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Abstract. Upcoming exascale applications could introduce significant data management 
challenges due to their large sizes, dynamic work distribution, and involvement of accelerators 
such as graphical processing units, GPUs.  In this work, we explore the performance of reading 
and writing operations involving one such scientific application on two different 
supercomputers.  Our tests showed that the Adaptable Input and Output System, ADIOS, was 
able to achieve speeds over 1TB/s, a significant fraction of the peak I/O performance on Summit. 
We also demonstrated the querying functionality in ADIOS could effectively support common 
selective data analysis operations, such as conditional histograms.  In tests, this query mechanism 
was able to reduce the execution time by a factor of five.  More importantly, ADIOS data 
management framework allows us to achieve these performance improvements with only a 
minimal amount of coding effort.

1. Introduction
Many recent scientific discoveries are from large-scale data analyses [1, 2].  This work examines the 
input/output, I/O, strategies to read/write the large amounts of data supporting these scientific 
discoveries.  Because the scientific data is typically stored as multi-dimensional arrays in large files, we 
specifically focus on strategies that enable efficient read operations on these files.  This work focuses 
on one of the I/O libraries, the Adaptable Input Output System, ADIOS1, because it requires relatively 
little tuning to achieve good write performance. This choice allows us to pay more attention to the read 
performance during data analyses.
ADIOS is relatively new among parallel I/O libraries.  Its design incorporates key lessons from the 
earlier systems to make the software easier to use [3, 4].  For example, most existing I/O libraries require 
users to describe data carefully in their source code, where any change to the I/O operations would 
require the program to be modified and recompiled, while ADIOS considerably simplified this 
description by separating the backend “engines” from the unified application programming interface 
(API) exposed to the library consumer.  In addition, ADIOS could be adjusted through a runtime      
configuration file to modify tuning parameters, transport mechanisms, and so on, which further reduces 
the coupling between user code and ADIOS.

1 https://github.com/ornladios/ADIOS



Based on various published studies, we know that scientific data is largely represented by multi-
dimensional arrays [5, 6, 7].  Many of the these arrays are from simulations employing regular meshes 
to discretize their problem domains, however, to scale up simulations to new limits (e.g. exascale 
systems), they are switching to dynamic meshing mechanisms, such as adaptive mesh refinement 
(AMR) techniques [8].  Thus, it is timely for us to explore the performance tuning with one of these 
AMR based simulations at scale.  In this study, we have chosen the state-of-the-art plasma physics 
simulation code WarpX [9].  The plasma particles in this simulation could move from processor to 
processor, adding to the dynamic meshes introduced by AMR, this code could have complex I/O 
patterns with significant load imbalances.  To abstract out the computational aspects from the physical 
particularities of this application and to study  the impact of this load imbalances, we also created a 
synthetic benchmark based on the schema of the WarpX data.
In a typical data analysis scenario, only a relatively small fraction of a data set is needed.  In this work, 
we use a set of scenarios from a WarpX simulation of laser-driven accelerator to demonstrate the ADIOS 
querying capability for supporting selective data accesses.  The previous version of ADIOS has an 
efficient metadata strategy that could be considered as a block index for its querying mechanism [7].  
We have been working on reintroducing this block index and the query support in the new version of 
ADIOS [3].  This work reports our experience of working with this updated querying mechanism on a 
new generation of simulation data.
The main contribution of this work includes:

 A systematic study of I/O performance of an AMR-based plasma physics simulation code 
WarpX.  Because WarpX employs dynamic data structures and makes extensive uses of 
accelerators, it examplifies a new generation of scientific simulation codes.

 A synthetic benchmark to help study the imbalances in the I/O operations introduced by the 
dynamic data structures.

 A study of the querying mechanism in the latest version of ADIOS library.

