent

Table 16-15 Concentration dependent SRH carrier lifetime tau0 value

electron tau0 = tau0
Option Description Required

None
Variables Description Default
tau0 Electron Tau0 Material dependent

Table 16-16 Electron lifetime temperature dependence

electron lifetime is temperature dependent
Option Description Required

None
Variables Description Default

None

To specify that the mid-gap recombination model is temperature dependendent,

The generic SRH trap model is toggled with
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Table 16-17 Generic SRH recombination toggle

trap srh [ is on [ is off]]
Option Description Required

is on Toggle generic recombination on Yes
is off Toggle generic recombination off Yes
Variables Description Default

None

16.5.2. Radiative (Direct) Recombination

Radiative, or direct, recombination for direct bandgap semiconductors is the simplest of the
recombination models. It can be fully employed with the usual on/off toggle directive in the
physics block and a specification of a single coefficient in the accompanying material block.

Table 16-18 Direct recombination toggle

radiative recombination [ is on [ is off]]
Option Description Required

is on Toggle radiative recombination on in physics block Yes
is off Toggle radiative recombination off in physics block Yes
Variables Description Default

None

Parameters for mid-gap SRH recombination are set in the carrier lifetime block inside the
material model block,
start Material Block {materialBlockName}

Radiative recombination coefficient = {coefficient}
end Material Block

Table 16-19 Radiative recombination coefficient

Radiative recombination coefficient = coefficient
Option Description Required

None
Variables Description Default
coefficient coefficient for radiative recombination None

16.5.3. Auger Ionization/Recombination

The Auger model can account for both recombination and generation of charge carrier pairs. The
details of the model are described in Section 8.3. In addition to toggling the model on as described
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above, coefficients for the Auger model may be defined in the material model block as follows.
start Material Block materialBlockName

start Auger Recombination Parameters
Auger Coefficient electron/hole = augerCoefficient
Generation on/off

end Auger Recombination Parameters
end Material Block materialBlockName

16.6. Variable Voltage at a Boundary

In order to perform current-voltage sweeps, or IV sweeps, the voltage at a contact must be varied
over the desired range. In Charon this capability is implemented using the Library of
Continuation Algorithms (LOCA) library. A specific example of how to use this capability was
covered in section 3.5.1. More generally, to use this capability the first step is to modify the
boundary condition associated with the contact over which voltage will be varied. The syntax for
doing this is
bc is ohmic for {contact name} on {material name} swept from {start

voltage} to {stop voltage}

Next a section for controlling how the voltage will be swept needs to be added. The syntax for
that is
start sweep options
continuation method is arc length / natural
predictor method is constant / secant / tangent
(One parameter per line)
(see table 16-20 for available parameters)

end sweep options

It is important to note that because of the use of LOCA for voltage stepping within Charon there
are a wide range of simulations possible. For example, while generally an IV sweep proceeds in a
fairly straightforward way from the start voltage to the stop voltage, with LOCA that doesn’t
necessarily have to be the case.

Consider figure 16-1. The red line might represent the results of a typical IV sweep on, for
example, a semiconductor resistor. The simulation starts at Vstart and proceeds in a straightforward
manner to Vstop. In this case Vstart is the minimum value that the voltage will ever attain and so
there is no need to set min value in the sweep parameters to anything other than start voltage, and
Charon will default to setting min value to start voltage if min value isn’t set in the input file.

Now consider a simulation in which the I-V characteristics are more complex, as represented by
the green line in figure 16-1. In this case Vstart will not be the minimum voltage. Charon is
capable of performing such a simulation but you must set min value in the sweep parameters to
something other than Vstart since not doing so will cause the simulation to terminate once V curves
back to Vstart. In this situation the sweep option max value is redundant since the simulation will
terminate if the voltage reaches either stop voltage or max value. For IV simulations in the reverse
direction the situation is mirrored and the value of the sweep option max value becomes relevant
in the same way min value is relevant in the forward case..
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Table 16-20 Parameters used to control voltage sweeping.

Input file Description Default
initial step size initial voltage increment 1.0

maximum number of steps
If the number of voltage steps taken reaches this
value then the simulation is terminated. none

minimum step size
If the voltage step size is reduced to this value due
to step failures then the simulation is terminated. 1.0x10−12

maximum step size The voltage step size will never exceed this value. 1.0x1012

step size aggressiveness
Floating point value between 0 and 1 that
represents how aggressive the code should be
about changing the step size.

1.0

successful step increase factor
If the code determines that a larger voltage step is
possible it will increase the size by this factor. 1.26

failed step reduction factor
If the voltage step attempt fails then reduce the
step size by this factor and try again. 0.5

min value

If the voltage value falls below this value then
the simulation is terminated. See the text in
section 16.6 for how this can be different
than the starting value in the bc line.

start voltage
or

stop voltage

max value

If the voltage exceeds this value then the
simulation is terminated. See the text in
section 16.6 for how this can be different
than the ending value in the bc line.

start voltage
or

stop voltage

16.7. Doping

Doping is specified in the relevant material block section of the input file. In general doping is
specified via a set of analytic functions within the area of the associated material block. Functions
are additive, unless otherwise noted, so each additional function that is specified adds to the
previous ones that were specified for that material block.

Additionally a file may be specified which consists of a list of points and a value for doping at that
point. Note that due to interpolations that are required for file doping specifications this can
negatively impact the performanace of the code.

Each of the following subsections gives information on the syntax for each specific doping
function available.

