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> | Abstract of Article

The reversible computation paradigm aims to provide a new foundation for general
classical digital computing that 1s capable of circumventing the thermodynamic
limits to the energy efficiency of the conventional, non-reversible digital paradigm.
However, to date, the essential rationale for and analysis of classical reversible
computing (RC) has not yet been expressed in terms that leverage the modern
formal methods of non-equilibrium quantum thermodynamics (NEQT). In this
paper, we begin developing an NEQ”Cll-based foundation for the physics of
reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-
Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states,
incorporating recent results from resource theory, full counting statistics, and
stochastic thermodynamics. Important conclusions include that, as expected: (1)
Landauer's Principle indeed sets a strict lower bound on entropy generation in
traditional non-reversible architectures for deterministic computing machines when
we account for the loss of correlations; and 52) implementations of the alternative
reversible computation paradigm can potentially avoid such losses, and thereb
circumvent the Landauer limit, potentially allowing the efficiency of future gigital
computing technologies to continue improving ingeﬁnitely. We also outline a
research plan for identifying the fundamental minimum energy dissipation of
reversible computing machines as a function of speed.
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11 Blg Picture (Non-Equilibrium Open Quantum System Framework)

Divide the model universe U into the “system”
(computing system) © and its external
environment €.
o System & can contain its own free energy supply.
o F.g.,a battery
° System © can expel waste heat to the environment €.

> To some extent, this is all just a formal convenience...

o Since, a Jarge enongh closed system can approximate an open one.

Assume the universe’s Hilbert space factorizes:
o Hy = Hg ® Hg € We mostly focus on Hg.

Also important assumption: Correlations between
© and € aren’t effectively tracked or modeled...
° " pu = pe B Ps

o Effectively, after a short thermalization timescale after emitting
energy AQ). = Markovian approximation.

Generally model environment € as being in a uniform
thermal state at some constant temperature 7.

Model universe U
A




12 l Computational State Abstraction .

There 1s no need to worry, at the c @ @ - @
N c, ,
start, about exactly Jow the digital
computing machine will be ‘ |
organized (e.g., into bits)...
° Instead, just say that, at any given time, we can define some number n of valid discrete
computational states C1, Cy, ..., Cp, that the machine could theoretically be in

Cy

° The set of a// of these defined computational states is called C.

> We can add a single extra “dummy computational state” ¢, to represent the generic
circumstance that the system is not currently strictly occupying any of these defined
computational states.

° The computer might be powered down, broken, vaporized, or, just one of its state bits might just be a /Z##/e bit
outside of its defined error margins.

° The set of a// “computational states” including ¢, is called C | .

o Call this “the auemented computational state set.”
g p

Note we can always break down the computational model in more detail later as needed.

| R $Z$39090909 &= BB ]



Proto-Computational Basis

A proto-computational basis tor

the

computing system © just means azny
appropriate orthonormal basis B for
the system’s Hilbert space Hg such

that the exact computational
¢ € C, would be consistent]
unambiguously determined |

(hypothetical) complete pro;

state
ly and
Oy 2

ective

measurement of the guantum state ot
the machine onto the basis B.

o Given such a B, it follows that €, can
then be 1dentified (i.e. put into
correspondence) with a set-theoretic

partition of the set B.
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Example of a computational state space
C consisting of 3 distinct computational
states ¢4, ¢,, ¢, each identified with an
equivalence class of basis states in B.
The catch-all state ¢, = B — UL ¢c; is
considered computationally invalid.
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14 1Computational and Non-Computational Subspaces
Computing System (S)

///

In some cases, we may be able to factor the Hilbert
space Hg of the computing system into separate Hilbert |
spaces for “computational” and “non-computational” | Non-Computational
degrees of freedom: Subsystem ()

© Heg= He® Hy

But, this may not always be possible! Computational

o E.g. different states of the computational subsystem € may put Subsystem (€)
differing constraints on the I system, such that we can’t
properly describe the 9 system by itself using the very same
Hilbert space for all cases.

However, in such cases, we can still represent Hg via a C, ={co,-rcnti By ={bi1, -, bin} |
direct sum of su(k;spaces fo(r)d1fferent comp. states: General state of 1| ng ~
_ mn i i) . - system for compu- { 39t — b
° Hg = @9 Hy,", where H, " is a Hilbert space for the It y o tional statep : | Vi = ) agjby; (Before
subsystem that is applicable when the € state happens to be ¢;. ‘ j=o0 normal-
(Letcg =} .) General state of | e : _,  ization)
o _ _ 0 _ complete compu{ V™~ = Z ai,jbi,j
° This is the same as treating the various 9t subspaces H,” as orthogonal; which ting system & | =0 =

is true since they are just the subspaces spanned by the basis vectors in B;.



