I/O Bottleneck Detection and Tuning:

Connecting the Dots using Interactive Log Analysis

Jean Luca Bez*, Houjun Tang*, Bing Xiel, David Williams- Young*,
Rob Latham*, Rob Ross?, Sarp Oralf, Suren Byna*
* Lawrence Berkeley National Laboratory, t Oak Ridge National Laboratory, i Argonne National Laboratory

Abstract—Storing data to parallel file systems efficiently is a
tricky problem due to inter-dependencies among multiple layers
of 1/0O software, including high-level I/O libraries (HDFS5, netCDF,
etc.), MPI-IO, POSIX, and file systems (GPFS, Lustre, etc.). To-
ward understanding the I/O performance behavior, profiling tools
such as Darshan collect traces. However, there are significant gaps
in analyzing the collected traces and then applying tuning options
offered by various layers of I/O software. Seeking to connect the
dots between I/O bottleneck detection and tuning, we propose
DXT Explorer, an interactive log analysis tool. In this paper, we
perform a case study of using our interactive log analysis tool to
identify and then to apply various I/O optimizations. We report
an evaluation of performance improvement achieved for four I/0
kernels extracted from science applications.

I. INTRODUCTION

The HPC I/O stacks deployed in large-scale computing cen-
ters expose a plethora of tunable parameters and optimization
techniques that can be accessed by API calls, both seeking
to improve performance. However, there is little guidance to
developers and end-users on how and when to apply them.
There is often a lack of knowledge that those options are
available or could help in a particular scenario. Furthermore,
there has not been a single set of instructions to compile a
set of tuning parameters. Coming up with a best practices
guide even for a single system is challenging due to various
factors, including the size of I/O requests, communication
and synchronization costs at the MPI-IO level, file system,
performance variability, and storage characteristics.

The tuning options and advanced APIs provided by the HPC
I/O stack are often unexplored. For instance, some options that
users often do not tune include the parallel file system (PFS)
striping settings, MPI-IO hints, and I/O library optimizations.
If we look at Lustre (PFS), modifying the size in which a file is
striped with or the number of storage servers it is striped over
to be the best for a given system is not very often considered.
For instance, on the Cori system at the National Energy
Research Scientific Computing Center (NERSC), Darshan logs
from January 2019 report that ~ 94% of the files used the
default 1 MB stripe size and ~ 36% are striped over a
single storage server. MPI-IO can also take advantage of hints
provided by users to enable and tune the I/O performance,
such as collective buffering and data sieving. High-level I/O
libraries, such as HDFS5, also expose APIs to enable specific
optimizations that users often fail to explore.

Between a performance bottleneck and its tuning solution,
there remain dots to be connected that are not fully addressed
by existing research efforts. For instance, collective buffering
and data sieving were implemented more than 20 years ago

[1]], yet, we still find it challenging to choose the number of
aggregators, their placement, and matching them according
to the concurrency at the file system level. Furthermore,
combining optimization in multiple levels and finding the best
set of tunable parameters to achieve performance can be cum-
bersome. That alone is the target of different approaches [2]]—
[5l. The main challenge is not only the search space and time
to explore all combinations but also the inter-dependencies
between various 1/O software layers (i.e., HDF5, MPI-10, and
file systems). However, we found an interactive exploration
of the application’s profile and traces using Darshan [6] logs
already provides enough insights to connect all the dots and
bring the performance to another level.

In this paper, we propose an interactive log analy-
sis of identifying I/O performance bottlenecks, mapping
them to potential problems, and applying tuning options
to obtain good I/O performance using DXT Explorer
(gitlab.com/jeanbez/dxt-explorer). We present a
case study with four I/O kernels from HPC applications that
exercise various I/O tuning parameters and report the perfor-
mance. We also discuss the gaps in the process of connecting
the dots between bottleneck identification and tuning.

II. BACKGROUND

In this study, we used HPC 1I/O stacks that use HDF5 as
a high-level I/O library, MPI-IO as the I/O middleware, and
two file systems (Lustre and GPFS) on two production super-
computing systems. We use Darshan profiling with extended
tracing (DXT) for analyzing I/O performance.