16.7.1. Uniform Doping

Uniform doping places a constant value of doping over the specified area. You can specify
uniform doping via
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Figure 16-1 Example of a non-typical IV sweep possible in Charon.

start material block {materialBlockName}
...
start uniform doping named Function{i}
spatial range is {minimum} to {maximum} in x / y / z
type is donor / acceptor

concentration = {value in #/cm2 }
gauss decay with start position at {pos} and decay width at {width} in +x / -x / +y

/ -y / +z / -z
end
...

end

Where the {i} in Function{i} is replaced with an integer starting with 1 and going to the number
of doping functions in the specific material block. You can use a spatial range specification for
each coordinate direction when necessary. If a particular direction isn’t specified then the doping
will be applied for the entire block in that coordinate direction. Optionally, a Gaussian decay can
be specified using the gauss decay line along one or multiple axises. The Gaussian decay factor is
defined as exp(−(x− x0)

2/(2σ2)) with x0 given by pos and σ given by width. The doping along
the Gaussian decay axis is the uniform doping multiplied by the Gaussian decay factor.
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16.7.2. Step Junction

You can use step doping for a doping profile that varies as a step function within the specified
material with the specified parameters. In Charon the syntax for the step function is

start material block {materialBlockName}
...
start step junction doping
acceptor concentration = {NA}
donor concentration = {ND}
junction location = {coordinate value}
direction is x / y / z
dopant order is pn / np

end
...

end

All of the statements shown above must be included for a valid step junction specification.

16.7.3. Gaussian Doping

You can use Gaussian doping for a doping profile that varies as a Gaussian function within the
specified material with the specified parameters. In Charon the form of the Gaussian function,
assuming a variation in the x direction, is:

N = {Nmax}exp

[
− ln

(
{Nmax}
{Nmin}

)(
x− {peak}

{width}

)2
]

(178)

The syntax for Gaussian doping is

start material block {materialBlockName}
...
start gauss doping named Function{i}
concentration range is {Nmin} to {Nmax} in x / y / z
spatial range is {minimum} to {maximum} in x / y / z
gradient width = {width} in x / y / z
peak location = {peak} in x / y / z
direction is Positive / Negative / Both in x / y / z
type is donor / acceptor

end
...

end

Where the {i} in Function{i} is replaced with an integer starting with 1 and going to the number
of doping functions in the specific material block. If a spatial range specification isn’t made for a
particular direction then the doping will be applied over the entire material block in which it is
specified.
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16.7.4. Modified Gaussian Doping

You can use MGauss (modified Gaussian) doping for a doping profile that varies as a Gaussian
function within the specified material with the specified parameters. In Charon the form of the
MGauss function, assuming a variation in the x direction, is:

N =



exp
[
−{Nmax}
{Nmin}

(
x−{min}
{width}

)2
]

x < {min},Nmin > 0 and erfc is not set

exp
[
−
(

x−{min}
{width}

)2
]

x < {min},Nmin ≤ 0 and erfc is not set

exp
[
−{Nmax}
{Nmin}

(
x−{max}
{width}

)2
]

x > {max},Nmin > 0 and erfc is not set

exp
[
−
(

x−{max}
{width}

)2
]

x > {max},Nmin ≤ 0 and erfc is not set

1
2

[
erfc

(
x−{max}
{width}

)
− erfc

(
x−{min}
{width}

)]
if erfc is set

(179)

The syntax for MGauss doping is
start material block {materialBlockName}
...
start mgauss doping named Function{i}
concentration range is {Nmin} to {Nmax} in x / y / z
spatial range is {min} to {max} in x / y / z
gradient width = {width} in x / y / z
direction is Positive / Negative / Both in x / y / z
erfc in x / y / z
type is donor / acceptor

end
...

end

Where the {i} in Function{i} is replaced with an integer starting with 1 and going to the number
of doping functions in the specific material block. If a spatial range specification isn’t made for a
particular direction then the doping will be applied over the entire material block in which it is
specified.

16.7.5. Doping from File

Besides specifying analytic doping profiles, Charon can also use doping from doping files. A
doping file is a text file that contains 1D, 2D, or 3D profile. 1D doping file contains two-column
data: the first column is the coodinate value in the unit of µm, and the second column is the
doping value in the unit of cm−3. 2D doping file contains three-columnn data: the first column is
the x-coordinate value, the second column is the y-coordinate value, and the third column is the
doping value. 3D doping file contains four-columnn data: the first column is the x-coordinate
value, the second column is the y-coordinate value, the third column is the z-coordinate value,
and the fourth column is the doping value. Doping from a 1D doping file is linearly interpolated
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to a mesh grid in Charon simulation. Doping from a 2D/3D doping file is mapped to a mesh grid
using the nearest-neighbor values.

2D and 3D doping files can be specified using the following line syntax:
start material block {materialBlockName}
...
read doping from {filename} for acceptor / donor in 2d / 3d with buffer {bufferValue}
...

end

where buffer is to increase the doping domain extracted from a 2D or 3D doping file by an
amount of bufferValue in x, y (for 2D), and z (for 3D) directions.

The syntax for specifying 1D doping file is
start material block {materialBlockName}
...
start file1d doping named Function{i}

file is {filename}
type is donor / acceptor
direction is x / y / z
buffer = {value}
spatial range is {min} to {max} in x / y / z
gauss decay with start position at {pos} and decay width at {width} in +x / -x / +y

/ -y / +z / -z
end
...

end

Here direction specifies the axis along which the 1D doping from a file is applied, and buffer is
to expand the doping domain by value along the direction axis. spatial range is to specify the
domain where a 1D doping is applied. Along the direction axis, the maximum and minimum
coordinate values are extracted from the 1D doping file, and are compared to the min and max

values given in the spatial range; the smaller window of the two cases is used for placing the
doping. Along other axises (i.e., not the direction axis), a Gaussian decay can be specified using
the gauss decay line optionally. The Gaussian decay factor is defined as exp(−(x− x0)

2/(2σ2))
with x0 given by pos and σ given by width. The doping along the Gaussian decay axis is the
doping from a 1D doping file multiplied by the Gaussian decay factor.

