
Organizing Large Data Sets for Efficient Analyses on HPC
Systems

Junmin Gu1, Philip Davis2, Greg Eisenhauer3, William Godoy4, Axel Huebl1,
Scott Klasky4, Manish Parashar2, Norbert Podhorszki4, Franz Poeschel5, Jean-
Luc Vay1, Lipeng Wan4, Ruonan Wang4, and Kesheng Wu1

1Lawrence Berkeley National Laboratory
2Scientific Computing and Imaging (SCI) Institute, University of Utah
3Georgia Institute of Technology
4Oak Ridge National Laboratory
5Center for Advanced Systems Understanding and Helmholtz-Zentrum Dresden-
Rossendorf
Email: KWu@lbl.gov
Abstract. Upcoming exascale applications could introduce significant data management
challenges due to their large sizes, dynamic work distribution, and involvement of accelerators
such as graphical processing units, GPUs. In this work, we explore the performance of reading
and writing operations involving one such scientific application on two different
supercomputers. Our tests showed that the Adaptable Input and Output System, ADIOS, was
able to achieve speeds over 1TB/s, a significant fraction of the peak I/O performance on Summit.
We also demonstrated the querying functionality in ADIOS could effectively support common
selective data analysis operations, such as conditional histograms. In tests, this query mechanism
was able to reduce the execution time by a factor of five. More importantly, ADIOS data
management framework allows us to achieve these performance improvements with only a
minimal amount of coding effort.

1. Introduction
Many recent scientific discoveries are from large-scale data analyses [1, 2]. This work examines the
input/output, I/O, strategies to read/write the large amounts of data supporting these scientific
discoveries. Because the scientific data is typically stored as multi-dimensional arrays in large files, we
specifically focus on strategies that enable efficient read operations on these files. This work focuses
on one of the I/O libraries, the Adaptable Input Output System, ADIOS1, because it requires relatively
little tuning to achieve good write performance. This choice allows us to pay more attention to the read
performance during data analyses.
ADIOS is relatively new among parallel I/O libraries. Its design incorporates key lessons from the
earlier systems to make the software easier to use [3, 4]. For example, most existing I/O libraries require
users to describe data carefully in their source code, where any change to the I/O operations would
require the program to be modified and recompiled, while ADIOS considerably simplified this
description by separating the backend “engines” from the unified application programming interface
(API) exposed to the library consumer. In addition, ADIOS could be adjusted through a runtime
configuration file to modify tuning parameters, transport mechanisms, and so on, which further reduces
the coupling between user code and ADIOS.

1 https://github.com/ornladios/ADIOS

Based on various published studies, we know that scientific data is largely represented by multi-
dimensional arrays [5, 6, 7]. Many of the these arrays are from simulations employing regular meshes
to discretize their problem domains, however, to scale up simulations to new limits (e.g. exascale
systems), they are switching to dynamic meshing mechanisms, such as adaptive mesh refinement
(AMR) techniques [8]. Thus, it is timely for us to explore the performance tuning with one of these
AMR based simulations at scale. In this study, we have chosen the state-of-the-art plasma physics
simulation code WarpX [9]. The plasma particles in this simulation could move from processor to
processor, adding to the dynamic meshes introduced by AMR, this code could have complex I/O
patterns with significant load imbalances. To abstract out the computational aspects from the physical
particularities of this application and to study the impact of this load imbalances, we also created a
synthetic benchmark based on the schema of the WarpX data.
In a typical data analysis scenario, only a relatively small fraction of a data set is needed. In this work,
we use a set of scenarios from a WarpX simulation of laser-driven accelerator to demonstrate the ADIOS
querying capability for supporting selective data accesses. The previous version of ADIOS has an
efficient metadata strategy that could be considered as a block index for its querying mechanism [7].
We have been working on reintroducing this block index and the query support in the new version of
ADIOS [3]. This work reports our experience of working with this updated querying mechanism on a
new generation of simulation data.
The main contribution of this work includes:

 A systematic study of I/O performance of an AMR-based plasma physics simulation code
WarpX. Because WarpX employs dynamic data structures and makes extensive uses of
accelerators, it examplifies a new generation of scientific simulation codes.