HDF5 (Hierarchical Data Format Version 5) is a well-
known self-describing file format and an I/O library [7] that
provides flexibility, extendibility, and portability. HDFS5 is used
widely in many science domains as a de facto standard to
manage various data models [8]. MPI-IO featured as part
of the MPI-2 standard provides a comprehensive API and
optimization features such as collective buffering and data
sieving to perform efficient parallel I/O [I]. HDF5 uses the
MPI-IO layer to perform parallel 1/O.

A. Parallel File Systems in Production Supercomputers

1) Lustre on Cori: Cori is a Cray XC40 supercomputer
deployed at NERSC. It is comprised of 2,388 Intel Xeon
Haswell processor nodes and 9, 688 Intel Xeon Phi Knight’s
Landing (KNL) compute nodes, all connected to a Lustre
parallel file system capable of storing ~ 30 PB and achieving
a peak I/O bandwidth of 744 GB/s. The parallel file system
is exposed as a single POSIX namespace with five Metadata

https://gitlab.com/jeanbez/dxt-explorer

Servers (MDSes) and 244 Object Storage Servers (OSSes).
Each MDS is responsible for a portion of the global namespace
and each OSS manages one Object Storage Target (OST).

2) GPFS on Summit: Summit is an IBM-built supercom-
puting system deployed at OLCF, containing 4, 608 compute
nodes. Summit is connected to Alpine, a 250 PB Spectrum
Scale (GPFS) file system with a peak bandwidth of 2.5 TB/s.
Alpine is comprised of 154 Network Shared Disk (NSD)
servers, each NSD manages one GPFS Native RAID (GNR),
and serves as both a storage and metadata server. Alpine is
configured with a default block size is 16 MB, and unlike
Lustre, users cannot change this parameter.

B. I/O Tracing with Darshan

Darshan [[6] is the de facto tool to collect I/O profiling
information from applications. Darshan aggregates I/O profile
information to provide valuable insights without adding over-
head or perturbing application behavior. Darshan also provides
an extended tracing module (DXT) [9]] to obtain a fine-grain
view of the application behavior to understand I/O perfor-
mance issues. Once enabled, DXT collects detailed traces
from the POSIX and MPI-IO layers reporting the operation
(write/read), the rank that issued the call, the segment, the
offset in the file, and the size of each request. It also captures
the start and end timestamps of all the operations issued by
each rank. In this paper, we harness the DXT module to help
us analyze and identify I/O performance issues.

ITII. INTERACTIVE OPTIMIZATION APPROACH

While I/O profiling tools, such as Darshan [|6] and Recorder
[10], can provide I/O traces, there is a significant gap between
the trace analysis and the tuning process. DXT logs provide
detailed information about the MPI-IO and POSIX calls.
However, there is a lack of tools to analyze the logs and
guide tuning parameters setting. Furthermore, existing tools
do not offer a straightforward way to analyze and interactively
visualize the I/O behavior reported in the DXT logs. For
applications with numerous small I/O requests or a long
runtime, the collected trace can be huge, making them difficult
to explore and visualize. Existing static plots analyzing DXT
logs are limited in the information they present, due to
space constraints and pixel resolution, possibly hiding 1/O
bottlenecks in plain sight.

Toward filling this gap and aiding the process of I/O log
analysis, we introduce DXT Explorer, an interactive tool with
zoom-in/out capabilities. The tool provides a coarse-grain and
a fine-grain view of the observed I/O behavior from DXT logs.
The global view of DXT Explorer makes it easy to pinpoint
issues related to collective data and metadata operations by
visual comparison of the behavior at the MPI-IO and POSIX
levels. It also offers an analysis process needed in connecting
the dots between the I/O problem detection to the tuning
strategies (as shown in Figure [I), by using interactive trace
exploration and analysis to map problems to existing solutions.