2. Background
Before describing our experience of tuning the options for organizing files for efficient I/O operations, 
we describe some background information, including the parallel I/O ADIOS library, the particle data 
standard openPMD, the HPC AMR simulation WarpX code, and the benchmark suite used to generate 
synthetic I/O test operations.
ADIOS is a framework for large-scale scientific data management tasks including data generation      
transfer, and storage across multiple transport media using a unified API [3, 4, 11]. It is well-known for 
obtaining near-optimal write-performance for simulations [12].  A notable feature is its in situ 
processing capability [13]. These features make ADIOS an attractive option for many science 
applications under the Exascale Computing Project (ECP).  In this paper, we will only evaluate a few 
of the most efficient I/O operations, for example, having each compute node or having each message 
passing interface, MPI, process rank work independently on their I/O operations. For a thorough 
description of ADIOS, we refer readers to some published studies [3][19].
Many HPC simulations are capable of producing a large amount of output. Among them, particle-in-
cell (PIC) codes are well-known because they frequently track trillions of particles in complex 
electromagnetic fields [12, 14]. Their checkpoint files could easily reach hundreds of terabytes. In 
addition, it is hard to distribute both particles and mesh cells evenly on compute nodes, which leads to 
uneven I/O operations with suboptimal I/O performance.
To represent the complex electromagnetic field, a number of PIC simulations are starting to refine their 
field representation adaptively [8], which increases the I/O complexity. To cope with this increased 
complexity, developers of PIC simulations are consolidating their I/O operations with the common API 
known as openPMD-api [15]. We use openPMD for I/O operations because it allows us to control the 
format of data files as well as the data access patterns.
Our tests involve a set of synthetic benchmarks as well as a state-of-the-art PIC code named WarpX [9]. 
The synthetic benchmarks are constructed following typical PIC codes, but contain random values that 



are evenly distributed among the writers. This uniform data distribution reduces the I/O variability and 
simplifies performance studies. The data distribution from WarpX is uneven. We choose WarpX as an 
example from a new generation of simulation codes because it is among the first to embrace AMR for 
mesh management and make extensive use of GPUs in computation. Thus, it would allow us to observe 
potential I/O performance characteristics for the next generation of GPU-based simulations.

3. File organizations for efficient I/O
Our evaluation on how to organize files for efficient analyses is divided into two parts:  one with 
synthetic benchmarks and the other with WarpX.  These evaluations are conducted on supercomputers 
named Summit and Cori. Summit, located at Oak Ridge National Laboratory, is developed by IBM and 
has 200 petaFLOPS peak performance [16]. The file system we use on Summit is Alpine, a 250 PB IBM 
Spectrum Scale GPFS file system2.  It has peak performance of roughly 2.5 TB/s of I/O.  The Cori 
supercomputer is a Cray XC40 system with a theoretical peak performance of 30 petaFLOPS3.  The file 
system we use on Cori is Lustre4.  In all reported tests we use 32 object storage targets (OST) and 32MB 
stripe size.  The report I/O performance measurements are based on the timers around the I/O operations, 
averaged over all participating computer cores when more than one is involved.
We start our performance exploration with a set of synthetic benchmarks. It has a writer and a reader, 
to generate and retrieve 1D, 2D, and 3D particle and mesh data, following the openPMD schema [17]. 
The data is organized by timesteps where each timestep has 10 field and particle variables, similar the 
later WarpX tests. In the following tests, each run of the writer produces 10 timesteps, on 3D meshes. 
Each run of the writer starts with 64 nodes (16 MPI ranks per node) to generate 6.4TB of data and about 
10MB of metadata. We increased the output size with the number of processes used (i.e. weak scaling) 
on Summit, while kept the total size constant on Cori (i.e. strong scaling).
In the write tests, we report two options are known to perform well: (1) writing one subfile per MPI 
rank and (2) writing one subfile per compute note.  Since these subfiles can be written independently 
ADIOS achieves high bandwidth on storage systems. However, each subfile is actually a file on the file 
system and the file creation is relatively expensive on a file system, if a large number of subfiles are 
created, then the overall performance might decrease. One concrete objective for our study is to 
determine how many subfiles might be too many.
As shown in Figure 1 for both Summit and Cori systems, using a relatively modest number of MPI 
ranks, say, 1024, the one subfile per rank option produces faster I/O rates. This trend stops after 4K 
cores on Summit, and 8K cores on Cori. With more MPI ranks, the overhead of creating files becomes 
larger than time needed to aggregate the write operations on each compute node, which leads the one 
subfile per node to be the best performing option.
The benchmark reader implements several common read patterns [6]. In this paper, we only report two 
timing measurements: metadata loading time and retrieving a plane from a 3D array. Following the 
terminology used in WarpX, the plane we retrieve is the YZ plane, which is contiguous had the 3D array 