An example of specifying Gaussian decays for doping read from 1D doping file and a uniform
doping is given at tcad-charon/test/nightlyTests/capability/pndiode.nlp.gauss-decay.inp. In
addition, multiple 1D and 2D doping files can be read in a single Charon simulation. An example
of this is located at tcad-charon/test/nightlyTests/capability/pndiode.nlp.multi-files.inp.
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17. CHARON ANALYSIS WITH DAKOTA (BETA FEATURE)

A beta version of scripts is included with this version of Charon that facilitates the use of the
Dakota [47] tool with Charon. This addition to the Charon suite is presently in a very early stage
and robustness is not guaranteed. Later versions will be more complete. This section describes
these python scripts and how to use them, but aside from very simple examples, does not describe
the use of Dakota. The user is referred to Dakota documentation for that instruction. Moreover,
the Dakota application code must be separately installed. The user is referred to Dakota
documentation for instructions to do the installation.

Dakota is used in conjunction with Charon simulations through driver scripts. Details of how to
use those scripts is described later in this section. The basic work flow, with Dakota as the
primary application driver is shown graphically in Figure 17-1.

Figure 17-1 Diagram of the work flow of a Charon simulation with Dakota.

Dakota will execute the Charon simulations with Dakota controlled parameters through the
Charon driver as configured by a simulation specific driver.config file. Also defined in the
driver.config file are specifics of the responses that Dakota will expect back for its continued
analysis. Details of how to write the driver.config file will be described in a later section.

17.1. Building with Dakota Support

In order to use the Charon driver scripts with Dakota, they must be built with Charon. By
including the following line in the opts file (see Section 2)

tcad-charon_ENABLE_DAKOTA_DRIVERS:BOOL=ON

the relevant scripts will be compiled and installed with the Charon installation.

The main driver script, charonDriver.py, will be installed in the <charonInstall>/bin directory
where the Charon executable is likewise installed. This script will be called by Dakota to execute
Charon or may be called on the command line to get a limited amount of help with its use. The
Charon driver is described in Section 17.2.
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Selected response modules will also be installed in the bin directory along with the Charon driver
and Charon executable. Response modules will be described in Section 17.3. Remaining support
scripts will be installed in an adjacent location which the primary driver can access.

17.2. The Charon Driver and its Configuration for Dakota

The Charon driver, charonDriver.py is the main script that executes Charon for Dakota according
to a simulation specific configuration file that will be created by the user. As will be seen in
Section 17.4, charonDriver.py will need to be specified in a configuration for Dakota for the driver
to be used.

The Charon driver may be executed directly from the command line in order to obtain some help
in configuring a Dakota run. Note that it will always expect at least one argument. The scripts
have a set of responses that are available to use with Dakota. Any Dakota simulation will always
expect at least one response. To see the list of available responses, execute:

% charonDriver.py --listresponses

Response 0 is thresholdVoltage
Response 1 is currentAtVoltage
Response 2 is betaGain
Response 3 is IVCurve
Response 4 is compositeFunction

An enumerated list of available responses will be produced. For assistance in configuring any one
response, help is available through the driver. For example, one response is thresholdVoltage. To
obtain configuration help for thresholdVoltage, execute:

% charonDriver.py --help thresholdVoltage

reponse thresholdVoltage argument1=value1 argument2=value2...

This response returns the threshold voltage.

method -- <slope>,<current> If the method is set to slope, the
function will calculate the slope of the IV curve and use it’s maximum
to interpolate the threshold voltage. If method is not specified or
is specified as current, a current must be specified.

current -- Set a numerical value of the contact current at which the
threshold voltage is calculated. This is an alternative to the slope
method.
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filename -- Name of the file where the currents and voltages are
expect to be found.

target -- The target is used for calibration. It is the expected
value of the threshold voltage. When the target is specified, a
residual of the expected and calculated values is returned.

icap -- Numerical cap on the current at which the slope method can be
used to calculate the threshold voltage

weighted -- When the residual is calculated with a target value,
setting this to yes or no will opt into weighting the residual by the
expected value. The default is to weight the residual.

responsename -- The default name of the response is thresholdVoltage.
However, if differnt threshold voltages are to be calculated such as
weighted and unweighted or at multiple current values, a unique name
must be given to each reponse.

This assistance is available for all the responses. Details of how this configuration assistance is to
be used will be described in 17.4.

When Dakota calls on Charon to produce responses for its analysis, the driver.config file will
configure the driver to execute Charon in specific ways. Indeed, it can be configured to run
Charon multiple times if needed to produce a single more multiple responses. The configure
script has three sections: executeMethods, executeProcs and response. An example configuration
file is:

executeMethods app=charon template=mosfet.nlp.template options=decompose
executeMethods app=charon template=mosfet.drain.template
executeMethods app=charon template=mosfet.gate.template

executeProcs 64

response thresholdVoltage data=single filename=gateSweep.dat\
current=2E-5 responsename=tV1

response currentAtVoltage filename=gateSweep.dat voltage = 1.3

In this configuration, each time Dakota invokes the driver to obtain responses from Charon, the
driver will execute Charon three times to produce the required data. In this instance, the driver
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will run a nonlinear Poisson initial simulation with the option to do a domain decomposition of
the state file, then a drain sweep and finally a gate sweep. Each instance will be executed on 64
processors as per the executeProcs line. Note that any options available to the interpreter may be
specified in the options= section of the executeMethods line. The response line will be described in
the following section.

The application line, app=, of the executeMethods line will call out the application to be executed
by the driver. This will almost always be charon, but cubit can also be executed for users with
access to the cubit mesh generation tool. The template= section of the executeMethods will be the
main Charon input file. It must always be suffixed as .template for the driver to process it. Any
other input files specified in the main Charon input file through /include statements should be left
unchanged. The driver will initially consolidate the template file plus any included files into a
single input file and the suffix modified to .inp. Special variables that Dakota will modify for
specifying parameters for a specific simulation will need to be specified in the template and
include files. A simple example how this is done is described in Section 17.4.

17.3. Charon Response Modules

In the present version, a specific set of responses is available through the driver to provide data to
Dakota for analysis. In future version, a facility will be included for user-defined scripts to be
executed so that customized responses may be created. Because this feature is rapidly evolving,
the reader is directed to use the help features of the driver to obtain help on the configuration of
specific responses.