DXT Explorer takes a DXT log (.darshan file) as input
to parse and transform the traces into interactive web-based

~

\
1 \\
! 1/0 '
\ Problems !

p N

N / Applying

N ! /0 !
\

Figure 1: Iterative workflow to identify I/O performance issues
based on the interactive visualization of DXT traces.

visualizations using R with ggplot2 [11] and Plotly [12]]
libraries. We show a high level output or the tool in Figure
[2l The interactive visualization allows a user to dynamically
narrow down the plot to cover a time interval of interest (I) or
zoom into a subset of ranks () to understand the I/O behavior.
We depict two synchronized facets: the first representing the
MPI-IO level, and the second, how it was translated into
the POSIX level. For each operation, by hovering over the
depicted interval, it is possible to inspect additional details
(B such as the type, runtime, MPI rank, and transfer size in
KB. The tool also allows to explore the spatiality of accesses
in the file and correlate the total transfer size with rank over
time. A few example interactive output plots are available at
Jjeanbez.gitlab.io/pdsw—-2021.

By visualizing the application behavior, we are one step
closer to understand the existence of any performance bot-
tlenecks and to apply the most suitable set of optimization
techniques to improve performance. We emphasize that there
is a lack of a straightforward translation of the I/O bottlenecks
into potential tuning options. In this paper, we perform a
case study using four I/O kernels and demonstrate how the
interactive analysis paves the path to performance tuning,
albeit a manual effort. In the remainder of this section, we
briefly describe a few optimizations that can be used in
combination to improve I/O performance based on issues
observed in the HDF5 I/O kernels using the DXT Explorer.

E ST: 2 13 /
= E 0. /
3 E |/

v ® /’J

Figure 2: Features available in the interactive visualization of
Darshan DXT traces: (I) focus on time-intervals, 2) zoom into
a subset of ranks, and 3) check I/O information.

https://jeanbez.gitlab.io/pdsw-2021

A. High-level I/O Library Optimizations

1) HDF5 Collective Metadata Operations: In HDFS, writ-
ing and reading HDFS5 internal metadata that describes
HDF5 objects can result in many small /O from some
or all MPI ranks, and may cause performance slowdown.
To avoid all the MPI ranks participate in the frequent
and costly metadata operations, the HDFS5 library intro-
duced two API calls that perform metadata writes and
reads collectively: H5Pset_coll_metadata_write and
H5Pset_all_coll_metadata_ops. These calls allow
HDFS5 to perform metadata operations by one rankﬂ In the
DXT Explorer plots, we observe this issue when MPI ranks are
performing small I/O requests (often less than a few hundreds
of bytes) to the offset where HDF5 metadata is stored.

2) HDFS5 Data Alignment: File systems such as GPFS and
Lustre allocate locks along specific boundaries, aligning file
access to the file system stripe size can improve performance.
In HDFS, this can be controlled by setting alignment prop-
erties using the HS5Pset_alignment function, which is
comprised of a threshold value and an alignment interval. By
default, HDF5 does not set the alignment. In the interactive
plots, we can observe this issue when unaligned I/O calls
having a high latency.

3) Deferred HDF5 Metadata Flush: The HDF5 library
manages a per-file level cache of HDFS internal metadata
and avoids frequent small I/O operations. HDF5 allows the
application to control when the entries are flushed or evicted
from the cache. The default cache setting may lead to many
small I/O requests when the application is operating on a
large number of objects. In the DXT Explorer plots, we find
this issue when small I/O request appear between data object
writes. Adjusting the HDF5 metadata cache conﬁguratio to
increase the cache size and defer the metadata flush time until
file close can significantly improve I/O performance.

B. MPI-IO Level Optimizations

If a group of MPI ranks knows which parts of a file each
one is accessing, it becomes possible to merge these requests
into a smaller number of larger and more contiguous accesses
that span over a large portion of the file. When applied at the
client level, this optimization is described as two-phase 1/O [1]]
with collective buffering and data sieving. In our interactive
plots, we can observe all the ranks performing I/O requests
when these optimizations are not set.

1) Collective Buffering: Collective buffering seeks to re-
duce I/O time by making all file access large and contiguous,
even though it might require additional communication be-
tween the processes. ROMIO exposes two user-defined knobs
that can control the application of this technique: the number
of processes that actually issue the I/O requests in the I/O
phase (cb_nodes), often referred to as aggregators; and the
maximum buffer size on each process (cb_buffer_size).