15 I Time-Dependent Description

In general, the definition of the accessible computational states could be #me-dependent.

° E.g., 1f the chEuting system 1s clocked in phases, and different numbers of bits are active in different
phases. Or, if the system is being built up over time.

> We will typically assume there exists some discrete set of times t = T, € R at which the computational
states are well-defined.

Abstract computational concepts:
o €(t) — The discrete set of computational states defined for the computing system at time t.

> n(t) = |C(t)| — The number of computational states defined for the computing system at time t.

o ¢;(t) — The i computational state in €(t), in some arbitrary enumeration of computational states.

o €, (t) =C(t) U{c,(t)} — The augmented computational state space at time t. .
o ¢(t) — The actual computational state at time t (if fully decohered, & deterministic).

Physical concepts:
o B(t) — A protocomputational basis for Hg that can be used to define the computational states at time t.

° bj(t) — The j™ particular protocomputational basis state in B(t).
> B;(t) € B(t) — The subset of protocomputational basis states that corresponds to c;(t).
o As before, this is a partition of B(t).

> B (t) = B(t) — Uj=; B; — The subset of protocomputational basis states for which the computational state is
undefined (1) at time .



Fundamental Theorem of the NOTE: We distinguish this from o I
1 I Thermodynamics of Computation Landauer’s Principle proper. @

Let ¢ € Hg represent a microstate (pure quantum state) of the computing system ©.

° Let ¢ be hypothetically sampled by applying a complete projective measurement of © onto some
protocomputational basis B.

° Thus ¢ can be identified as ¢;, corresponding to some I;i € B. i

° The probability distribution p(¢;) is given as usual by the Born rule, or equivalently by the diagonal
clements of the pg density matrix in the B basis.

Note that the distribution p(¢;) implies a derived distribution over the computational states:
P(c;) = 2 p(Pi).
¢p;EC j

And, the total entropy of the physical system (random variable @ for the state ¢) can
always be written as S(®) = H(C) + S(®|C),
o where C is a random variable for the computational state, and S, H are the entropies based on the probability
distributions p, P respectively.

Cite Physical Foundations of Landauer’s Principle

| R $Z$39090909 &= BB ]



17 I Fundamental Theorem lllustrated

The total entropy of any given computing

system © can always be partitioned as a

sum of the entropies associated to its

computational vs. non-computational

subsystems.

° In this picture, we are implicitly imagining

hypothetically sampling © by measuring it in an
appropriate protocomputational basis B...

> When this 1s not the case, or at times when the system
becomes (perhaps briefly) entangled with its environment €,
we need to be a little bit more careful.

Computing System (©),
total entropy S(®) = — Y. plogp

Non-Computational
Subsystem (91)

non-computational /
conditional entropy
Sne = S(@[C) = S(®) — H(C)

Computational
Subsystem (€)

info. entropy H(C) = — ). Plog P



s | Computational Operations

For our purposes, a (classical) computational operation O on a computational state set € is a
(potentially stochastic) map:

0:C - P(C)

o Maps each initial state ¢; € € to a corresponding probability distribution P; € P (C) over final states.

A computational operation O is called deterministic (for our purposes) when the final
state entropy H(P;) = 0 for all i.

° Also we can have that O 1s just deterministic over a subset A € € of initial states, but not the whole set C.

o If O is not deterministic, we call it stochastsc.

> So as not to be confused with the computer science meaning of nondeterministic.

| R $Z$39090909 &= BB ]



19 | Logically Reversible Operations

We say that an operation O is (unconditionally, logically) reversible it and only if there is no
final state ¢ € C that is reachable from two different ¢;, ¢j (I # ), z.e., where:

Pi(ck) # 0 and Pj(Ck) * 0.

o Otherwise, we say that O is logically irreversible.

We say that O is conditionally (logically) reversible under the precondition that the initial state ¢ € A,
for some A € C, if and only if there is no final state ¢ € € reachable from two ¢;, ¢j €
A +])).

° Although it’s not very widely known, it’s only this weaker, conditional form of reversibility (given a

context where the precondition 1s guaranteed to be satisfied) that’s required to avoid the information
loss that causes necessary dissipation under Landauer’s Principle!

> Models of reversible (as well as quantum) computing can be generalized in ways that take advantage of this.