The responses that will be calculated are called out in the response section of the driver.config

file. The configuration presented in the previous section directs that two responses be computed:
thresholdVoltage and currentAtVoltage. Dakota will expect and request responses with specific
names which are specified in the Dakota input file. The Charon driver will name these responses.
By default, the name of the computed response will be identical to the name of the response itself.
For example, in the previous section, the computed response for the currentAtVoltage response
will likewise be named currentAtVoltage. However, a custom name may be given to any
computed response with the responsename= option on the response line. In the previous example,
the thresholdVoltage response will be named tv1.

In some cases, it may be required for custom names to be specified. For example, if the current at
two gate voltages is required, the configuration may be

response thresholdVoltage data=single filename=gateSweep.dat\
current=2E-5 responsename=tV1

response currentAtVoltage filename=gateSweep.dat voltage = 1.3\
responsename=current1

response currentAtVoltage filename=gateSweep.dat voltage = 0.5\
responsename=current2
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where three responses are computed for the threshold voltage and the currents at gate voltages of
0.5V and 1.3V. The three response names that will be specified in the Dakota input file will be
’tv1’ ’current1’ ’current2’.

In the present version, two of the responses may be called on manually from the command line.
These are independent of a Dakota simulation and may be used for any Charon simulation of the
appropriate type. The two responses are thresholdVoltage and currentAtVoltage. The syntax of
calling on a response from the command line differs from that in the configuration file for the
Charon driver. Specific syntax and options may be got by calling the response with the --help

argument. For example,

% thresholdVoltage --help
usage: thresholdVoltage [-h] [-m METHOD] [-c CURRENT] [-f FILENAME]

[--icap ICAP]

optional arguments:
-h, --help show this help message and exit
-m METHOD, --method METHOD

method to use to compute Vt (slope, current)
-c CURRENT, --current CURRENT

current at which to compute Vt if method is current.
-f FILENAME, --filename FILENAME

File name that holds I-V data to compute Vt.
--icap ICAP If method is slope, it will limit the evaluation to a

current no higher than specified

For example, to compute threshold voltage, Vt of a MOSFET with the threshold defined to be at
33µA/cm from a Charon generated I-V file named gateSweep.dat,

% thresholdVoltage -m current -f gateSweep.dat -c 3.3e-5

-------------------------------------------------------------------
Response: thresholdVoltage
-------------------------------------------------------------------
value: 0.6204534252298233
target: N/A
-------------------------------------------------------------------

Vt = 0.6204534252298233 at 3.3e-05 amps

17.4. A Simple Dakota/Charon Example

A simple example in which Dakota is called on to sample a MOSFET simulation with different
values of the work function of the gate contact is provided here. There are many ways in which a
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Dakota-driven simulation may be organized, but a recommended organization is presented in this
section. A root directory, say MOSFETSimulation is created for the simulation and its results. In that
directory is place a single file that configures the Dakota run. That file may be dakotaSamples.in,
for example,

environment
tabular_data
tabular_data_file = ’lhs.dat’

method
sampling
sample_type lhs
samples = 20
seed = 1337

variables
normal_uncertain = 2
means = 4.25
std_deviations = 0.5
descriptors ’workFunction’

interface
analysis_drivers = ’charonDriver.py’
fork
asynchronous
evaluation_concurrency 1
link_files = ’template_dir/*’
work_directory named ’workingDir’
directory_save

responses
response_functions = 3
descriptors = ’tv1’ ’current1’ ’current2’

no_gradients
no_hessians

The reader is referred to Dakota documentation for the details of this and any other Dakota input
file. But for the sake of this example, Dakota will produce a distribution of the responses, ’tv1’
’current1’ ’current2’ for 20 Latin Hypercube samples of the gate work function with a normal
distribution with a mean of 4.5 and a standard deviation of 0.5.

Note that the analysis_drivers is called out to be ’charonDriver.py’. This must always be for
Charon’s driver scripts to be used. The recommended organization for Dakota simulations is to
create a template_dir directory under the root MOSFETSimulation directory that contains all of the
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relevant Charon files—that is, all of the .inp files, the .template files and the mesh files—to
include the driver.config file.

The driver.config located in the template_dir directory for this example is

executeMethods app=charon template=mosfet.nlp.template options=decompose
executeMethods app=charon template=mosfet.drain.template
executeMethods app=charon template=mosfet.gate.template

executeProcs 64

response thresholdVoltage data=single filename=gateSweep.dat\
current=2E-5 responsename=tV1

response currentAtVoltage filename=gateSweep.dat voltage = 1.3\
responsename=current1

response currentAtVoltage filename=gateSweep.dat voltage = 0.5\
responsename=current2

The response names in driver.config must match the descriptors specified in the responses

section of the Dakota input file for Dakota and Charon to communicate properly.

In each of the Charon input files, a boundary condition for the gate contact is specified (refer to
Section 16 for details). In this case, the boundary condition line should be specified as

BC is contact on insulator for <contact> on <block> with \
work function {workFunction} <voltage>

where <contact>, <block> and voltage are specified as per usual for a Charon simulation. The
workFunction variable must be bracketed and spelled with case sensitivity just as it is specified in
the descriptors line in the variables section of the Dakota input file. When Dakota calls the
Charon driver, it will provide a specific value for the work function. The driver will create the
input file appropriately with the specified value before Charon is executed.

When Dakota is executed with the input file shown above, it will call the Charon driver once for
each evaluation of responses at a given value of the work function. Each of these evaluations will
be executed in a newly created subdirectory under the root called workingDir.x where 1≤ x≤ 20.
Once the Dakota execution has completed, the results will be tabulated in the file lhs.dat in the
root directory as specified by tabular_data_file in the environment section of the Dakota input
file.
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APPENDIX A. HISTORICAL PERSPECTIVE

APPENDIX B. BAND-TO-TRAP TUNNELING MODELS

In this appendix, the supported band-to-trap tunneling models are described in some level of
details. Charon supports four variation forms of the Schenk band-to-trap tunneling model [26]
and also a new model designed for heterojunction devices [27].

