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. Executive Summary

Deregulation and the increase of renewable electricity generation from wind and solar photovoltaics have
transformed the U.S. electricity market. Economic and environmental benefits notwithstanding, the
presence of renewables has increased variability and uncertainty on the supply side of the grid. Managing
demand, rather than generation — a strategy referred to as “demand response (DR)” — is an attractive
approach for mitigating this imbalance. DR efforts aim to reduce electricity usage during peak demand
times, lessening stress on the grid. Industrial users are particularly attractive entities for DR participation
since they present large, localized loads that can provide significant relief on grid demand and —unlike
other large loads, such as buildings — are minimally dependent on human needs and preferences.

In this project, we accomplished three main objectives.

1. We developed data-driven low-order DR scheduling-relevant dynamic models of chemical
processes. Concurrently, we studied the formulation and solution of the associated optimal DR
production scheduling problems.

a. A prototype air separation unit (ASU) model was used to generate simulated operating data
for initial modeling efforts, which enabled the later use of industrial data for data-driven
modeling.

b. We utilized Hammerstein-Wiener (HW) and Finite Step Response (FSR) models to represent
nonlinear plant dynamics.

c. The HW models were linearized using exact linearization so they could potentially be
embedded in power system models, which are formulated as mixed integer linear programs
(MILPs)

d. We solved DR optimization problems under uncertainty and found that even naive
predictions of electricity price and product demand led to significant cost savings benefits.

2. Our DR scheduling optimization problem formulations are amenable to real-time solution.

a. We utilized Lagrangian Relaxation (LR) to efficiently solve the optimization problem by
decoupling subproblems linked by complicating constraints.

b. We have achieved computation times for the 3-day DR scheduling problem of an ASU as
low as 1.88 minutes [1].

3. Our representations of the DR behavior of chemical process as grid-level batteries were embedded
in power system models.

a. For a small-scale grid, we found that incorporating the dynamics of the chemical plant in the
optimal power flow calculations resulted in better resource management leading to up to 15%
and 46% cost reduction for the grid and chemical plant operations, respectively, during
periods of power line congestion.

We have published several works dedicated to modeling and solving DR optimization problems from
the user side. These were published in top peer-reviewed journals and are summarized in this report.
The most recent work (and papers in preparation) considers DR scheduling from the grid side. Future
efforts will consider networked plants (e.g., air separation units operating on a common pipeline) for
DR participation, which is expected to amplify the capabilities of industrial DR participants to perform
load-shifting. Our consideration of uncertainty in DR has inspired future directions in this area as well:
we plan to develop multistage methods to fully account for the effects of uncertainty in DR scheduling.



Objectives

Deregulation and the increase of renewable electricity generation from wind and solar photovoltaics
have transformed the U.S. electricity market. Economic and environmental benefits
notwithstanding, the presence of renewables (Figure 1) has increased variability and uncertainty on
the supply side of the grid. Managing demand, rather than generation — a strategy referred to as DR
(demand response) is an attractive approach for mitigating this imbalance. DR efforts aim to reduce
electricity usage during peak demand times, lessening stress on the grid. Industrial users are
particularly attractive for DR participation since they present large, localized loads that can provide
significant relief on grid demand and are minimally dependent on human needs such as air
conditioning, enabling more flexible power demand. Under DR operation, an industrial site
increases production during off-peak hours, storing product in excess of demand and later using this
product to meet demand during peak grid power demand times, when production level at the
industrial site is lowered. Such a scheme effectively amounts to storing energy in the form of a
physical product. Thus, in order to participate in DR, an industrial site must not be able to store
product safely and efficiently, as well as being able to modulate production rate on the same
timescale as electricity price changes.
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Figure 1: 3-day electricity price and renewables availability for July 3-5, 2017 provided by CAISO [3],
[4].

The production modulation strategy outlined above can be imposed via judicious production
scheduling. Changes in electricity prices can occur at different frequencies, ranging from every
several hours (Figure 1) to, in some cases, every 5 minutes [S]. These changes are on the same
timescale as the dynamics of typical key variables in an industrial plant of the kind considered in
this project (i.e., electricity-intensive chemical plants), and therefore, it becomes necessary to embed
dynamic process models into DR production scheduling calculations to ensure that scheduling
moves account for the relevant dynamic behavior. Embedding information on process dynamics
and control in scheduling calculations is challenging: for industrial processes, dynamic models are
typically large-scale, nonlinear, and stiff, making the resulting optimization problems difficult to
solve.