2 https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/summit-faqs/.
3 https://www.nersc.gov/systems/cori/.
4 https://docs.nersc.gov/performance/io/lustre/.

(a) Summit (weak scale) (b) Cori KNL (strong scale)
Figure 1: Weak-scaling performance of two ADIOS writing options, one subfile per MPI rank and one subfile per compute 
node. These options reduce the dependencies among the compute nodes and are typically the most performant options.



been organized in a single large memory space.
Data in applications often come in batches from each processor, which is called a “block” in ADIOS. 
The number of blocks impacts ADIOS I/O throughput, as shown in Figure 2.  In these tests, we kept the 
same number of subfiles and same global array dimensions, but varied block      sizes on disk for each 
variable.   In other words, a processor can store all its content all at once (1 block), or in many batches 
(many smaller blocks).  The metadata size increases linearly as the number of blocks grows, which in 
turn increases metadata loading time on both Cori and Summit (though only Summit measurements are 
reported in Figure 2).  From the read time shown in Figure 2, we see that the time to complete both read 
operations generally increases with the number of blocks.  Even though the YZ plane is logically 
contiguous, the content is actually distributed into many blocks.      

(a) Knapsack (b) Z order
Figure 3: WarpX write performance on Summit. The two load balancing strategies, Knapsack and Z order, show similar 
weak-scaling performance with the two writing options, subfile per node and subfile per rank.

We next report our performance measurements with WarpX, both the write and read operations. Note 
that in WarpX, the data sizes vary from time step to time step, and from processor to processor. 
Additionally, there are more blocks per variable in WarpX than in the synthetic benchmark.
On Summit, WarpX is set up to use all 6 GPUs per computing node.  We ran from 64 nodes to 2048 
nodes, with output file sizes ranging from 3.9TB to 125TB (i.e., weak scaling).  We focus our tests on 
Summit to understand how GPUs might affect I/O performance.
Although resource configurations and workloads differ, what we observed in Figure 3 is close to what 
we saw on the synthetic benchmarks. WarpX groups its computational blocks (defined by AMReX) 
using two different strategies for load balancing: Knapsack and Z order.  Using either strategy, one 
subfile per rank option out performs the one subfile per node option until 6144 ranks.  As the number 
of MPI ranks increases further, the second option performs better.  With one subfile per node option, 
the best rate we achieved is 1TB/sec on summit (6144 ranks with Knapsack load balancing).
The WarpX output files contain more blocks per variable. Therefore, the size of metadata is much bigger 
and requiring more time to load, see Figure 4.  However, the read time consumed for different reading 
patterns is similar to that of the synthetic benchmark.  Furthermore, the two load balancing methods did 
not show any significant impact on reading performance.

(a) load metadata (b) read YZ slice of fields
Figure 2: Time (in seconds) needed to complete some read operations on a single core on Summit versus the number of 
blocks in a single ADIOS variable. We see that the time needed generally increases as the number of blocks increases.



(a) load metadata (b) read XY slice
Figure 4: Time (in seconds) to complete some read operations on WarpX data on Summit (plotted aganst the number of 
compute cores involved).