;
|
|



20 I Time-Dependent Case

We can write O¢ to denote a computational operation being applied over the time
interval between starting time S € R and terminating time t € R, with t > s:

0t:C(s) » P(C(D))

The remaining definitions (for determinism, reversibility, etc.) change correspondingly
in the obvious ways.

| R $Z$39090909 &= BB ]



21 I Operations and Transitions

We can easily illustrate various categories

of computational operations in terms of

the state transitions making them up =2

> We can think about the transitions in terms
what they do to the basis state sets (below).

> Note that, in unitary evolution, the aggregate size ot the

basis state sets is conserved.

° In open-system dynamics, this need not be the case, as

entropy may transfer to/from the environment.

® co aw
c(s) c(t) : % =N
! =L : ()
O 6
(a) S = Ty t = Te+1 (b) ;:‘:g (C)

Irreversible
C(s) C(t)
P TN
Q
] 7 @\ @
o) k= ‘ :
- c -@
8 @ @
5 =Ty t =Ty
" C(s) C(t)
©
= |
% £ C2
1@ (@
S =Ty t=Tp41

t="Te4

Reversible

O 1@
o' @
@ @
S = Ty t =:T£+1




2 | Gates vs. Operations
(And, why you really need to know some engineering to do physics of computing!)

Note that there is a crucially important distinction that needs to be made between
physical logic gates (i.c., hardware devices that can evaluate Boolean functions), versus
gate operations—i.c., actual fransformations ot the computational state.

° A single physical hardware device can often be operated in multiple different ways!

o F.g., we can build a single hardware circuit that can evaluate Boolean functions in eizher a reversible or irreversible way,

dependmg on how it’s operated' E.g. a NAND gate in standard CMOS and in SCRL (see next slides for details) =

° The irreversibility of e.g. conventional gate operation protocols to compute the AND function
does 7ot come from the function being computed (AND), but on Jow it’s being computed!

Therefore, in the physics of computing, it’s critically important not to try to think about
computational operations at a level that is 700 abstract (abstract CS + abstract physics),
r.e., at a level that’s completely divorced from what concrete engineering implementations are
actually doing in more detail!

° That is an inadequate level of detail of analysis, and is unlikely to be very accurate/informative
for doing detailed physics of computation research, or for developing innovative technologies.

Thus, it’s essential to know something about electrical and computer engineering to really
analyze the physics of computing technology (including reversible computing) in detail...

> Subijects like: Solid-state physics, semiconductor electronics, digital logic, VLSI design,
computer architecture, ez.

»Out

——QOut

aux

vbot( t)



Conventional/lrreversible vs. Adiabatic/Reversible Operation of .

23 | the very same standard CMOS NAND gate circuit structure
Note: Neither of these operations ever consumes the gate’s inputs! SCRL
Vad
| (A Vig/2 "
- — dd
NAND JO— AB |
0>1)B (1>0)
L
A| B | Out A'°| B_cl
Irreversible »Out g (1) :
computational .
operation: (1=0) 1] o 1) . ;OUt
“After any change in Al CU 1 0]:} Out = 3 (Y2-2>0)
AB, destructively A—
p%uigﬁt Out,u . Oftentimes,. local sta}te changes out
TS T e e B— can be carried out either aux
value of 2B.” —| reversibly or irreversibly, B—

~
AB = 10,
Out =1
Y,

D
B-11 4 11,
Out =1

GN
B =

depending on the detailed

protocol of operations!

» But, the difference has real
architectural implications!

Output
Out - 0
~
Out =0
Y,

AB =11,

J

Vya/2
“ j——GND

AB = 10,
Out =+
W=y

Set

51| AB =11,

Out = —

Split
rails

Younis, Saed G., and T. F. I
Knight. "Asymptotically
zero energy split-level
charge recovery logic.” In
International Workshop

on Low Power Design, pp.
177-182. Apr. 1994.

Reversible
computational
operation:
“After any change
in AB, reversibly
modify the output
from %2 to the new
value of 4B (and
undo this change
later, before the
next operation).”




24 I An Important Remark on Landauer’s Principle

Some authors identity the Fundamental Theorem of the Thermodynamics of Computing (described
earlier) with Landauer’s Principle, but I would argue that to make that identification s,
properly speaking, a misleading misapprehension, which misses certain key points gained
through a proper understanding of Landauer.

o The Fundamental Theoremr merely has to do with how we happen to group physical states into
computational states, and how total entropy can always be expressed as a sum of computational and non-
computational entropies.