Motivated by the above, in this project, we aim to accomplish the following objectives:

1. Develop data-driven low-order, DR scheduling-relevant dynamic models of chemical processes:
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Utilize historical operating data (augmented by a limited number of experimental tests) to
derive low-order models of the nonlinear dynamics of chemical plants that are relevant to
scheduling their operation for participating in DR programs. Concurrently, the formulation
and solution of the associated optimal DR production scheduling problems was studied.
2. Develop DR scheduling optimization problem formulations that are amenable to real-time
solution.
Develop a novel, feedback-based DR scheduling paradigm, and consider optimizing process
operations from a grid-centric or process-centric perspective, allowing for DDR (dispatchable
DR) for grid stability and improving process economics via NDDR (non-dispatchable DR).
3. Create representations of the DR behavior of chemical process that can be embedded in power
system models.
Devise new pricing and bilateral coordination mechanisms to encourage NDDR behaviors
that are optimal from a grid perspective.

The proposed research has led to generic tools and methodologies that are applicable to all
manufacturing facilities in the chemical and petrochemical sector and can be extended to other
industries. We applied and validated our findings by collaborating with an industrial partner from
the energy-intensive air separation sector. In addition to the benefits provided to the grid, our
preliminary results suggest that engaging in DR programs can save up to 3% of operating cost in this
sector, compared to operating at a constant production rate with fixed energy prices. Significant
additional income can be generated from providing ancillary services, such as responsive reserve. In
discussing our approach to completing the project tasks, we will refer to two air separation case
studies (industrial plant and a model of a prototype air separation plant) to illustrate the concepts that
we developed.



Technical Approach

Task 1.0 Update Project Management Plan (PMP)
The Recipient updated the PMP to reflect how the project was managed. The PMP followed
the template provided by DOE in the Funding Opportunity Announcement (FOA).

Task 2.0 Data Collection
Task 2.1 Simulation data collection

We considered an air separation unit (ASU) as a prototype electricity-intensive chemical plant.
A simulation model of an ASU previously developed in our group [6] was used to generate a
preliminary data set covering the transition of the chemical plant between different production
rates. The data set contains information relating power demand to the production rate of
nitrogen, as well as information concerning relevant plant variables (e.g., product purity,
temperatures and pressures in different locations in the plant where sensors are available in
practice, etc.). A process flow diagram of the ASU is in Figure 2.
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Figure 2: Process flow diagram for the industrial ASU used to generate preliminary operating data,
based on Johannsson [6].

The cryogenic column produces high-purity nitrogen gas, which is delivered via pipeline to
industrial users. The inlet feed air stream is compressed from ambient pressure to 6.8 bar; the
compressor is the main electricity consumer in the process. This consumption is partially offset
by the power supplied by the two turbines, which are assumed to be connected to generators.
Following the compressor, the air enters the primary multi-stream heat exchanger (PHX), where
it condenses and is fed to the bottom of the cryogenic distillation column. A near-pure (with
parts-per-million (ppm) levels of oxygen impurity) nitrogen gas stream is obtained at the top of
the distillation column. The nitrogen stream passes through the PHX, where it partially provides
refrigeration for the feed stream, before it is directed either to the users or to the storage system
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where it is liquefied. The storage tank after the liquefier is modeled as a simple integrator. We
refer the reader to our work [7] for a complete description of the plant and associated model
equations.

Task 2.2 Industrial data collection

Industrial data (Figure 3) were collected from a facility producing nitrogen, oxygen, and argon,
whose operation was subject to fluctuations in production due to, e.g. demand or changes in
local electricity prices. These fluctuations were likely imposed by operators based on heuristic
arguments. The data were recorded at one-minute intervals in the model predictive control
system and process historian database, during periods of regular, unforced operation. Periods
of start-up, shut-down, and process or measurement faults were excluded. These periods were
identified easily in the historical data, as the sensors are either off or produce readings that are,
e.g., outside the physical bounds for the respective variables. Although shut-downs of the entire
ASU could potentially be scheduled to avoid consuming electricity during price peaks, they
were not considered here. However, the shutdown of the liquefier unit was considered.
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Figure 3: Historical data from industrial process and preliminary data-driven model predictions from [8].