Uhttps://tinyurl.com/collmeta
Zhttps://tinyurl.com/metaflush

2) Data Sieving: Data sieving aims to reduce I/O latency
by making as few requests to the PFS as possible. For read
operations, when a process issues non-contiguous requests,
instead of reading each piece of data separately, ROMIO
reads a single contiguous chunk. A couple of user-defined
parameters are used to control this optimization, allowing the
user to explicitly enable or disable it and define the size of the
memory buffer for read and write (ind_rd_buffer_size
and ind_wr_buffer_size).

C. Farallel File System Level Optimizations

1) File Striping: In a PFS, a file is often partitioned into
a sequence of equal-sized data blocks. In Lustre, each block
is distributed across a number of OSTs in an operation called
data striping. Unlike GPFS, Lustre allows users to configure
stripe size and count to improve concurrency in accessing the
file system. On Cori, the default stripe count is 1 and the stripe
size is 1 MB. DXT Explorer can show the OST that an I/O
request accesses on Lustre.

2) Large block 10 in GPFS: In GPFS, large files are
divided into equal-sized blocks and placed on different disks
following a round-robin approach. We observed setting this
large block IO parameter for GPFS [13|] improving perfor-
mance when combined with HDF5 metadata optimizations.

IV. EVALUATION OF SCIENTIFIC I/O WORKLOADS

In this section, we present a case study of using interac-
tive exploration for identifying I/O performance bottlenecks
and tuning performance using the optimizations described
in We study four scientific I/O kernels: FLASH,
OpenPMD, E2E benchmarks, and block-cyclic I/O. We ran
each of these kernels with different configurations more than
5 times and show the best performing run.

A. FLASH-10

FLASH-IO is an I/O benchmark that simulates the I/O be-
havior of FLASH [14] code. FLASH has HDF5 and PnetCDF
output formats and we focus on the HDF5 backend. We config-
ured FLASH-IO to write 250 3D datasets along with runtime
parameter metadata to a single HDFS5 file per checkpoint, and
three datasets to a plot file. Each FLASH-IO run outputs 2
checkpoint files and 2 plot files. Our experiments on Summit
used 64 compute nodes, with 6 ranks per node, and a total of
384 MPI ranks. Each checkpoint file is ~ 2.3 TB, and each
plot file is =~ 14 GB.

Figure [3| illustrates a snapshot the I/O behavior of the
baseline FLASH-IO execution on Summit, which uses the de-
fault spectrum-mpi/10.3.1.2-20200121 MPI module and HDF5
1.12.1. Using the interactive DXT Explorer plots, we found
that the default MPI module does not perform collective I/O
operations as expected, with each MPI rank writing its own
data ranging from 12.1 MB to 24.3 MB independently at the
POSIX level (excluding the small HDF5 metadata writes).
Enabling collective I/O using ROMIO hints with 1 aggregator
per node and 16 MB collective buffer size provides 3.2x
speedup (§II-BI). Setting the HDF5 alignment size to 16

https://tinyurl.com/collmeta
https://tinyurl.com/metaflush

read — write

3001
=z
2001 3
o
100+
*
=
5 400
i
3001
el
2001 8
x
100+
O<

0 500 1000 1500
Time (seconds)

Figure 3: A DXT Explorer snapshot for original FLASH-IO.

read — write
400

3001 L Bl
L B =
2001 ! 0N 2
1 5
1004 I
. i
3 o W] Il
S 4007— :
o
3001
o
2001 2
X
100+
[— : L !
0 500 1000 1500

Time (seconds)

Figure 4: A DXT Explorer snapshot for optimized FLASH-IO.

MB provides an additional 1.18x speedup (§III-A2). Finally,
deferring the HDF5 metadata flush provides another 1.1x
speedup (§III-A3). Overall, we observed a 4.1x speedup
(1495s in Fig. 3] vs. 361s in Fig. @) to run FLASH-IO, and
7.9% speedup to write a checkpoint file (655s vs. 82s).

B. OpenPMD

OpenPMD is an open meta-data schema targeting
particle and mesh data from scientific simulations and ex-
periments. The OpenPMD library provides a reference
implementation of the openPMD-standard for file formats such
as HDF5 [[7], ADIOS [17]], and JSON [18]. In this work, we
focus on the HDF5 backend using openPMD-api 0.14.1.