> Merely changing the grouping (e.g. merging or unmerging computational states) does not inherently zzerease total entropy!
o It only moves it (potentially reversibly) between nominally computational versus non-computational forms.
o H.g. raise/lower a potential energy barrier separating two degenerate states
o But I would argue that the statement that 1s more properly called Landauer’s Principle is actually a very
different kind of statement, about a somewhat more complicated theoretical setup, namely this:

o If we take (all, or part of) a (tully or partially) &rown computational state, or (as a special case of this) an unknown local state that
has &nown correlations to another system, and we obliviously allow some of the previously-known information to thermalize, that is, to become nore
uncertain, then this uncertainty increase represents (quite immediately, by definition!) a net increase in absolute entropy.

° The prototypical case, namely, oblivious erasure of a deterministically computed (and therefore, correlated) computational bit, is
then just a trivial special case of this—since a correlated bit lost to a thermal environment is quickly thermalized.

° To make the above statement mathematically precise and rigorous takes just a little bit more work (and some information theory),
but is straightforward.



55 ‘ Proof of Landauer’s Principle (example for correlated-subsystems case
P Y

Let X, Y be state variables corresponding to any #woe disjoint
computational subsystems X, %) within a larger computer C.
o There is a joint probability distribution P(X,Y), and a corresponding
joint entropy H EX ,Y).

o Reduced entropies H(X), H(Y) of the individual subsystems are
defined in the usual way.

The mutual information between X and ¥ is defined as:

I(X;Y) ¥ HX)+H(Y) —H(X,Y).

Now, define the independent entropy in ) as the rest of Y’s (reduced
subsystem) entropy, beszdes the mutual information [ that ) has
with X:

Sina(Y) € H(Y) = I(X;Y) = H(Y|X),

° Same thing as the conditional entropy of 9, conditioned on X.

Now, consider erasing ) via any oblivious physical mechanism...

o Meaning, set H(Y) = 0 unconditionally, without reference to X or to any
other information we may have about Y.

o FE.g., remove an energy barrier separating ¥ = 0 and ¥ = 1 computational states, and
call the merged state Y = 0.

And assume, in general, non-computational information will fairly rapidly
thermalize. (If not, then why even consider it non-computational?)

° This thermalization process is when/where the absolute entropy
increase happens in Landauer!

° By assumption, environment evolution is not tracked, ergo €-€ correlation is lost.

Oblivious erasure of a correlated bit

X:O\(X:l X=0 X=1 X=0 X=1
-(@O®
| 00®

@O/ LOD) e o

Y states alize
(OO0 (@00
I®®E AS = 1 bit
000 ©0®

arXiv:1901.10327

Note that we could try to “reverse” the whole erasure process to
restore the original reduced entropy H(Y) of the ¥ subsystem...

But now, I(X; Y)pew = 0 (any correlations have become lost!)
° & Sina(Y) = H(Y), = ASina(Y) = I(X; Y)orig = ASiot.

If, originally, Y was (deterministically) computed from X, then:
° H(Y|X)orig = 0, ze, Sing(Y) = 0,50 H(Y) = I(X; Y)orig.-
o Apparent entropy of al/ computed bits is actually entirely mutual information!

° ak.a. “information-bearing entropy” in Anderson’s terminology

Independent entropy (and total universe entropy!) has increased by
ASior = ASina(Y) = I1(X; Y)orig = H(Y).

- Erasing computed (as opposed to random!) bits turns
their digital information into new physical entropy.

QED.. s



26 | Basic Reversible Computing Theory

(For full proofs, see arxiv.org:1806.10183)

Fundamental theorem of traditional
reversible computing:

> A deterministic computational operation 1s
(unconditionally) non-entropy-ejecting if and only if
it is unconditionally logically reversible (injective over
its entire domain).

Fundamental theorem of generalized
reversible computing:

o A specific (contextualized) deterministic computation
is (specifically) non-entropy-ejecting it and only if it
is specifically logically reversible (injective over the set
of nonzero-probability initial states).

o Also, for any deterministic computational operation, which is
conditionally reversible under some assumed precondition, then
the entropy required to be ejected by that operation approaches 0
as the probability that the precondition is satisfied approaches 1.

Bottom line: To avoid requiring Landauer costs,
it 1S sufficient just to have reversibility when some specified
preconditions are satisfied.

° Basis for practical engineering implementations.

o We'll see some examples in tomorrow’s talk.

Traditional Unconditionally

Reversible “Gates” (Operations)
.