Task 2.3 Model variable selection.
Physical arguments (e.g., proximity to operating constraints) as well as data-driven
selection techniques (e.g., variable importance in projection) were considered in building
a selection algorithm for the variables used in constructing a DR scheduling-relevant
dynamic model. Scheduling-relevant variables were defined as variables that were at or
near their operating constraints during normal operation or were directly used to calculate
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the operating cost of the ASU. In our work [7], we defined 8 scheduling-relevant variables
for the model single-product ASU, presented in Table 1.

Table 1: Summary of scheduling-relevant variables and their rationale, from [7].

Variable Rationale

Production rate, fFP Objective function; 16 < FP <24 (mol/s)
Feed flowrate, F Objective function

Impurity level, IP Ip <2000 ppm (1800 ppm backoff)
Temperature difference, AT Tcondenser_ wao“erz 1. 80C (zoc backoff)
Zone 1 pressure ratio, PGl PGl <0.96 (0.95 backoff)

Max flooding fraction, Sf 6f§ 0.97 (0.96 backoff)

Reboiler holdup, M 0<M <150 kmol; M (0) < MR(NITI)
Storage holdup, s 0 <5<200kmol ; s(0) < S(NITI)
Production rate, FP Objective function; 16 < FP <24 (mol/s)

Task 3.0 Low-order Dynamic Model Identification.

The purpose of production scheduling for DR operation is to maximize profit (derived from
operating under time-sensitive electricity prices), while, (i) meeting product demand, (ii)
abiding by all process constraints, related to e.g., product quality and safety and (iii) accounting
for the process dynamics. In the context of chemical process operations, DR scheduling is part
of a hierarchical decision-making structure that also includes process control, as illustrated in
Figure 2. As mentioned in the introduction, one of the challenges of obtaining a
computationally-efficient DR scheduling calculation, amenable to real-time solution, is the
complexity of the process model, which is manifest in its nonlinearity and high dimensionality.
This issue is exacerbated by the disparity between time horizons of DR scheduling, process
control and the dynamics of the process itself, meaning that the time horizon of DR scheduling
typically spans multiple days (as explained later), and the process dynamics must be considered
explicitly over this entire time interval.

11



X Electricity prices
[Schedullng JProduct demand
§ 1

[Control J
Control ActionsiL ﬁ |
w |
T o |
Feed duct duct

== Process °=r Inventory [z |
N e — o — — —— — — l' |

. | _

Time Scale Seconds Minutes  Days

/Hours

Figure 4: Hierarchy of decisions for chemical process operation, where u are the production set-
points/targets and w are the values of the process variables.

A potential approach to deal with these computational challenges lies in representing the plant
dynamics using a low-order model. This is not necessarily a new approach conceptually
speaking; the novelty of our work consists in identifying which variables are relevant for DR
scheduling (and whose dynamics should therefore be modeled), and on introducing the concept
of Scale-Bridging Models (SBMs), as a representation of the closed-loop dynamics of these
variables — that is, SBMs capture the dynamic of the process and its control system (Figure 2),
as they respond to target signals generated at the scheduling level. We note that “scale bridging”
thus refers to the fact that these models bridge the (fast) time scale of the process with the
(longer) time scale of scheduling calculations. We elaborate below.

Task 3.1 Nonlinear model identification.

We considered two classes of low-order models as candidate structures for deriving SBMs:
finite step response (FSR) and Hammerstein Wiener (HW), and compare the ability of such
models to reproduce (and predict) the behavior of chemical processes. For the simulated
problem (Task 2.1), FSR models were fitted for two scheduling-relevant variables: the
production rate, and the feed flowrate (Table 3). HW models were fit to the remainder of the
scheduling-relevant variables listed in Table 1. The form of the HW model is given below in
Figure 3, where a linear state-space model is surrounded at the input/output by static nonlinear
functions (e.g. polynomials or piecewise linear functions), the fit of the HW models is given in
Table 2.