On Summit we used 64 compute nodes, 6 ranks per node,
and a total of 384 processes. The total file size is ~ 121GB,
with no compression set at the HDF5 level. We configured the
kernel to write a few meshes and particles in 3D. The meshes
are viewed as a grid of dimensions [64 x 32X 32] of mini blocks
whose dimensions are [64 x 32 x 32]. Thus, the actual mesh size
is [65536 x 256 x 256]. The kernel runs for 10 iteration steps.
In Figure 3] we illustrate the baseline, which uses spectrum-
mpi/10.4.0.3-20210112 MPI and HDF5 develop version. The
baseline runs on 110.6s (avg. of 5 runs). When we enable the
romio_cb_write and romio_ds_write hints and use
a collective buffer of 16 MB with 1 aggregator per node (64

total) the runtime drops to 71.60s, 1.54x faster. Using GFPS’
large block I/O combined with collective HDF5 metadata
operations, makes the application run in 18.71s, 3.8 x speedup
on top of the last optimization. Investigating the DXT Explorer
visualization, we also noticed that collective HDF5 metadata
were not actually collective due to an issue introduced in
HDF5 1.10.5. When using HDF5 1.10.4, the runtime of the
combined optimizations is 16.1s, a 6.8x speedup compared
to the baseline.

— read — write

Olld

XISOd

0 30 60 90
Time (seconds)

Figure 5: Best run of baseline OpenPMD write in Summit.

— read — write
400
300
2
200 T
¢
100
*
JC: 0
& 400
o
300
e
200 2
=
100
0 e
0 30 60 90

Time (seconds)

Figure 6: Best execution of OpenPMD after tuned for Summit.

C. 3D Domain Decomposition Kernel

The end-to-end (E2E) I/O kernels proposed by Lofstead et
at. [19] are based on domain decomposition problems. We
evaluate the 3D domain decomposition pattern with NetCDF4
in this suite that uses HDF5 internally, which was reported to
perform very poorly. On Cori, we used 64 compute nodes, with
16 ranks per node, and a total of 1024 MPI ranks. The E2E
kernel was configured so each process is represented by 32 x
32 x 32 double precision floating points and the sizes represent
the number of doubles in each dimension. The 1024 processes
are arranged in a 32 x 32 x 16 (z by y by z) distribution. This
setup generates a ~ 41 GB file. Based on NERSC file striping
recommendationsﬂ for a single shared filed between 10 — 100

3https://docs.nersc.gov/performance/io/lustre

1000

750

500

Rank #
- XISOd

250

0 20 40 80

Time (seconds)
Figure 7: Best execution of the original application behavior,
in Cori, where a significant time is spent by rank 0 sequentially
writing fill values to all variables when they are defined.

1000

750

500

Rank #
XISOd

250

o 20 40 60 80
Time (seconds)
Figure 8: I/O behavior at the POSIX layer of the best execution
after setting the NOFILL option in Cori.

GB one should set Lustre stripe count to 24 and keep the
default stripe size of 1 MB.

Figure[7] shows the write calls at POSIX level. This baseline
execution, without any tuning, runs in 95s (an average of
99.5s over 5 runs). In the plot, we can see that 44% of the
time is taken by rank O sequentially writing something in
the file. Looking at the application’s code, rank 0 is filling
values to all of the defined variables (10 in this workload).
In this initial phase, it issues over 40 thousand write requests
with median size of 1 MB. After explicitly disabling the data
filling behavior for each one of the 10 variables (i.e., calling
nc_def_var_fill () with the NC_NOFILL in NetCDF4),
we achieved a speedup of 7.3x. Figure [§] shows the runtime
of 8s for this optimized version (avg. of 13s in 5 runs). On
Summit, the same configuration with NC_NOFILL optimiza-
tion achieved 8x improvement from the baseline (runtime
reduction from 15.93s to 1.97s).

D. Block-cyclic I/0O Pattern

The most commonly encountered data distribution pattern
leveraged in distributed memory linear algebra libraries, such
as ScaLAPACK [20], ELPA [21]] and SLATE [22], is the 2D
block-cyclic format, which partitions the matrices into tiles of
a fixed dimension and distributes them round robin on a 2D
process grid [20]. The block-cyclic data format may be com-
pletely described by 6 integers: the number of process rows
(n,) and columns (n.) which describe the process grid, the
total number of rows (m) and columns (n) of the distributed
matrix, and the dimension of the row (m;) and column (n;)
blocking factors which define the local tile dimensions.