 A synthetic benchmark to help study the imbalances in the I/O operations introduced by the
dynamic data structures.

 A study of the querying mechanism in the latest version of ADIOS library.

2. Background
Before describing our experience of tuning the options for organizing files for efficient I/O operations,
we describe some background information, including the parallel I/O ADIOS library, the particle data
standard openPMD, the HPC AMR simulation WarpX code, and the benchmark suite used to generate
synthetic I/O test operations.
ADIOS is a framework for large-scale scientific data management tasks including data generation
transfer, and storage across multiple transport media using a unified API [3, 4, 11]. It is well-known for
obtaining near-optimal write-performance for simulations [12]. A notable feature is its in situ
processing capability [13]. These features make ADIOS an attractive option for many science
applications under the Exascale Computing Project (ECP). In this paper, we will only evaluate a few
of the most efficient I/O operations, for example, having each compute node or having each message
passing interface, MPI, process rank work independently on their I/O operations. For a thorough
description of ADIOS, we refer readers to some published studies [3][19].
Many HPC simulations are capable of producing a large amount of output. Among them, particle-in-
cell (PIC) codes are well-known because they frequently track trillions of particles in complex
electromagnetic fields [12, 14]. Their checkpoint files could easily reach hundreds of terabytes. In
addition, it is hard to distribute both particles and mesh cells evenly on compute nodes, which leads to
uneven I/O operations with suboptimal I/O performance.
To represent the complex electromagnetic field, a number of PIC simulations are starting to refine their
field representation adaptively [8], which increases the I/O complexity. To cope with this increased
complexity, developers of PIC simulations are consolidating their I/O operations with the common API
known as openPMD-api [15]. We use openPMD for I/O operations because it allows us to control the
format of data files as well as the data access patterns.
Our tests involve a set of synthetic benchmarks as well as a state-of-the-art PIC code named WarpX [9].
The synthetic benchmarks are constructed following typical PIC codes, but contain random values that

are evenly distributed among the writers. This uniform data distribution reduces the I/O variability and
simplifies performance studies. The data distribution from WarpX is uneven. We choose WarpX as an
example from a new generation of simulation codes because it is among the first to embrace AMR for
mesh management and make extensive use of GPUs in computation. Thus, it would allow us to observe
potential I/O performance characteristics for the next generation of GPU-based simulations.

3. File organizations for efficient I/O
Our evaluation on how to organize files for efficient analyses is divided into two parts: one with
synthetic benchmarks and the other with WarpX. These evaluations are conducted on supercomputers
named Summit and Cori. Summit, located at Oak Ridge National Laboratory, is developed by IBM and
has 200 petaFLOPS peak performance [16]. The file system we use on Summit is Alpine, a 250 PB IBM
Spectrum Scale GPFS file system2. It has peak performance of roughly 2.5 TB/s of I/O. The Cori
supercomputer is a Cray XC40 system with a theoretical peak performance of 30 petaFLOPS3. The file
system we use on Cori is Lustre4. In all reported tests we use 32 object storage targets (OST) and 32MB
stripe size. The report I/O performance measurements are based on the timers around the I/O operations,
averaged over all participating computer cores when more than one is involved.
We start our performance exploration with a set of synthetic benchmarks. It has a writer and a reader,
to generate and retrieve 1D, 2D, and 3D particle and mesh data, following the openPMD schema [17].
The data is organized by timesteps where each timestep has 10 field and particle variables, similar the
later WarpX tests. In the following tests, each run of the writer produces 10 timesteps, on 3D meshes.
Each run of the writer starts with 64 nodes (16 MPI ranks per node) to generate 6.4TB of data and about
10MB of metadata. We increased the output size with the number of processes used (i.e. weak scaling)
on Summit, while kept the total size constant on Cori (i.e. strong scaling).
In the write tests, we report two options are known to perform well: (1) writing one subfile per MPI
rank and (2) writing one subfile per compute note. Since these subfiles can be written independently
ADIOS achieves high bandwidth on storage systems. However, each subfile is actually a file on the file
system and the file creation is relatively expensive on a file system, if a large number of subfiles are
created, then the overall performance might decrease. One concrete objective for our study is to
determine how many subfiles might be too many.
As shown in Figure 1 for both Summit and Cori systems, using a relatively modest number of MPI
ranks, say, 1024, the one subfile per rank option produces faster I/O rates. This trend stops after 4K
cores on Summit, and 8K cores on Cori. With more MPI ranks, the overhead of creating files becomes
larger than time needed to aggregate the write operations on each compute node, which leads the one
subfile per node to be the best performing option.
The benchmark reader implements several common read patterns [6]. In this paper, we only report two
timing measurements: metadata loading time and retrieving a plane from a 3D array. Following the
terminology used in WarpX, the plane we retrieve is the YZ plane, which is contiguous had the 3D array

