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Abstract: Improving composite battery electrodes requires a delicate control of active materials 
and electrode formulation. The electrochemically active materials are often in the form of 
micron-sized particles, which fulfill their role as energy exchange reservoirs through interacting 
with the surrounding conductive network. A network evolution model is formulated here to 
interpret the regulation and equilibration between electrochemical activity and mechanical 
damage of these particles. Through statistically analyzing thousands of particles in a 
LiNi0.8Mn0.1Co0.1O2-based cathode, we found that the local network heterogeneity results in 
asynchronous activities in the early cycles, and later the particle assemblies move toward a 
synchronous behavior. Our study pinpoints the chemomechanical behavior of individual particles 
and enables better designs of the conductive network to optimize the utility of all the particles 
during operation.

One-Sentence Summary: Active particles in composite electrodes initially show asynchronous 
activity that evolves towards synchronous behavior.
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Main Text: 

Lithium-ion batteries (LIBs), with high energy density and long lifetime, are widely adopted for 
a broad range of applications. LIB’s composite cathode is made of many 
electrochemically active particles embedded in a conductive carbon and binder matrix. The 
microstructure plays a crucial role in governing the LIB performance through modulating the 
electronic/ionic transport properties (1, 2) and the chemomechanical behavior (3–5). The 
cracking, disintegration, and (de)activation behaviors of the electrochemically active cathode 
particles affect the capacity fade over prolonged battery cycling (6, 7). 

Alleviation of the active particle damage has focused on tuning the morphological characteristics 
of individual particles, such as size, sphericity, elongation, etc (8–16). For instance, reducing the 
primary particle size is an effective approach to improving the fast-charging 
performance because smaller particles have shorter ion diffusion paths (17–19). Designing 
particles with elongated morphology, e.g., in the form of nanoplates or nanorods, can also 
improve the specific capacity and reduce charge transfer resistance (20). However, the 
correlation between the particle morphology and the cell performance is rather complex with 
effects at multiple length and time scales. The dynamics of particle network have 
significant impacts but are rarely studied. For example, recent studies have uncovered the 
local heterogeneity in the electrode, where active particles contribute to the cell-level chemistry 
differently in time and position (21). Some particles release lithium ions at a faster rate than their 
peers under fast charging conditions (22). Some local regions could become inactive while the 
cell can still function well as a whole. To make a substantial improvement effectively, the 
particle structure and the electrode morphology shall be tailored coherently and a synergy 
could be achieved by doing so. 

This study aims to formulate an in-depth understanding of the dynamically evolving 
cathode particle disintegration, both individually and collectively. We reveal that, although it 
seems that a global homogenization will be developed eventually after long-term cycling, a 
poorly designed electrode would reach this state when most of its particles are severely 
damaged. In contrast, a well-formed electrode would rapidly converge to the electrode 
synchronization with majority of its particles still in good shape. In our study, we image 
thick Ni-rich composite cathode electrodes with multi-layer of LiNi0.8Mn0.1Co0.1O2 (NMC) 
particles at different states using nano-resolution hard X-ray phase contrast holo-tomography 
(Fig. 1A). These electrodes are recovered from standard coin cells that were cycled under fast-
charging conditions for 10 cycles and 50 cycles, respectively. With high spatial resolution, 
exceptional contrast, and a large field of view, our three-dimensional imaging data covers a large 
number of active particles that demonstrate a wide variety of damage patterns. To facilitate a 
statistical analysis, we build on our previous neural network-based particle identification 
method (1) and significantly improve its accuracy and efficiency by developing a diagonal 
data fusion approach, which is illustrated in Figs. S1 and S2. Upon completion of the 
particle identification using this method, the damage level of individual particle is further 
quantified. The relative probability distribution of the particle damage degree is presented 
in Fig. 1B, and a few randomly selected particles with different damage patterns are 
highlighted in Fig. 1C-1F.

The severely damaged particles are those being overused during the electrochemical 
fast-charging process. Their spatial distribution and arrangement are evidence of the 
spatially heterogeneous electrode utility. As shown in Figs. 2A and 2B, the severely damaged 
particles are sparsely distributed in the 10-cycled electrode and, their concentration increased 
upon further 
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cycling, featuring a denser agglomeration in the 50-cycled electrode (as illustrated in the 
enlarged views). Fig. 2C shows the probability distributions of the distance between two 
neighboring severely damaged particles in 10-cycled and 50-cycled electrodes, respectively. A 
shift towards shorter distance can be observed in the 50-cycled electrode, indicating a 
synchronization effect within the local particle clusters. 