As the memory requirement for individual matrices can
exceed the capacity of a single compute node, it is desirable
to develop procedures which allow for the direct population
of block-cyclic data structures from disk. HDFS offers an
attractive API for such developments through the (unioned)

Baseline 709
Stripe 17 r;ﬁ
CB . 55.6 JU>
CB + Stripe . 95.8

Stripe 969
stripe + Aigment | - s
)
CB - 96.6 5
CB + Stripe] |52 m

CB + Stripe + Aligment |5

0 250 500 750 1000

Time (seconds)

Figure 9: Runtime for the block-cyclic I/O kernel on Cori.

selection of block-strided hyperslabs for the population of
memory-contiguous data structures from non-contiguous lo-
cations on disk.

The proxy application developed for this work examines
the I/O behaviour for a square matrix with m = n = 81250
with FP64 data (~50 GiB). Results are presented for block-
cyclic data structures with m, = n; = 128 with 1024
processes arranged in a n, = n. = 32 process grid. By
using the DXT Explorer, we have applied Lustre striping

(§UI-C1), MPI-IO collective buffering (§III-B1), and HDF5

alignment optimizations (§III-A2). As shown in Figure [9]
using a combination of all the optimizations achieves 41X

speedup for reads over the baseline I/O performance. For
writes, the baseline reached a time limit of 8 hours. Still,
compared to just applying striping (1 MB stripe over 128
OSTs), we observed a 193x speedup by combining it with
collective buffering and HDFS data alignment.

V. CONCLUSION

In this paper, we proposed an interactive process of identi-
fying I/0 performance bottlenecks, mapping them to potential
problems, and applying the tuning options to improve I/O
performance. We presented a case study with four different
I/O kernels with distinct demands and behaviors that exercise
various I/O tuning parameters and benefit from existing opti-
mizations. Our DXT Explorer tool adds an interactive compo-
nent to Darshan trace analysis that could aid researchers, de-
velopers, and end-users to visually inspect their applications’
I/O behavior, zoom-in on areas of interest and have a clear
picture of where is the I/O problem.

As evidenced in tuning the four use cases above, applying
the available optimizations simply does not guarantee higher
I/O performance. Furthermore, the set of techniques used in
one application running in one system does not necessarily
translate into a fixed rule (neither for the workload nor for
the system). In this study, we targeted the gaps between
collecting the data to visualize what the application is doing,
identifying the bottlenecks, and re-shaping its I/O behavior
to perform better in the system. While our tuning using
interactive and iterative I/O performance analysis moves a step
towards connecting the dots between bottleneck detection and
tuning, we note that this is still a tedious process. The gaps of
mapping performance problems to tuning options and the tools
and models required for such mapping need further R&D.

[1]

[2]

[3]

[4]

[5]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o
in romio,” in Proceedings. Frontiers '99. Seventh Symposium on the
Frontiers of Massively Parallel Computation, 1999, pp. 182—189.

B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol
et al., “Taming parallel I/O complexity with auto-tuning,” in SC’13:
Proceedings of the International Conf. on High Performance Computing,
Networking, Storage and Analysis. ACM, 2013, pp. 1-12.

R. McLay, D. James, S. Liu, J. Cazes, and W. Barth, “A user-friendly
approach for tuning parallel file operations,” in SC ’I4: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC 14. Piscataway, NJ, USA:
IEEE Press, 2014, pp. 229-236.

B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing I/O
Performance of HPC Applications with Autotuning,” ACM Trans.
Parallel Comput., vol. 5, no. 4, Mar. 2019. [Online]. Available:
https://doi.org/10.1145/3309205

M. Agarwal, D. Singhvi, P. Malakar, and S. Byna, “Active Learning-
based Automatic Tuning and Prediction of Parallel I/O Performance,” in
2019 IEEE/ACM Fourth International Parallel Data Systems Workshop
(PDSW), 2019, pp. 20-29.