2 https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/summit-faqs/.
3 https://www.nersc.gov/systems/cori/.
4 https://docs.nersc.gov/performance/io/lustre/.

(a) Summit (weak scale) (b) Cori KNL (strong scale)
Figure 1: Weak-scaling performance of two ADIOS writing options, one subfile per MPI rank and one subfile per compute
node. These options reduce the dependencies among the compute nodes and are typically the most performant options.

been organized in a single large memory space.
Data in applications often come in batches from each processor, which is called a “block” in ADIOS.
The number of blocks impacts ADIOS I/O throughput, as shown in Figure 2. In these tests, we kept the
same number of subfiles and same global array dimensions, but varied block sizes on disk for each
variable. In other words, a processor can store all its content all at once (1 block), or in many batches
(many smaller blocks). The metadata size increases linearly as the number of blocks grows, which in
turn increases metadata loading time on both Cori and Summit (though only Summit measurements are
reported in Figure 2). From the read time shown in Figure 2, we see that the time to complete both read
operations generally increases with the number of blocks. Even though the YZ plane is logically
contiguous, the content is actually distributed into many blocks.

(a) Knapsack (b) Z order
Figure 3: WarpX write performance on Summit. The two load balancing strategies, Knapsack and Z order, show similar
weak-scaling performance with the two writing options, subfile per node and subfile per rank.

We next report our performance measurements with WarpX, both the write and read operations. Note
that in WarpX, the data sizes vary from time step to time step, and from processor to processor.
Additionally, there are more blocks per variable in WarpX than in the synthetic benchmark.
On Summit, WarpX is set up to use all 6 GPUs per computing node. We ran from 64 nodes to 2048
nodes, with output file sizes ranging from 3.9TB to 125TB (i.e., weak scaling). We focus our tests on
Summit to understand how GPUs might affect I/O performance.
Although resource configurations and workloads differ, what we observed in Figure 3 is close to what
we saw on the synthetic benchmarks. WarpX groups its computational blocks (defined by AMReX)
using two different strategies for load balancing: Knapsack and Z order. Using either strategy, one
subfile per rank option out performs the one subfile per node option until 6144 ranks. As the number
of MPI ranks increases further, the second option performs better. With one subfile per node option,
the best rate we achieved is 1TB/sec on summit (6144 ranks with Knapsack load balancing).
The WarpX output files contain more blocks per variable. Therefore, the size of metadata is much bigger
and requiring more time to load, see Figure 4. However, the read time consumed for different reading
patterns is similar to that of the synthetic benchmark. Furthermore, the two load balancing methods did
not show any significant impact on reading performance.

(a) load metadata (b) read YZ slice of fields
Figure 2: Time (in seconds) needed to complete some read operations on a single core on Summit versus the number of
blocks in a single ADIOS variable. We see that the time needed generally increases as the number of blocks increases.

(a) load metadata (b) read XY slice
Figure 4: Time (in seconds) to complete some read operations on WarpX data on Summit (plotted aganst the number of
compute cores involved).

4. Supporting efficient filtering
Many analysis operations only need to access data from a small part of the simulation domain or to
satisfy some other user-defined conditions. This type of filtering (or querying) is particularly useful
when the data collection is very large, as in the case with some large scale WarpX runs. In some
cases, there could be 1013 particles along with 109 mesh cells for representing fields. Additionally, some
parts of the mesh could be refined multiple times creating complex data structures that are especially
challenging to handle efficiently. Without an efficient filtering strategy, the data analysis functions will
have to read the whole data set, which would be very time-consuming [12].
In this work, we have adopted a number of strategies to address this type of selective data access.
The first strategy is applying subfiling, as mentioned earlier. Within each subfile, the user data is
organized into blocks that serve as the basic unit of I/O operations . Within each block, we maintain
a small amount of metadata that includes a version of the block index in the data [7]. This block index
effectively records the statistics for values of each variable in a block. By examining this block
index, we could decide whether or not a particular block needs to be retrieved before actually
committing the effort to perform the necessary I/O operations.