The first form is the Schenk model in the high temperature limit, where the electron field
enhancement factor is given by

gn(T,F) =

(
1+

2ERkBT
(h̄Θ)3/2√Et−E0

)−1/2
E0

act +Et

kBT

(
h̄Θ

Et +ER

)3/2

× exp

[
E0

act−Eact(F)

kBT

]
exp
(

Et−E0

kBT

)
exp

[
−4

3

(
Et−E0

h̄Θ

)3/2
]
. (180)

ER = Sh̄ω0, the lattice relaxation energy, with S being the Huang-Rhys factor and h̄ω0 being the
effective optical phonon energy. E0 is the optimum transition energy and given by

E0 = 2
√

EF

[√
EF +Et +ER−

√
EF

]
−ER, EF =

(2ERkBT )2

(h̄Θ)3 , h̄Θ =

(
h̄2q2F2

2m∗n

)1/3

. (181)

Here q is the elemental charge, F is the local electric field, m∗n is the electron effective mass. h̄Θ is
known as the electrooptical energy. E0

act = (Et−ER)
2/(4ER), the activation energy for capturing

an electron from the conduction band edge. Eact = (E0−ER)
2/(4ER), the field-dependent

activation energy. The first model is enabled by specifying model is hightemp approx in the trap
srh block.

The second form is the Schenk model in the low temperature limit, where the electron field
enhancement factor is given by

gn(T,F) =

[
1+

(h̄Θ)3/2
√

(Et−E0)

E0h̄ω0

]−1/2
(h̄Θ)3/4(Et−E0)

1/4

2
√

EtE0

(
h̄Θ

kBT

)3/2

× exp

[
−Et−E0

h̄ω0
+

h̄ω0− kBT
2h̄ω0

+
Et +0.5kBT

h̄ω0
ln
(

Et

ER

)
− E0

h̄ω0
ln
(

E0

ER

)]

× exp
(

Et−E0

kBT

)
exp

[
−4

3

(
Et−E0

h̄Θ

)3/2
]
. (182)

The ER, E0, and h̄Θ parameters have the same definitions as in Eq. (180). The second model is
enabled by specifying model is lowtemp approx in the trap srh block.
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The above two gn expressions were obtained from the Schenk model in the high and low
temperature limits, respectively. Without any temperature approximation, it can be shown [27]
that the general gn formula from the Schenk model takes the form of

gn(T,F) =

∫ Et
0 ρn(E)IE/h̄ω0(z)exp

(
−E

2kBT

)
dE∫

∞

Et
ρF=0

n (E)IE/h̄ω0(z)exp
(
−E

2kBT

)
dE

. (183)

The modified Bessel function for large orders (i.e., l = E/h̄ω0� 1, which generally holds for
deep-level traps that are relevant for band-to-trap tunneling) is equal to

Il(z) =
1√
2π

1
(l2 + z2)1/4 exp

(√
l2 + z2

)
exp

−l ln

 l
z
+

√
1+

l2

z2


 , (184)

with

z = 2S
√

fB( fB +1), fB =

[
exp
(

h̄ω0

kBT

)
−1

]−1

. (185)

fB is the Bose distribution function. The zero-field density of states (DOS), ρF=0
n (E), is given

by

ρ
F=0
n (E) =

1
2π2

(
2m∗n
h̄2

)3/2√
E−Et . (186)

The field dependent density of states, ρn(E), in the Schenk model was derived based on the
constant field assumption. It is given by

ρn(E) =
1

2π

(
2m∗n
h̄2

)3/2√
h̄ΘF

(
Et−E

h̄Θ

)
, F (y) = A′2i (y)− yA2

i (y). (187)

F (y) is known as the electrooptical function. Ai(·) is the Airy function of the first kind. A′i(·) is
the first derivative of the Airy function. For large positive arguments, the electrooptical function
F takes the asymptotic form of

F
(

Et−E
h̄Θ

)
=

1
8π

h̄Θ

Et−E
exp

[
−4

3

(
Et−E

h̄Θ

)3/2
]
. (188)

To use the general Schenk model in Eq. (183) with the constant field DOS in Eq. (187), it is
required to specify model is constant field in the trap srh block. To use the Schenk model with
the asymptotic DOS in Eq. (188), we need to replace constant field with asymptotic field in the
input file.

The four Schenk models described above can be used for modeling band-to-trap tunneling in
homojunction devices under different conditions. They provide different accuracies and require
different computation time. That is, the hightemp approx and lowtemp approx models are faster
than asymptotic field, which is faster than constant field, in terms of calculation time. However,
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the constant field model has the least number of assumptions, so it is the most accurate among
the four.

Figure 1(a) shows the electron field enhancement factor for the gold traps in silicon at 300 K. The
legend texts in the following figures have the following correspondence: Schenk HighTemp
corresponds to hightemp approx, Schenk LowTemp corresponds to lowtemp approx, Schenk
AsymConstFDOS corresponds to asymptotic field, Schenk ConstFDOS corresponds to
constant field, and Schenk NewDOS corresponds to new. The parameters used for the calculation
are h̄ω0 = 0.068 eV, S = 3.5, Et = 0.55 eV, m∗n =

√
0.92×0.19 = 0.42, and T = 300 K. For the

gold traps in silicon, we can make three observations: (i) the Schenk LowTemp and Schenk
AsymConstFDOS models produce the same electron enhancement factors for the whole range of
electric fields; (ii) the results from the two models are very close to the more accurate Schenk
ConstFDOS model, except at the low field regime where the field factors are small anyway; (iii)
the results from Schenk HighTemp model show somewhat larger errors when compared to other
three models. Figure 1(b) shows the electron field enhancement factor for the E5 traps in GaAs at
300 K. The parameters used for this calculation are h̄ω0 = 0.02 eV, S = 12.2, Et = 0.66 eV,
m∗n = 0.067, and T = 300 K. For the E5 traps in GaAs at 300 K, we can see that the Schenk
LowTemp model is broken down, while other three Schenk models produce good results.
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(a) Gold traps in Si
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Figure B-1 Electron field enhancement factor for traps at 300 K as a function of elec-
tric field computed using the four Schenk models.