- E N\
NOT
(in-place)
cecNOT EEAY
by (Toffoli) (Fredkin)

Generalized Conditionally Reversible Operations

Generic symbol for 3-variable operation

Jy y=v

X rcopy X'

L

y

-

-V -

Reversible copy x to y

>

>

»

(Using
default

value v)

Reversible set-to-one

value of v

Reversible uncopy y from x

A
-~
OpName _ % iy X ] S
’ lx=0 |x=1
IP(x'y'z) 1]
I ar—=* —0 1}— —{1 0}—>

Reversible clear-to-zero

U

rUnF,

U

y y
lz=F(x.y) ,
Z 2=

L y » Sm— -
U

"X rUnCOPY, X[ * vy =F 0
dy W=x y}—» ) lz=v i A

Reversible
.oy > - , do/undo any

T + function F,

o >
) 7. w.r.t. default

L
—_—

gv »




27 | Physical Implementation of Computational Operations

Consider the universe L.

° The computer system & together with its surrounding environment €.
° Let the joint Hilbert space Hy = Hg ® Hg.

Consider a computational operation O¢ taking place within .
> Between starting time S € R and terminating time s € R, with s < t.

Assuming perfect knowledge of tphysics, the transformation of Hj from time S to t is described by some
time evolution operator U = U (W) that applies for U between those times.

o In general, the final density matrix p; = UZps (U )T.

Note that UL describes the effect of a// physical processes taking place within I, including:
> Dynamical evolution of the physical computational mechanisms in ©.
> Delivery of needed free energy to the active computing elements in ©.

o Thermal flows of dissipated energy out into the environment €.

We can call this the open system case.

| R $Z$39090909 &= BB ]



28 | Closed-System Variant

Simplified »s5. open system model, but still physically realistic.

o A real computer could actually be operated as an approximately closed system for some limited period of
time.

° Until internal energy stores run out, and/or enclosutre overheats.

So now, restrict our attention to the subspace of Hyy that is the Hilbert space Hg of the
computer sytem itself.

° Ignore, temporarily, any thermal flows across the ©-€ boundary.

° Imagine that G is wrapped in a perfect thermal insulating barrier.

> Now model the effect of the dynamics within © as being described by a /Joca/ unitary time-evolution
operator UL (&) operating on Hg.

Note, the change in the protocomputational basis B between times S and t can also be
B(t) U

modeled by a unitary matrix, B(s)

o Then denote a “basis-corrected” version of Uf(S) as:

UL(S,B) = ol - US(S).



29 | Quantum Statistical Operating Contexts

This generalizes the concept of a statistical operating context or initial probability
distribution P that 1s needed to define a statistically-contextualized computational

process.

Define as a mixed state pg encompassing all of our uncertainty, as modelers,
regarding the initial quantum state of the system at time S, prior to perform-

ing the computational operation OF.

Also require that pg is block-diagonal in the initial basis B(S).

° And, the blocks need to correspond to the initial partition C(s).

° l.e., no quantum coherences should exist between the different
computational states.

o Formally: ps has no off-diagonal terms between basis

states by, b, € B(s) where b; € B; and b, € Bj for (D, |

ci,¢j € C(s) where [ # . (b, |

o This constraint is needed for modeling classical computation. (bs|

o Can weaken when extending this framework to the (4|

quantum case. ps = ( b5|

o There can be coherences within a computational state, though. .. (bg|
o This could correspond, e.g., to physical qubits that may exist (b, |
within the machine (e.g., long-lived nuclear spins in supporting /
materials) that are unrelated to the classical digital data being (bg|
represented, or arbitrary changes of basis. (bo|

766 6)

5@ 6)

APIPIAG)

|b1) |b2) |b3) |bs) |bs) |bg) |b7) |bg) |bo)
11 | Ti2 ]
21 | 722
33 | 134 | 135
T43 | T34 | 45
I's3 | T's4 | 755
Tee | T67 | Tes | 769
76 | T77 | T78 | 179
Tge | 187 | Tsg | 789
! Toe | To7 | Tog | Tool




30 | Quantum Contextualized Computations

This generalizes the concept of a statistically contextualized computation
C(0, P) from the Generalized Reversible Computing paper
(arxiv.org:1806.10183).

A (quantum contextualized) computation CE(OE, pg) refers to the act of
performing the computational operation O¢ within the computer system &
when the initial mixed state of © at time S is given by a quantum statistical
operating context .

> Must meet the conditions from the previous slide for B(s) and C(s).