We perform theoretical modeling to understand the damage and Li reactions behaviors of NMC 
particles across cycles. We envision that the interplay between the electrochemical activity and 
the mechanical damage regulates the performance of the NMC particles – while the deeper state 
of charge incurs more severe consequences such as the particle damage and decohesion of 
particles from the conductive agent, the mechanical damage increases the cost of Li reactions 
and suppresses the electrochemical activity of individual particles. A more synchronous behavior 
of the composite cathode is achieved in the prolonged cycles due to the equilibrium between the 
electrochemical activity and mechanical damage. To test this hypothesis, we conduct finite 
element analysis to model the electrochemical response and mechanical damage of a NMC 
cathode composed of three spherical NMC active particles surrounded by two homogenous 
porous carbon/binder (CB) domains of different electrical conductivities (Fig. 3). We stress that 
the intention of the computational model is not to capture all the explicit microstructural details 
in the composite cathode. Rather, our goal is to replicate the salient feature in the composite that 
the active NMC particles are covered by different degrees of the electrically conductive agent, 
which results in the various local conducting network for individual particles. In this simplified 
model, the surrounding high conductivity and low conductivity CBs differ in their electrical 
conductivities. The model assumes that liquid electrolyte is soaked in the porous CB domains 
and thus the NMC particles are fully accessible to the Li+ in the liquid electrolyte. We set 
different ratios of coverage of CB on the periphery of each active particle, as illustrated in Fig. 
3A. The interface of active particles attached to the high conductivity CB undergoes a faster 
electrochemical reaction than the boundary enclosed by the low conductivity CB. Thus, each 
active particle experiences dissimilar network electrochemical activities, as inferred from the 
diverging concentration profiles (C/Cmax) during the 1st charging process (Fig. 3B). 

The modulation between the electrochemical activity and mechanical damage reduces the 
variation of Li concentration with the progression of (dis)charge cycles. As shown in the 
normalized Li concentration plot (Fig. 3B) and the plot of the Li concentration variation across 
the three NMC particles (Fig. 3C), the concentration profiles converge with battery operation. 
During the charging process, Li extraction generates a reduction of the lattice volume in the 
NMC particles (25). Considerable variation in the mechanical properties of the NMC particles 
(elastic Modulus = 140 GPa) and CB (elastic Modulus = 2 GPa) generates strain mismatch at the 
interface. The apex of the mismatch occurs near the end of the charging process, demonstrated 
by the divergence of the damage profiles in Fig. 3D and their corresponding differences to the 
mean damage in Fig. 3E. 

After the onset of heterogeneous damage among the NMC particles, the individual damage 
curves diverge (Fig. 3D). The individual NMC particle characteristic, i.e., the dissimilar 
coverage by high and low conductivity CBs, commands the degree of heterogeneous damage in 
the early cycles. With successive discharging and charging processes, the modulation between 
electrochemical activity and mechanical damage reduces the imbalance within the system 
(through the interfacial resistance for charge transfer). Consequently, the damage level for all the 
three particles converges, demonstrating the system’s progression towards a synchronized 
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behavior. In addition, we observe a similar transformation to synchronized damage behavior for 
the system with more NMC active particles (Fig. S4). The variation in the periphery contact with 
high and low conductivity CB regions generates heterogeneous reactions for each particle. After 
the initial divergence, the individual particle damage is tuned by the feedback to electrochemical 
activity that culminates towards a synchronized behavior in the composite electrode.

Both the particle damage and Li concentration profiles theoretically confirm the asynchronous to 
synchronous evolution in composite cathodes. Such transition can occur for a number of reasons, 
such as from the particles’ self-attributes, interactions with neighboring particles and 
CB domains. To probe the evolution mechanisms from the intrinsic or internal physical 
nature of cathode particles, the 3D tomographic imaging data is analyzed through an 
interpretable machine learning framework. 

Using the over 2000 accurately identified NMC particles, we extract their structural, 
chemical, and morphological characteristics. More specifically, we divide the particle 
attributes into four different groups: position, chemical properties, particle structure, and 
local morphology (as illustrated in Figs. S5 and S6, in total 24 attributes are extracted).  As 
indicated in Fig. S7, these extracted particle attributes demonstrate varying characteristics in 
their respective probability distributions. Revealing their interrelationship is not straightforward 
and could benefit from more advanced computing and modeling approaches.  