Figure 5: Data analysis using region of interest filtering with ADIOS queries. a)-c) Phase space projections of plasma
particles oscillating in a laser pulse, filtered close to the laser axis. d) Read time comparison between conventional reads
and pre-filtered reads with queries.

Next, we use a specific WarpX as an example to demonstrate the effectiveness of our approach for
supporting selective accesses. In an application scenario, WarpX is used to model the acceleration
of particles in a laser-driven accelerator, hence to analyze and correlate accelerated particle beams with
a specific accelerator geometry, sub-selecting the particles is a common task. Depending on the exact

geometry and plasma response, scientists may select particles emitted below a given angle, in a certain
acceptance range, or a part of a certain sub-ensemble. A scientist might vary the selection conditions to
explore the characteristic signature of the laser-plasma interaction. In these cases, being able to select
the particles satisfying the user-specified conditions quickly is critical to the scientific understanding
of the accelerator design.
Figure 5 shows a common scenario from this accelerator design involving filtering, where the subfigures
a)-c) show the histograms of particles in three different phase spaces. This is effectively a mapreduce
operation, which is ubiquitous in data science. The particles are selected using the block index
embedded in the metadata of the blocks in ADIOS files. In this specific case, the selection is based on
the position of particles in 3D (real) space. In sub-figure 5 d), we show a comparison of execution time
of generating these histograms with and without the query support. In these cases, we are able to reduce
the histogram computation time from 80-100 seconds to about 20 seconds, clearly demonstrating the
usefulness of the block index mechanism. (Note that the two NoQuery measurements should require the
same amount of time, the observed variations are due to file-system variance.)

5. Conclusion and Future work
We have experimented with a number of promising strategies to optimize I/O rates for large scientific
applications on HPC, using ADIOS. These options are primarily exploring the number of subfiles to
use and the number of blocks for variables, where the former decides the rate to store data on disk
and the later affects the rate to retrieve information back from disk.
In our tests, both the synthetic benchmark and a scientific simulation are able to write at scale on Alp
ine at 1TB/sec. We are interested in further studying this simulation code and see how it performs with
more levels of mesh refinement.
In this paper, we also report an exploration of the block indexing feature built into the ADIOS file
structure. This index structure is able to effectively support selective accesses to the data file, for
example, by allowing querying software to determine whether any records in a block satisfy the user-
specified conditions. If none of the records in a block could satisfy the conditions, there is no need to
actually read the data block from the storage media. Tests showed that we are able to significantly
reduce the time needed to compute common tasks such as 2D histogramming (mapreduce). We are
interested in studying the options to support more complex query conditions.
To ensure that data analysis operations could read files efficiently, it is important to limit the number
of blocks to read. One effective strategy for this is to utilize in situ processing capabilities to
reorganize the data for more efficient read operations. While w e have studied strategies to reduce
the number of blocks elsewhere [19], we have also explored in situ processing capabilities [18].
We plan to study this in situ option further because it is likely to become more important in future
exascale systems.

Acknowledgements
This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a joint project
of the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative. This research used resources of the
Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22725 and of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231. This work was
partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by
Germany's Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science,
Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State
Parliament.