@

| R $Z$39090909 &= BB ]



What it means to physically

31 | implement a given (classical) computation @

The basis-adjusted time-evolution operator U (S, B) implements the quantum
contextualized computation CL (0%, ps), written:

Us(S,B) I+ CL(0S, ps),

o if and only if the density matrix p, = UE(S, B) p,UE(S, B)T that results from applying the unitary
UL (S, B) to the initial mixed state pg has the following property:

o For any initial computational state ¢;(s) € C€(s) that has nonzero probability under p, if we zero out all elements of pg
outside the set of rows/columns corresponding to ¢;(s) and renormalize, and then apply UZ (€, B) to this restricted pg, the
resulting final mixed state p; implies the same probability distribution P;(t) over final computational states in C(t) as is
specified by applying the stochastic map Of to the initial state, O¢ (¢;(s)).

Note: It can OK, under this definition, if small coherences #emporarily arise between
different final computational states in C(t),

° as long as the subsequent evolution causes them to decay very quickly.

o That 1s, we don’t want these “parasitic”’ coherences to impact the dynamics of subsequent operations.

| R $Z$39090909 &= BB ]
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33 ‘ Likharev’s dissi patio n limits Classical and Quantum Limitations on Energy
Consumption in Computation

Likharev ‘81 analyzed limits of dissipation for his reversible SR
JJ-based Parametric Quantron (PQ) technology concept.

Department of Physics, Moscow State University, Moscow 117234, U.S.S.R.

° Based on analyzing rates of crossing a potential energy barrier
. . . Received May 6, 1981
through thermal excitation and quantum tunneling,

Main results:

° Limit due to classical thermal excitation over barrier (assuming underdamped junction):

kgT 1
W, = In :
W:T  WyTP

k 24 . . d*u N . .
T W= R with elasticity modulus k = Tz and effective viscosity 77; and 2A is the superconducting gap energy;

° Wy approximates to the J] plasma frequency w = \/ k/n= \/ 2q.l;/hC, and T is the cycle period;

° p is the tolerable error probability per operation.

Limit due to quantum-mechanical tunneling through the barrier:

h 1 Our approach to the problem, of course, leaves open whether it is
W ~ l possible to invent some novel device providing lower power consumption. If
c ~ n ' we limit ourselves to the quasistatic devices, where the computation can be

T a)C Tp stopped at any moment, without inducing an error, one can hardly get away 1

from the above estimates. In fact, the only role of the parametric quantron

: : : Y s : : T in our discussion has been to demonstrate how a flexible bistable potential

HOW@VCI'! leharev hlmself admlts the hmltatlons Of thlS analY51S- well could be physically realized. (Of course. some numerical factors can
; ; : appear in the estimates if peculiar well shapes are taken into account.)

° It1s not af%”ddmeﬂfdé technology—mdependent analy81s' One can, however, argue that the above-mentioned condition of quasi-

. . . | statics 1S by no means compulsory, and that the information can be

? Alternatlve dCVlCC Concepts mlght dO better' processed by some “dynamical” devices, where the cycle period can be

shorter than the relaxation time. This problem is left for further analysis.
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EDITED BY TONY HEY AND ROBIN W. ALLEN

() CRC Press

Feynman’s dissipation limits
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In lectures for his 1983-1986 CalTech course, E
“Potentialities and Limitations of Computing FEYN M AN
Machines,” Feynman derived a limit on energy LECTURES.ON

dissipation per step for Brownian machines (e.g, DNA [}V IIIINI]Y
copying) driven by chemical potentials.

> He concludes that an approximate formula for this is:

An example we gave of reversible computing was that of the chemical
process of copying DNA. This involved a machine (if you like) that progressed
in fits and starts, going forward a bit, then backwards, but more one than the
other because of some driving force, and so ended up doing some computation
(in this case, copying). We can take this as a model for more general
considerations and will use this "Brownian” concept to derive a formula for the
energy dissipation in such processes. This will not be a general formula for
energy dissipation during computation but it should show you how we go about
calculating these things. However, we will precede this discussion by first giving
the general formula’, and then what follows can be viewed as illustration.

"This rule is pretty general, but there will be exceptions, requiring slight corrections. We will
discuss one such, a "ballistic" computer, in §5.5. [RPF]

minimum time taken/step

energy loss/step = kT

time/step actually taken

However, he mentions in a footnote that a “slight correction” to this expression would be needed for ballistic
machines, and later argues, quite informally, that in that case, the expression should be:

time to make collision
kT

kT time to make collision (5.37)

speed [sic| at which it happens

° An arguably very similar expression, but:

> The whole argument in this part of the notes is extremely briet and informal (“hand-wavy”)

speed at which it happens

This expression has not been analyzed in any great detail for the billiard ball
machine.