We leverage the advances in machine learning to model relationship and dependencies 
among attributes, i.e. descriptors of the cathode particles properties (Fig. S8). The model has to 
be both accurate and interpretable. To elucidate the intertwined limiting factors for battery 
cathode robustness, the degree of cathode NMC particles’ engagement in the cell level 
chemistry is explored through attribute correlation and damage regression. These two steps are 
accomplished using a regularized autoencoder neural network (26) and random forest (RF) 
regression (27). The SHAP (SHapley Additive exPlanations) (28) is utilized to rank the 
significance of the particle properties to the degree of particle damaging during the process of 
regression, which effectively reveals the contributions of different microstructural 
characteristics to the damage profile for every single particle in our electrode. The Circular 
plot (29) is used for better visualization of the Pearson’s correction among different particle 
attributes. Integrated with the SHAP values, the RF provides not only accurate regression results, 
but also the interpretability of the impacts of all the input attributes on individual predictions as 
well as global insights. 

Specifically, the autoencoder neural network compresses the input attributes into 
latent dimension (LDs) via an encoder network, which has been extensively applied for 
scientific discovery due to its ability to learn non-linear functions and its good interpretability 
(30, 31). The LDs of both datasets for 10-cycled and 50-cycled electrodes, respectively, are 
calculated and are subsequently correlated with each other through Pearson’s correlation.  As 
shown in Figs. 4A and 4B, different LDs show intertwined relationship in both cases. Each node 
in the circular plot represents one LD and a connection between two nodes indicates a 
relatively high correlation between them. The sign of the correlation coefficient (+/-) 
defines the direction of the relationship. For the 10-cycled electrode, the first five LDs 
appear to be independent. As more LDs are added, we start to observe correlations among 
them. For the 50-cycled electrode, in addition to the common connections, several additional 
correlations emerge (as highlighted by dark colors in Fig. 4B). The observation of a higher 
degree of interdependence among different 
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LDs indicates that the particles’ structural and chemical characteristics become more intertwined 
upon battery cycling.

When interpreting the model regression results with the SHAP values, which utilizes the game-
theory-based Shapley values (32), the contribution of each attribute to the model’s output (the 
particle damage degree) can be obtained. Attributes with larger SHAP values are considered to 
be more important to the target damage degree. The contribution scores of all attributes to the 
particle damage in both 10-cycled and 50-cycled electrodes are presented in Fig. 4C (attributes 
are grouped based on their properties and reordered for better visualization) and the 
interpretation is provided below. The advantage of using SHAP to explain the regression model 
is its superior robustness to correlated attributes compared to the traditional methods (33), e.g., 
the Pearson’s correlation, which cannot systematically capture the key differences in the studied 
electrodes (Fig. S11). 

From our model-based prediction in Fig. 4C, some of the attributes follow expected trends. For 
example, the particle’s depth, Z, has a role to play in affecting the particle damage (21, 34). This 
can be related to the cell polarization effect, which results in the fact that particles at different 
depth are effectively experiencing different state of charge at a given time. The Z-dependence of 
particle damage is more significant in the 10-cycled electrode, in good agreement with previous 
reports (1, 21). The electron density, EDensity, has been associated with the state of charge (1) 
and its averaged value and degree of variation, Homogeneity, shows considerable impact on the 
particle damage throughout the cycling process. The surface area and roughness (RoughOuter, 
RoughInner, SurfOuter, and SurfInner) could affect the cohesion of the active particles and the 
CB matrix. Therefore, the surface characteristics could have a role to play. The particle’s size, 
Volume, appears to be correlated with the particle damage. Its contribution score seems slightly 
lower in the 50-cycled electrode. This trend suggests that the particle size effect might not be the 
limiting factor in the later cycles. However, the variation of the neighboring particles’ volumes, 
VolumeStd, shows an opposite trend, featuring a higher contribution score in the 50-cycled 
electrode. This observation indicates that, upon prolonged battery operation, the uniformity in 
the neighboring particle size becomes a more significant factor that would affect the particle 
damage. Mixing particles with different size has been utilized as a method to improve the 
electrode’s packing density. Our result suggests that this approach shall be carefully examined 
from the long-term cyclability perspective. Another finding is that the particle elongation, 
Elongation, has a rather significant contribution score, which, however, decreases upon cycling. 
On the other hand, the alignment of the neighboring particles, OrienIso, which shows negligible 
contribution in the 10-cycled electrode, becomes significant in the later cycles. In advanced 
battery electrode manufacturing, the particle alignment can be purposely adjusted by controlling 
the externally applied electric and/or magnetic fields (35–37). 