1. References
[1] Clark J, Cadonati L, Healy J, Heng I, Logue J, Mangini N, London L, Pekowsky L and

Shoemaker D 2015. Gravitational Wave Astrophysics (Springer) pp 281–287
[2] Hey T, Tansley S and Tolle K (eds) 2009 The Fourth Paradigm: Data-Intensive Scientific

Discovery (Microsoft)
[3] W. F. Godoy, et al. 2020. SoftwareX 12 100561 DOI: 10.1016/j.softx.2020.100561
[4] Liu Q, Logan J, Tian Y, Abbasi H, Podhorszki N, Choi J Y, Klasky S, Tchoua R, Lofstead J,

Oldfield R et al. 2013. Concurrency and Computation: Practice and Experience
[5] Chang C S, et al. 2008. Scidac 2008: Scientific Discovery through Advanced Computing 125

12042–12042
[6] Lofstead J, Polte M, Gibson G, Klasky S, Schwan K, Oldfield R, Wolf M and Liu Q 2011

Proceedings of HPDC ’11 (ACM) pp 49–60 ISBN 978-1-4503-0552-5 URL DOI:
10.1145/1996130.1996139

[7] Gu J, Klasky S, Podhorszki N, Qiang J and Wu K. 2018. Asian Conference on
Supercomputing Frontiers (Springer) pp 51–69

[8] Zhang W, Almgren A, Beckner V, Bell J, Blaschke J, Chan C, Day M, Friesen B, Gott K,
Graves D et al. 2019. Journal of Open Source Software 4 1370–1370

[9] Vay J L, Huebl A, Almgren A, Amorim L D, Bell J, Fedeli L, Ge L, Gott K, Grote D P,
Hogan M, Jambunathan R, Lehe R, Myers A, Ng C, Rowan M, Shapoval O, Th é
venet M, Vincenti H, Yang E, Zaim N, Zhang W, Zhao Y and Zoni E 2021 Physics of
Plasmas 28 023105

[10] Tang H, Koziol Q, Byna S, Mainzer J and Li T 2019 2019 IEEE/ACM Fourth International
Parallel Data Systems Workshop (PDSW) (IEEE) pp 11–19

[11] Tian Y, Klasky S, Abbasi H, Lofstead J, Grout R, Podhorszki N, Liu Q, Wang Y and Yu W
2011 2011 IEEE International Conference on Cluster Computing (IEEE) pp 93–102

[12] Huebl A, Widera R, Schmitt F, Matthes A, Podhorszki N, Choi J Y, Klasky S and Bussmann
M 2017 High Performance Computing ed Kunkel J M, Yokota R, Taufer M and Shalf J
(Springer) pp 15–29 ISBN 978-3-319-67630-2

[13] Bauer A C, Abbasi H, Ahrens J, Childs H, Geveci B, Klasky S, Moreland K, O’Leary P,
Vishwanath V, Whitlock B and Bethel E W 2016 Computer Graphics Forum ISSN 1467-
8659

[14] Nakamura T and Daughton W 2016 3-D VPIC simulation of a vortex-induced reconnection
event observed by MMS Tech. Rep. 1395321 OSTI.gov

[15] Huebl A, Poeschel F, Koller F, Gu J 2018 openPMD-api: C++ & Python API for Scientific
I/O with openPMD. 2021. DOI: 10.14278/rodare.27

[16] Oral S, Vazhkudai S S, Wang F, Zimmer C, Brumgard C, Hanley J, Markomanolis G, Miller
R, Leverman D, Atchley S and Larrea V V 2019 End-to-end i/o portfolio for the summit
supercomputing ecosystem URL https://doi.org/10.1145/3295500.3356157

[17] Huebl A, Lehe R, Vay J L, Grote D P, Sbalzarini I, Kuschel S, Sagan D,
Pé rez F, Koller F and Bussmann M. 2015. openPMD: A meta data standard for
particle and mesh based data URL https: //doi.org/10.5281/zenodo.591699

[18] F. Poeschel, et al. "Transitioning from file-based HPC workflows to streaming data pipelines
with openPMD and ADIOS2." arXiv preprint arXiv:2107.06108 (2021).

[19] L. Wan et al., "Improving I/O Performance for Exascale Applications Through Online Data
Layout Reorganization," in IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 4, pp. 878-890, 1 April 2022, doi: 10.1109/TPDS.2021.3100784.

https://doi.org/10.1016/j.softx.2020.100561
http://doi.acm.org/10.1145/1996130.1996139
http://doi.acm.org/10.1145/1996130.1996139
https://doi.org/10.14278/rodare.27
https://doi.org/10.1145/3295500.3356157
https://doi.org/10.5281/zenodo.591699
https://doi.org/10.5281/zenodo.591699