4. Supporting efficient filtering 
Many analysis operations only need to access data from a small part of the simulation domain or to 
satisfy      some other user-defined conditions.  This type of filtering (or querying) is particularly useful 
when the data collection is very large, as in the case with some large  scale WarpX runs.  In some      
cases, there could be 1013 particles along with 109 mesh cells for representing fields.  Additionally, some 
parts of the mesh could be refined multiple times creating complex data structures that are      especially 
challenging to handle efficiently.  Without an efficient filtering strategy, the data analysis functions will 
have      to read the whole data set, which would be very time-consuming [12].
In this      work, we have adopted a number of strategies to address this type of selective data access. 
The first strategy is applying      subfiling,      as mentioned earlier.  Within each subfile, the user data is 
organized into blocks that serve as  the basic unit of I/O operations     .  Within each block, we maintain 
a small amount of metadata that includes a version of the block index in the data [7]. This block index 
effectively records the statistics for values of      each variable in  a block.  By examining this block 
index, we  could decide whether or not a particular block needs to be retrieved before actually 
committing the effort to perform the necessary I/O operations. 

Figure 5: Data analysis using region of interest filtering with ADIOS queries. a)-c) Phase space projections of plasma 
particles oscillating in a laser pulse,  filtered close to the laser axis. d) Read time comparison between conventional reads 
and pre-filtered reads with queries.

Next, we use a specific WarpX as an example to demonstrate the effectiveness of our approach for 
supporting selective accesses.  In an application scenario,      WarpX is used to model the acceleration 
of particles in a laser-driven accelerator, hence to analyze and correlate accelerated particle beams with 
a specific accelerator geometry, sub-selecting the particles is a common task.  Depending on the exact 



geometry and plasma response, scientists may select particles emitted below a given angle, in a certain 
acceptance range, or a part of a certain sub-ensemble.  A scientist might vary the selection conditions to 
explore the characteristic signature of the laser-plasma interaction.  In these cases, being able to select 
the particles satisfying the user-specified conditions quickly is critical to the scientific   understanding 
of  the accelerator design.
Figure 5 shows a common scenario from this accelerator design involving filtering, where the subfigures 
a)-c) show the histograms of particles in three different phase spaces. This is effectively a mapreduce 
operation, which is ubiquitous in data science.  The particles are selected using the block index 
embedded in the metadata of the blocks in ADIOS files.  In this  specific case, the selection is based on 
the position of particles  in 3D (real) space.  In sub-figure 5 d), we show a comparison of execution time 
of generating these histograms with and without the query support.  In these cases, we are able to reduce 
the histogram computation time from 80-100 seconds to about 20 seconds, clearly demonstrating the 
usefulness of the block index mechanism. (Note that the two NoQuery measurements should require the 
same amount of time, the observed variations are due to file-system variance.) 

5. Conclusion and Future work
We have experimented with a number of promising strategies to optimize I/O rates for large scientific 
applications on HPC, using ADIOS.  These options are primarily exploring the number of subfiles to 
use and the number of blocks for      variables, where the former decides the rate to store data on disk 
and the later affects the rate to retrieve information back from disk.
In our tests, both the synthetic benchmark and a scientific simulation are able to write at scale on Alp     
ine at 1TB/sec. We are interested in further studying this simulation code and see how it performs with      
more levels of mesh refinement.
In this paper, we also report an exploration of the block indexing feature built      into the ADIOS file 
structure.  This index structure is able to effectively support selective accesses to the data file, for 
example, by allowing querying software to determine whether any records in a block satisfy the user-
specified conditions.  If none of the records in a block could satisfy the conditions, there is no need to 
actually read the data block from the storage media.  Tests showed that we are able to significantly 
reduce the time needed to compute common tasks such as 2D histogramming (mapreduce).  We are 
interested  in studying the options to  support more complex query conditions.
To ensure that      data analysis operations could read files efficiently, it is important to limit the number 
of blocks to read.  One effective strategy for this is to utilize      in situ processing capabilities      to 
reorganize the data for more efficient read operations.  While w     e      have studied strategies to reduce 
the number of blocks elsewhere [19], we      have also explored      in situ processing capabilities      [18].  
We plan to study this in situ option further because it is likely to become more important in      future 
exascale systems.
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