The Schenk model with the constant field DOS and its approximated versions were derived for
silicon devices. Therefore, the models may be adequate for modeling band-to-trap tunneling in
homojunction devices. However, they are unsuitable for modeling heterojunction structures, since
they do not capture the effect of heterojunction band offset. This effect can be very strong near
the heterojunction. As seen from the typical band profile of an In0.5Ga0.5P/GaAs NP+N
heterojunction bipolar transistor (HBT) in figure B-2, the tunneling of holes in the base to traps in
the emitter is determined by the valence band profile. And it is evident that the valence band
deviates significantly from the constant field assumption due to the large band offset.

To address the limitation of the constant field assumption, we have developed an analytic DOS
model [48, 49, 27] that includes both the electric field and band offset effects. The new model
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Figure B-2 Typical band profile in the emitter and base regions of an In0.5Ga0.5P/GaAs
NP+N HBT. Here EC is the conduction band, EV is the valence band, ∆EV is the va-
lence band offset, and ET indicates the trap location. The circle with a plus represents
a hole, and the blue arrow denotes the hole-to-trap tunneling path. The red dashed
curve is a linearized potential to approximate the actual valence band.

allows us to accurately simulate the band-to-trap tunneling near a heterojunction. For the typical
valence band in figure B-2, the actual potential profile is first linearized with the band offset
included, as shown by the red dashed curve. Then the DOS for the linearized potential is given
by

ρn(x,E) =
1

2π2

(
2m∗n
h̄2

) 3
2 ∫ E∗

0

|Ai(αx+β)|2

|Ai(β)|2 + h̄Θ

Ex
|A′i(β)|2

dEx√
Ex

. (189)

E∗ = qFx+V0−Et +E, where q is the elemental charge, F is the local electric field in the emitter
side, x is the positive distance (in the emitter side) from the heterojunction, V0 is the band offset
(e.g., ∆EV in figure B-2), and 0≤ E ≤ Et . Ai(·) is the Airy function of the first kind, and A′i(·) is
the first derivative of the Airy function. α, β, and h̄Θ, are given by

α =

(
2m∗nqF

h̄2

) 1
3

, β =
V0−Ex

h̄Θ
, h̄Θ =

(
h̄2q2F2

2m∗n

) 1
3

. (190)

For the approximated valence potential in figure B-2 (red dashed curve), the Schenk NewDOS
model was used to compute the electron enhancement factor at different locations (in the emitter
side) from the heterojunction. The results are plotted in figure B-3 and also compared to those
computed using the Schenk ConstFDOS model. The parameters used for the calculation are the
same as those for the E5 traps in GaAs. At 15 and 20 nm locations, the Schenk NewDOS model
produces nearly the same results as the Schenk ConstFDOS model. However, at 5 and 10 nm
locations, the Schenk NewDOS model predicts much larger field factors than the Schenk
ConstFDOS model because of the strong band offset enhancement.
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Figure B-3 Electron field enhancement factor for the approximated potential in figure
B-2 at 300 K as a function of electric field computed using the Schenk ConstFDOS
and Schenk NewDOS models. The calculations were done for four different locations
that are 5, 10, 15, and 20 nm in the emitter away from the heterojunction. The trap
parameters are the same as those for the E5 traps in GaAs.
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APPENDIX C. DERIVATION OF HETEROJUNCTION MODELS

In this appendix the thermionic emission (TE) and local tunneling (LT) models given in Sec. 12
are derived in detail for electrons. The same derivation is valid for holes.

E=0

∆EC

E(xi)

x0

Side 1 Side 2EC1

EC2

xw

Figure C-1 Example of conduction band diagram illustrating the carrier transport across a heterojunction.

The transport of carriers from one side of a heterojunction to the other is characterized by the
quantum mechanical transmission coefficient. According to [36], the electron current per unit area
from side 1 to side 2 of the heterojunction in the x-direction illustrated in Fig. C-1 is given by

J1−>2 =
−2q
V ∑

k
vxT (E,ky,kz) f1(E)[1− f2(E)],

where 2 is due to spin degeneracy, q is the elemental charge, V is a normalization volume, vx is
the carrier velocity in the x-direction, and k is the three-dimensional wave vector which contains
three components of kx, ky, and kz. E is the kinetic energy of the carrier and given by (assuming
isotropic electron effective mass and parabolic conduction band dispersion)

E =
h̄2

2m∗n
|k|2 = h̄2

2m∗n

(
k2

x + k2
y + k2

z

)
.

In addition, T (E,ky,kz) is the quantum mechanical transmission coefficient of the carrier across
the junction, f1(E) and f2(E) are the probability of the carrier occupancy at the energy E in side
1 and side 2, respectively.
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The net electron current across the heterojunction is the difference of the two current components
flowing in opposite directions, i.e.,

Jn = J1−>2− J2−>1

=
−2q
V ∑

k
vxT (E,ky,kz) f1(E)[1− f2(E)]+

2q
V ∑

k
vxT (E,ky,kz) f2(E)[1− f1(E)]

=
−2q
V ∑

k
vxT (E,ky,kz)[ f1(E)− f2(E)]

=
−2q
V

V
(2π)3

∫
d3kvxT (E,ky,kz)[ f1(E)− f2(E)] use the sum-to-integral rule

=
−2q
V

V
(2π)3

∫ ∫ ∫
dkxdkydkz

(
h̄kx

m∗n

)
T (E,ky,kz)[ f1(E)− f2(E)]

The last equality uses the relation that vx = px/m∗n = h̄kx/m∗n. To perform the integration over the
wave vector components we rewrite the integration over the carrier kinetic energy by noting
that

E = E||+Ex, where E|| =
h̄2

2m∗n
k2
|| =

h̄2

2m∗n

(
k2

y + k2
z

)
, Ex =

h̄2

2m∗n
k2

x .