> The possible application of eg. the Landauer-Zener formula for quantum-mechanical scattering processes is not considered at all

> Modern STA (Shortcuts to Adiabaticity) techniques had not even been developed yet, and so of course are also not considered

o Asynchronous ballistic models (e.g. ABRC) which avoid chaotic instabilities had also not been invented yet

Thus, we must conclude that Feynman’s analysis of this problem is no# definitive, nor the final word.

|
|
|
|



Section lll: Looking Ahead
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Fundamental Physics of Reversible Computing—An Introduction
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Key Questions for the Physics of Reversible Computing

Are there fundamental (i.e., technology-independent) lower bounds (greater than zero) that follow
from general non-equilibrium quantum thermodynamics on energy dissipation per reversible
computational operation as a function of] say, the speed of the operation (and/or other fundamental
physical parameters such as size, temperature, ez.)?

> And, if so, can such bounds be expressed via simple analytic scaling relations?

Can we deduce anything regarding e.g. exotic quantum phenomena, materials properties, efc., that
would need to be leveraged in order for a technology to saturate the bounds?

o Examples of quantum phenomena that are (or might be found to be) useful for this:
> Decoherence-free subspaces (DFSs), Zurek pointer states
> 'Topological invariants?
° eg., signed flux charge threading a bounded planar superconducting circuit.
> Dynamical versions of the guantum Zeno effect (QZE)?
o ...others???

Answering the above questions can then become a starting point for innovation of breakthrough
technologies for reversible computing that exhibit vastly improved engineering characteristics....



37 | Existing Dissipation-Delay Products (DdP)

—Non-reversible Semiconductor Circuits nerey & delay, CMOS FO3 HP
1E-14 &
.
Conventional (non-reversible) CMOS Technology: *df\\\\ 2l
> Recent roadmaps (e.g., IRDS “17) show Dissipation-delay 96/\p
Product (DdP) decreasing by only <~10X from now to the end - N
of the roadmap (~2033). L
°> Note the typical dissipation (per logic bit) at end-of-roadmap is projected to be B On? CMOS \\\
~0.8 f] = 800 a] = ~5,000 eV. : logic gate I
o Optimistically, let’s suppose that ways might be found to lower S eas | [
dissipation by an additional 10X beyond even that point. o S X
> That still puts us at 80 a] = ~500 eV per bit. 5 S Sl i J
> We need at least ~1 eV = 40 £T electrostatic energy at a u
minimum-sized transistor gate to maintain reasonably low NN
leakage despite thermal noise, \(\zfi\\\]
° A-nd,'typical structural overhead factors compounding this within fast random logic Source: IRDS ‘17 \Q\\j}f/.
circuits are roughly 500X, More Moore chapter \«\s*\
° 50, ~500 eV is indeed probably about the practical limit. 1E-16 AR
1.E-12 1.E-11

o At least, this is a reasonable order-of-magnitude estimate.
CV/l delay, s



38 ‘ Existing Dissipation-Delay Products (DdP)—
Adiabatic Reversible Superconducting Circuits

Reversible adiabatic superconductor logic:

o State-of-the-art is the RQFP (Reversible Quantum Flux
Parametron) technology from Yokohama National
University in Japan.

o Chips were fabricated, function validated.

o Circuit simulations predict DdP is >1,000X /ower than
even end-of-roadmap CMOS.

o Dissipation extends far below the 300K Landauer limit (and even
below the Landauer limit at 4K).

o DdP i1s s#/l better even after adjusting by a conservative factor for
large-scale cooling overhead (1,000X).

Question: Could some ozher reversible technology
do even better than this?

> We have a project at Sandia exploring one possible
superductor-based avenue for this. ..

o But, what are the fundamental (technology-independent) limits, if any?

RQFP =
Reversible
Quantum Flux
Parametron

(Yokohama U.) <

energy aissipation for full adder operation, J

Energy & delay for full adder cell

1E-13
CMOS FA
- 2;);}{"10 nm")
2033 ("1 nm")
1E-15 }
1E-16
1E-17
N e
1E-18 3
2 :
=
1E-19 =
o-«
—
¥
1E-20
T kT@T=300K W % |
1E-21
Data from
B2 ==m=—ua——o T. Yamae, "\
kT@ T=4K ASC ‘18
1E-23
1612 1E11 1E-10 1E-09 1E-08 1.E-07

Full adder delay / Clock period, s



Can dissipation scale better than linearly with speed?