When visualizing the overall picture of our statistical analysis over thousands of particles, we 
reveal an interesting pattern: in the early cycles, individual particles’ characteristics (e.g. the 
position Z, VSratio, Sphericity, and Elongation) predominantly determine their respective 
degrees of damage, featuring an asynchronous behavior that is in agreement with our theoretical 
modeling result. In the later cycles, however, the interplay among neighboring particles (e.g. 
Contact, DisNearest, OrienIso, and PDensity) becomes more important, which indicates that the 
local inter-particle arrangement can critically impact the asynchronous-to-synchronous 
transition. The mean difference and standard deviation of each attribute’s contribution scores 
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between the 10-cycled and 50-cycled datasets is present on the top of Fig. 4C, featuring a valley 
on the left and a peak on the right, supporting the above-described observation.

Our experimental observations (Fig. 2) and machine learning analysis (Fig. 4) collectively 
corroborate with the theoretical modeling (Fig. 3). These results reveal a transition from the 
asynchronous behavior in the early stage toward a synchronous state later in the particle network 
evolution, where the interplay among neighbor particles plays a facilitating role (Fig. S12). 
Particles’ self-attributes together with the dynamic nature of the conductive network jointly 
determine the damage behavior of NMC particles in composite electrodes. These are critical 
factors for cathode design to prolong the cycle life of batteries. Based on our results, in the active 
cathode powder, it is useful to suppress the particle-to-particle variation in their structural 
characteristics, such as particle size, sphericity, elongation etc. At the electrode scale, an ordered 
particle arrangement is favorable, which can be reinforced through a field-guided approach. 
While the in-plane homogeneity is desirable, in the out-of-plane direction, a structural gradient 
could be beneficial due to the electrochemical polarization, which is more severe in thick 
electrodes. To summarize, an ordered electrode configuration with tailored depth-dependent 
packing of uniform active particles would be robust to prolonged battery cycling.

From the synthesis perspective, the particle shape and structure can be tuned by controlling the 
sintering temperature, incorporation of trace element doping, designing the architecture of the 
precursor, and surface coating. These are common synthesis strategies and can be scalable for 
mass production. For the electrode manufacturing, the field-guided approach has been 
demonstrated to be effective for creating an ordered structure. This is compatible with the 
existing electrode manufacturing facilities and, thus, can be fairly cost effective.
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Fig. 1. Imaging cathode electrodes with multi-layer of NMC particles using nano-holo-
tomography. (A) Visualization of the composite battery cathode obtained by synchrotron nano-
holo-tomography. Each NMC particle has its own properties in position, particle structure, 
mesoscale chemistry, and local morphology. (B) Probability distribution of the particle porosity. 
(C-F) Randomly selected examples of NMC particles with different levels of damage. 
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Fig. 2. Particle damage heterogeneous in battery electrodes. (A-B) The spatial distributions of 
the severely damaged particles in the 10-cycled and 50-cycled electrodes, respectively. The 
degree of particle damage is color coded. Selected representative regions are enlarged for better 
visualization. The distances between the central damaged particle to its three nearest neighboring 
damaged particles are annotated in the enlarged view. (C) Probability distributions of the 
distance between two neighboring severely damaged particles in 10-cycled and 50-cycled 
electrodes. 
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Fig. 3. Finite element analysis of the electrochemical activity and mechanical damage in the 
NMC cathode. (A) The illustration of the composite model during charging process in the 
battery. (B) Normalized Li concentration profiles depict the inherent heterogeneity of the system 
during the first charging process with respect to the normalized time , where  is the real time in 
Li reactions and  is the theoretical time to reach the full capacity of NMC. Although the particles 
start with the same state of charge, Li concentration differs at the end of the first charge process. 
(C) The variation of Li concentration profiles among three NMC particles. The overall trend
demonstrates the tendency towards a synchronized behavior. (D) The damage profiles for three
NMC active particles diverge near the end of the first charge process. With the progression of the
cycling processes, the damage profiles for all three particles converge. (E) Each particle’s
deviation from the mean damage profile (the black dashed line).
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Fig. 4. Interpretable machine learning framework for particle attributes modeling. (A-B) 
The Circular plots of the correlations of 9 latent dimensions (LDs) in 10-cycled and 50-cycled 
electrodes. The “+” and “-” signs denote positive and negative correlation, respectively. The 
correlations common to both electrodes are set semi-transparent while the different ones are 
highlighted. (C) The contribution scores of all attributes to the particle damage in 10-cycled 
(green) and 50-cycled (blue) electrodes.  Triangle and square markers represent results from two 
robustness validation approaches, data-subsampling and random-seeding, respectively. The mean 
and standard deviation of the differences in the contribution scores (N = 20) between the 10-
cycled and 50-cycled data are plotted on the top.