From the above, the derivatives of the wave vector components can be expressed as

dkx =
m∗n

h̄2kx
dEx, dkydkz = d2k|| = 2πk||dk|| =

2πm∗n
h̄2 dE||.

Then Jn becomes

Jn =
−2q
(2π)3

1
h̄

2πm∗n
h̄2

∫
dE||

∫
dExT (E||,Ex)[ f1(E)− f2(E)]

=
−qm∗n
2π2h̄3

∫
dE||

∫
dExT (E||,Ex)[ f1(E)− f2(E)].

To further simplify the expression of Jn we need to assume Boltzmann statistics for the carrier
occupation, i.e.,

f1(E) = exp
(

EFn1−E||−Ex

kBT

)
,

f2(E) = exp
(

EFn2−E||−Ex

kBT

)
.

Moreover, we note that there is no barrier in the y and z directions at the junction, hence the
transmission coefficient is 1 in the two directions, i.e., T (E||,Ex) = 1×T (Ex) = T (Ex). Then Jn
becomes

Jn =
−qm∗n
2π2h̄3

∫ +∞

0
dE||exp

(−E||
kBT

)∫ +∞

Emin

dExT (Ex)

[
exp
(

EFn1−Ex

kBT

)
− exp

(
EFn2−Ex

kBT

)]

=
−qm∗nkBT

2π2h̄3

∫ +∞

Emin

dExT (Ex)

[
exp
(

EFn1−Ex

kBT

)
− exp

(
EFn2−Ex

kBT

)]

=
−A∗nT

kB

∫ +∞

Emin

dExT (Ex)

[
exp
(

EFn1−Ex

kBT

)
− exp

(
EFn2−Ex

kBT

)]
,
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where A∗n is the electron Richardson constant and defined as

A∗n =
qm∗nk2

B

2π2h̄3 =
4πqm∗nk2

B
h3 .

To perform the integration over the energy Ex in computing Jn, the energy lower bound Emin must
be determined. In general, Emin can be any value between 0 and ∆EC. Figure C-2 provides an
example of conduction band diagram where Emin > 0, while the band diagram in Fig. C-1 has
Emin = 0. It is noted that T (Ex) = 1 for Ex > ∆EC. Next, let us write Jn = Jn1− Jn2. Then we

EC1 EC20

∆EC

Emin

Figure C-2 Example of conduction band diagram illustrating the case of Emin > 0.

have

Jn1 =
−A∗nT

kB

∫
∆EC

Emin

dExT (Ex)exp
(

EFn1−Ex

kBT

)
− A∗nT

kB

∫ +∞

∆EC

dExexp
(

EFn1−Ex

kBT

)
=
−A∗nT

kB

∫
∆EC

Emin

dExT (Ex)exp
(

EFn1−Ex

kBT

)
−A∗nT 2exp

(
EFn1−∆EC

kBT

)

= −A∗nT 2exp
(

EFn1−∆EC

kBT

)1+
exp
(

∆EC
kBT

)
kBT

∫
∆EC

Emin

dExT (Ex)exp
(
−Ex

kBT

)
= −A∗nT 2exp

(
EFn1−∆EC

kBT

)
(1+δn) ,

with δn equal to

δn =
exp
(

∆EC
kBT

)
kBT

∫
∆EC

Emin

dExT (Ex)exp
(
−Ex

kBT

)
.

Similarly, Jn2 is given by

Jn2 =−A∗nT 2exp
(

EFn2−∆EC

kBT

)
(1+δn) .

Therefore, Jn is simplified to

Jn = Jn1− Jn2 =−A∗nT 2

[
exp
(

EFn1−∆EC

kBT

)
− exp

(
EFn2−∆EC

kBT

)]
(1+δn) .
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From the conduction band diagrams in Figs. C-1 and C-2, it is seen that
∆EC = EC1−EC2 = EC1−0 = EC1 > 0 at the junction without loss of generality. Finally, Jn
across the heterojunction can be written as

Jn = −A∗nT 2

[
exp
(

EFn1−EC1

kBT

)
− exp

(
EFn2−EC2

kBT

)
exp
(
−∆EC

kBT

)]
(1+δn)

= JT E,n(1+δn),

where JT E,n is the net electron thermionic emission current density and equal to

JT E,n =−A∗nT 2

[
exp
(

EFn1−EC1

kBT

)
− exp

(
EFn2−EC2

kBT

)
exp
(
−∆EC

kBT

)]
. (191)

Next, in order to compute the tunneling contribution, i.e., δn, we focus on the conduction band
diagram in Fig. C-1 where Emin = 0, since the NPN HBT device of interest has a similar
conduction band profile. Applying the Wentzel-Kramers-Brillouin (WKB) approximation to the
tunneling, the transmission coefficient T (Ex) for 0≤ Ex ≤ ∆EC is equal to

T (Ex) = exp

[
−2

∫ 0

xw

dx

√
2m∗nt

h̄2

[
EC(x)−Ex

]1/2

]
.

By approximating the conduction band in Fig. C-1 to a triangular shape, the conduction band
EC(x) for tunneling is given by

EC(x) =
Ex−∆EC

xw
x+∆EC = qξx+∆EC with ξ =

∇EC

q
=

Ex−∆EC

qxw
,

where ξ is the electric field in the tunneling source side (e.g., side 1 in Fig. C-1). Substituting
EC(x) into the expression of T (Ex), we obtain

T (Ex) = exp

[
−2

∫ 0

xw

dx

√
2m∗nt

h̄2

(
qξx+∆EC−Ex

)1/2

]

= exp

[
−2

√
2m∗nt

h̄2
2

3qξ
(∆EC−Ex)

3/2

]

= exp
[
−8π

3hqξ

√
2m∗nt(∆EC−Ex)

3/2
]
.