P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Trans.
Storage, vol. 7, no. 3, Oct. 2011. [Online]. Available: https:
//doi.org/10.1145/2027066.2027068

The HDF Group. (1997-) Hierarchical Data Format, version 5. [Online].
Available: http://www.hdfgroup.org/HDF5

S. Byna, M. Breitenfeld, B. Dong, Q. Koziol, E. Pourmal, D. Robinson,
J. Soumagne, H. Tang, V. Vishwanath, and R. Warren, “ExaHDFS5:
Delivering Efficient Parallel I/O on Exascale Computing Systems,”
JCST, vol. 35, pp. 145-160, 2020.

C. Xu, S. Snyder, O. Kulkarni, V. Venkatesan, P. Carns, S. Byna,
R. Sisneros, and K. Chadalavada, “Dxt: Darshan extended tracing,” 1
2019. [Online]. Available: https://www.osti.gov/biblio/1490709

C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel I/O tracing and analysis,” in 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2020, pp. 1-8.

H. Wickham, Ggplot2: Elegant graphics for data analysis, 2nd ed., ser.
Use R! Cham, Switzerland: Springer Int. Publishing, Jun. 2016.

P. T. Inc. (2015) Collaborative data science. Montreal, QC. [Online].
Available: https://plot.ly

J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges, “Mpi-
io/gpfs, an optimized implementation of mpi-io on top of gpfs,” in
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, ser.
SC ’01. New York, NY, USA: Association for Computing Machinery,
2001, p. 17. [Online]. Available: https://doi.org/10.1145/582034.582051
A. Dubey, K. Antypas, A. Calder, B. Fryxell, D. Lamb, P. Ricker,
L. Reid, K. Riley, R. Rosner, A. Siegel et al., “The software development
process of flash, a multiphysics simulation code,” in 2013 5th Interna-
tional Workshop on Software Engineering for Computational Science
and Engineering (SE-CSE). 1EEE, 2013, pp. 1-8.

Huebl, Axel and Lehe, Remi and Vay, Jean-Luc and Grote, David
P. and Sbalzarini, Ivo F. and Kuschel, Stephan and Sagan, David
and Mayes, Christopher and Perez, Frederic and Koller, Fabian and
Bussmann, Michael. (2015) openPMD: A meta data standard for
particle and mesh based data. DOI:10.5281/zenodo.1167843. [Online].
Available: https://doi.org/10.5281/zenodo.1167843

Koller, Fabian and Poeschel, Franz and Gu, Junmin and Huebl,
Axel. (2019) openPMD-api 0.10.3: C++ & Python API for Scientific
/O with openPMD. DOI: 10.14278/rodare.209. [Online]. Available:
https://doi.org/10.14278/rodare.209

J. E Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
10 system (ADIOS),” in CLADE. NY, USA: ACM, 2008, pp. 15-24.
F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoc¢, ‘“’foun-
dations of json schema”” in Proceedings of the 25th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2016, pp. 263-273.

J. Lofstead, M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield,
M. Wolf, and Q. Liu, “Six degrees of scientific data: Reading patterns
for extreme scale science i0,” in Proceedings of the 20th International

Symposium on High Performance Distributed Computing, ser. HPDC
’11. New York, NY, USA: Association for Computing Machinery, 2011,
p. 49-60. [Online]. Available: https://doi.org/10.1145/1996130.1996139
L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet et al.,
ScalLAPACK users’ guide. SIAM, 1997.

A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,
A. Heinecke, H.-J. Bungartz, and H. Lederer, “The elpa library: scalable
parallel eigenvalue solutions for electronic structure theory and compu-
tational science,” Journal of Physics: Condensed Matter, vol. 26, no. 21,
p- 213201, 2014.

M. Gates, A. Charara, J. Kurzak, A. YarKhan, M. A. Farhan, D. Sukkari,
and J. Dongarra, “Slate users’ guide,” University of Tennessee, Tech.
Rep., 2020.