Some observations from Pidaparthi &
Lent (2018) suggest Yes!

o Landau-Zener (1932) formula for quantum

transitions in e.g. scattering processes with
a missed level crossing...

J. Low Power Electron. Appl. 2018, 8(3), 30; https://doi.org/10.3390
/jpea8030030

Exponentially Adiabatic Switching in Quantum-Dot

Cellular Automata
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> Probability of exciting the high-energy state SR
(which then decays dissipatively) scales down Pp = e~ 2Tl 100; e 0mAE 5w
exponentially as a function of speed... = . 100 aR= s
., o =010, AE, =10 eV
° This scaling is commonly seen in many quantum systems! 102} \‘igh
° Thus, dissipation-delay product may have no lower bound | e
for quantum adiabatic transittons—ifthis kind of c i i
scaling can actually be realized in practice. LR =
° Le., in the context of a complete engineered system. 100} .55
° . . . . . = \!\
° Question: Will unmodeled details (e.g., in the driving o e ®E ":3\.
system) fundamentally prevent this, or not? =



™ ‘ 8 \s\\
=
= | [~o—T4/T, = 10| \
=0T o Ty =100 |} “
—a—T,/T, = 10" | |
—a—T,/T, =10% | \ '
——T,/T, = 10° \ '
Ty/T, =10 | 1
1010 e A |
10° 10° 10°*

FIG. 10. Dissipated energy of an open system as a function of switching speed for different
dissipation time constants. The dashed line is the excess energy of an isolated system. Here, the
environmental temperature kgT/y = 0.5.

Published in: Subhash S. Pidaparthi; Craig S. Lent; Journal of Applied Physics 129, 024304 (2021)
DOI: 10.1063/5.0033633
Copyright © 2021 Author(s). (Excerpted with permission.)



a1 I Shortcuts to Adiabaticity (STA)

A line of theoretical physics research showing that, zz principle, quantum state _
transformations can always be carried out with exactly zero dissipation, even at any given

finite delay!

° Requires the introduction of a finely-tuned “counterdiabatic” perturbation to the system’s time-
dependent Hamiltonian.

o Again, we ask: Is this idealized prediction ozcz‘m/f/y achievable, it fundamental thermodynamic limits
that apply to the complete system are accounted for?

Population in the instantaneous eigenstates
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Normal quantum adiabatic process:
Substantial excitation/dissipation

Figure credit:
Collaborator
David Guéry-0delin
(Université de Toulouse)
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Limits to Reversible Computing?

—An approach from the theory of Open Quantum Systems
(Work with Karpur Shukla, Brown University, and Victor V. Albert, CalTech)

* Computational states modelled as decoberence-free subspace blocks (IDEFSB)

of overall Hilbert space.

* Quantum Markov equation with multiple asymptotic states: admits

subspace dynamics (including DFSB structures) for open systems

under Markov evolution. ,

* Induces geometric tensor for manifold of asymptotic states.
* Similar to quantum geometric tensor / Berry curvature for closed systems.
* Current work: use multiple asymptotic state framework to derive

thermodynamic quantities. ..

* Uncertainty relations, dissipation and dissipation-delay product.



s | Conclusion

Some form of reversible computing is absolutely required in order for the energy
efficiency (and thus, cost efficiency) of general digital computing to avoid asymptoting
against fir thermal barriers in the foreseeable future.

o 'This follows directly from the proper understanding ot Landauer’s Principle (slide 21) that 1s
substantiated by the (rigorous) arguments summarized in slides 22-23.

° Various researchers who have misapprehended Landauer are simply mzissing the whole point.

° Various critics of Landauer & Bennett have simply failed to appreciate the essential, #navoidable role that information-theoretic correlation
plays in computing, which 1s the ultimate origin of the absolute entropy increase that is rigorously caused by Landauer erasure...

° ...when the true meaning of Landauer’s Principle is understood properly!

o All conventional (i.e., non-reversible) digital circuit architectures rely fundamentally on trequent oblivions erasure of
correlated bits, ergo, they can never surpass the Landauer limit (by the elementary proof on slide 22).

° In contrast, propetrly-designed reversible architectures are designed to avoid such erasure, ergo are ot subject to the Landauer limit.

The fundamental limits of reversible computing are still very far from being fully understood...
° There is a significant opportunity for physicists to develop fundamental new results in this area.

Leveraging of exotic quantum phenomena may be required to saturate the fundamental limits.

It seems likely that breakthrough technologies for reversible computing remain to be discovered.

> And this, in turn, would lead to incalculable increases in the value of computing, and civilization!
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