Given the above T (Ex), δn can be rewritten as

δn =
1

kBT

∫
∆EC

0
dExT (Ex)exp

(
−Ex

kBT

)
exp
(

∆EC

kBT

)
=

1
kBT

∫
∆EC

0
dExexp

[
−8π

3hqξ

√
2m∗nt(∆EC−Ex)

3/2
]

exp
(

∆EC−Ex

kBT

)
.
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Let u = ∆EC−Ex
kBT , then du = −1

kBT dEx. δn is further simplified to

δn =
1

kBT

∫ 0

∆EC
kBT

(−kBT )exp
[
−8π

3hqξ

√
2m∗nt(kBT )3/2u3/2

]
exp(u)du

=
∫ ∆EC

kBT

0
exp

[
u−
(

u
u0

)3/2
]

du, (192)

where u0 is given by

u0 =
1

kBT

(
3hqξ

8π
√

2m∗nt

)2/3

.

If the band diagram in Fig. C-1 is flipped in the x direction, ∆EC will become negative, but Eq.
(192) is still valid except using the absolute value of ∆EC. It is noted that tunneling process is
non-local by nature. However, by using the WKB approximation and the triangular barrier
assumption, the quantum mechanical transmission coefficient T (Ex) for tunneling depends only
on the local electric field, hence the tunneling model given by Eq. (192) is called the local
tunneling model.
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APPENDIX D. CHARON INPUT FILE FOR A PN STEP JUNCTION DIODE
EXAMPLE

This appendix contains input file listings for examples given in the document.

D.1. NLP input file for PN step junction diode in Section 3.4

.

Listing 1 Input file for NLP simulation of the PN step junction diode.

1 # Name of the input exodus file, geometry only
2 import state file pndiode.exo
3
4 # Output exodus file for results of this simulation
5 start output parameters
6 output state file pndiode.nlp.exo
7 end output parameters
8
9 start physics block semiconductor

10
11 # geometry block name IS case sensitive, note however that Cubit
12 # often downcases names prior to output so it is recommended
13 # that in Cubit you use all lower case for naming entities to
14 # avoid confusion.
15 geometry block is si
16
17 # The type of physics to be solved, in this case a nonlinear
18 # Poisson, or nlp, simulation will be performed
19 standard discretization type is nlp
20
21 # The name of the material model IS case sensitive. The name is
22 # used as a key for the associated material block, also contained
23 # in this input file.
24 material model is siliconParameter
25
26 end physics block semiconductor
27
28 # The material block where most material parameters for this
29 # simulation are set. It is specified in the physics block by it’s
30 # name, siliconParameter.
31 start material block siliconParameter
32
33 # Material name IS case sensitive
34 material name is Silicon
35
36 # Simple, scalar, material property
37 relative permittivity = 11.9
38
39 # The doping for the diode
40 start step junction doping
41 acceptor concentration = 1e16
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42 donor concentration = 1e16
43 junction location = 0.5
44 dopant order is PN
45 direction is x
46 end step junction doping
47
48 end material block siliconParameter
49
50 # Boundary condition specifications. Required, but must be set to zero
51 # for the NLP simulation
52 bc is ohmic for anode on si fixed at 0
53 bc is ohmic for cathode on si fixed at 0
54
55 # Initial conditions for the ELECTRIC_POTENTIAL will come from an
56 # equilibrium approximation
57 initial conditions for ELECTRIC_POTENTIAL in si is equilibrium potential
58
59 # Section to specify the solvers, nonlinear and linear, for the
60 # problem. Most of the settings are encapsulated in "solver packs" for
61 # convenience.
62 start solver block
63 use solver pack 1
64 end solver block

D.2. I-V sweep input file for PN step junction diode in Section 3.5

Listing 2 Input file for I-V sweep of the PN step junction diode.
1 # Name of the input exodus file, which includes the results for
2 # ELECTRIC_POTENTIAL as obtained from a previous NLP simulation
3 import state file pndiode.nlp.exo at index 1
4
5 # Output exodus file for results of this simulation
6 start output parameters
7 output state file pndiode.dd.iv.exo
8 end output parameters
9

10 start physics block Semiconductor
11
12 # geometry block name IS case sensitive, note however that Cubit
13 # often downcases names prior to output so it is recommended that
14 # in Cubit you use all lower case for naming entities to avoid
15 # confusion.
16 geometry block is si
17
18 # The type of physics to be solved, in this case a nonlinear
19 # Poisson, or nlp, simulation will be performed
20 standard discretization type is drift diffusion gfem
21
22 # The name of the material model IS case sensitive. The name is
23 # used as a key for the associated material block, also contained
24 # in this input file.
25 material model is siliconParameter
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26
27 # Turn on Schokley-Reed-Hall recombination
28 srh recombination is on
29
30 end physics block
31
32 # The material block where most material parameters for this
33 # simulation are set. It is specified in the physics block by it’s
34 # name, siliconParameter.
35 start material block siliconParameter
36
37 # Material name IS case sensitive
38 material name is Silicon
39 relative permittivity = 11.9
40
41 start step junction doping
42 acceptor concentration =1.0e16
43 donor concentration =1.0e16
44 junction location = 0.5
45 dopant order is PN
46 direction is x
47 end step junction doping
48
49 end material block siliconParameter
50
51 # This is taken from the NLP file. Note that it is read from "index 1"
52 # as specified in the input file specification. In this case there is
53 # only a single result in that file.
54 initial conditions for ELECTRIC_POTENTIAL in si is exodus file
55
56 # The NLP simulation does not include a solution for the carrier
57 # densities, therefore some other type of estimate, in this case an
58 # equilibrium calculation, is used to obtain an initial guess for
59 # the carrier densities.
60 initial conditions for ELECTRON_DENSITY in si is equilibrium density
61 initial conditions for HOLE_DENSITY in si is equilibrium density
62
63 # Boundary condtions at the contacts.
64 bc is ohmic for cathode on si fixed at 0.0
65 bc is ohmic for anode on si swept from 0.0 to 1.0
66
67 # Sweep parameter controls
68 start sweep options
69 initial step size = 0.02
70 minimum step size = 0.02
71 maximum step size = 0.02
72 end sweep options
73
74 # Use a straightforward solver pack for this simulation.
75 start solver block
76 use solver pack 1
77 end solver block
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