[20]

[21]

(22]

APPENDIX

In this section, we present additional snapshots from the
DXT Explorer tool used in the paper. Interactive version of
the plots at |jeanbez.gitlab.io/pdsw-2021,

A. OpenPMD in Cori

Our tests on Cori used 64 Haswell compute nodes, 16 ranks
per node, and a total of 1024 processes. The total file size is
~ 320GB, with no compression set at the HDF5 level. We
configured the kernel to write a few meshes and particles in
3D. The meshes are viewed as a grid of dimensions [64 x
32 x 32] of mini blocks whose dimensions are [64 x 32 x 32].
Thus, the actual mesh size is [65536 x 256 x 256]. The kernel
runs for 10 iteration steps.

In Figure [I0] we illustrate the I/O behavior of our baseline
on Cori, which uses cray-mpich/7.7.10 MPI and the HDF5 de-
velop version. The I/O kernel already uses collective buffering
for writing data. However, our interactive analysis revealed
that there are a large number of small writes to the same
offset by all MPI ranks, pointing to non-collective HDF5
metadata operations. The mean runtime of the benchmark
with five runs was 54.82s. Explicitly enabling the MPI-IO
two-phase I/O using ROMIO hints and setting the collective
buffer size to 32 MB, the same of the stripe size, the mean
runtime increased to 62.18s. On the other hand, tacking the
issue presented in Figure [I0} by enabling collective metadata
operations in HDFS5, the runtime drops to 32.62s, i.e., a 70%
improvement. Combining deferred metadata writes (§II-A3))
and paged allocation further reduces the runtime to 30.84s,
i.e., a 77% performance improvement (Figure [TT).

B. E2E Benchmark in Summit

Figure [12]shows the behavior of E2E at POSIX and MPI-IO
level in Summit. In the plot, we can see the same behavior as
we saw in Cori, where a lot of the time is taken by rank 0
sequentially writing fill values to all of the defined variables
(10 in this workload). Figure @] shows the runtime for this
optimized version, after explicitly disabling the data filling
behavior.

https://doi.org/10.1145/3309205
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1145/2027066.2027068
http://www.hdfgroup.org/HDF5
https://www.osti.gov/biblio/1490709
https://plot.ly
https://doi.org/10.1145/582034.582051
https://doi.org/10.5281/zenodo.1167843
https://doi.org/10.14278/rodare.209
https://doi.org/10.1145/1996130.1996139
https://jeanbez.gitlab.io/pdsw-2021

10 20 30

. — read — write
Request size (MB) I
400
1000
300
750
=
= 200 T
500 2 IS
© 100
250 w
T+
x 0
£ 0 £ 400
& 1000 — . . o g x
750 - 0 b
o
500 9 200 2
= x
250 s 100
0 = s =" 0
0 20 60 0 5 10 15
Time (seconds) Time (seconds)

Figure 10: Best execution of the baseline OpenPMD write. It Figure 12: Best exeuction of the baseline E2E benchmark in
is possible to see small non-collective operations related to Summit. It is possible to see the long time spent by rank O

HDFS metadata calls. sequentially writing fill values to file.
10 20 30 — read — write
Request size (MB) IS 400
1000 300
z
750 = 200 2
500 2 o
(5] 100
250 *
H x 0
x 0 < 400
8 @
S 1000
o 300
750 - 3
200
500 2 %
x 100
250
o 0
) 20 40 60 0 5 Ti 1% 15
Time (seconds) ime (seconds)

Figure 11: Best execution of OpenPMD after tuned for Cori. ~ Figure 13: Best exeuction of E2E after tuned for Summit.

	Introduction
	Background
	Parallel File Systems in Production Supercomputers
	Lustre on Cori
	GPFS on Summit

	I/O Tracing with Darshan

	Interactive Optimization Approach
	High-level I/O Library Optimizations
	HDF5 Collective Metadata Operations
	HDF5 Data Alignment
	Deferred HDF5 Metadata Flush

	MPI-IO Level Optimizations
	Collective Buffering
	Data Sieving

	Parallel File System Level Optimizations
	File Striping
	Large block IO in GPFS

	Evaluation of Scientific I/O Workloads
	FLASH-IO
	OpenPMD
	3D Domain Decomposition Kernel
	Block-cyclic I/O Pattern

	Conclusion
	References
	OpenPMD in Cori
	E2E Benchmark in Summit