— H(u;)) > State-Space —> W(y;) L

Figure 5: HW model form, from [7].

For a full discussion of HW and FSR models, we refer the reader to our published works [7],

[9].
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Table 2: Summary of model fits for the HW models from [7].

Input Linear
Input Output  Nonlinearity Dynamics Output Nonlinearity NMSE
u w H(u) State-space W(y) W(y) Training Validation
Breakpoints Order Type Breakpoints
F I 4 4 PWL 6 0.82 0.52
F M 3 4 linear - 0.78 0.75
P 5 5 5 quadratic - 0.91 0.92
P P 2 8 quadratic - 0.83 0.97
F AT 9 4 PWL 6 0.69 0.84

Table 3: Summary of model fits for the FSR models from [7].

. NMSE
Input Variable Sampl'e Time
u (mins) Training Validation
P
F_p . 1 5.1E-08 6.4E-08
f
F_p . 1 3.9E-08 4.3E-08

Task 3.2 Model linearization.

We note that the HW models are nonlinear; embedding them in a schedule optimization
calculation results in a nonlinear optimization problem, which poses specific solution
challenges in terms of, among others, solution time and global optimality guarantees. It is
advantageous to formulate scheduling problems as (mixed integer) linear programs. To this
end, the nonlinear input and output functions in the HW models can be linearized. For the cases
that we considered in our work, we utilized piecewise linear functions for the Hammerstein and
Wiener blocks, and demonstrated that these functions can be linearized exactly as a set of Inear
expressions comprising a integer and continuous variables. For a comparison of linearization
methods, please see our work [9]. Table 4 shows the percent fit between the linearized HW
models and the nonlinear continuous HW models. Since the SOS2 linearization is exact, the
slight errors in fit are a result of the discretization of the continuous HW models.

Table 4: Model statistics for linearized HW models.

Variable Sample Time (mins) %Fit

13



I 6 99.85

M 0.5 99.93
dT 6 99.80
N 10 99.63
P 10 99.97

Task 4.0 DR Scheduling Problem Formulation and Solution

The above (full order and reduced-order) representations of the ASU were used to formulate
and solve multiple scheduling problems. We discuss these problems below based on the
objective function and type of knowledge assumed (certain/uncertain).

1. DR scheduling assuming perfect price and demand knowledge.

The problems are compared in terms of model type and solution time. In all cases, the
decision variable is the hourly setpoint for production rate, FP.

a.

Optimization problem formulated using the full-order first principles model (DR1).
This problem is a nonlinear dynamic optimization problem.

FP(t)

s.t. Timing constraints

Process model (Full-order)
Inventory model

Initial Conditions

Process and Quality Constraints

Tm
min J =f Price(t)Power(t) dt
0

Optimization problem formulated nonlinear continuous HW models (DR2). This
problem is a nonlinear dynamic optimization problem.

FP(t)

s.t. Timing constraints

Process model (HW)

Inventory model

Initial Conditions

Process and Quality Constraints

Tm
min ¢ = f Price(t)Power(t) dt
0

Linearized and discretized HW/FSR models (DR3). This problem is a mixed-
integer linear program.
m_})n Cost = ),; Y.j Price;Power;;

F

s.t. Timing constraints

14



Process model (HW/FSR)
Inventory model

Initial Conditions

Process and Quality Constraints
Continuity Constraints

d. Linearized and discretized HW/FSR models with Lagrangian Relaxation (LR)
(DR4). This problem is a mixed-integer linear program.

Ni n
o . ki, k k
min/ = Price;Power;; — Ai x4 Nj T xij=1|
FP ’ ,
ij

i=2 k=1
s.t. Timing constraints
Process model (HW/FSR)
Inventory model
Initial Conditions
Process and Quality Constraints
xl-,j € Dx c R" VlV]

e. Rate of change (ROC) representation of ASU (DRS). This problem is meant to
reflect the current practice for DR scheduling, where the process dynamics are not
represented explicitly but rather in the form of rate of change/ramp rate
limits/constraints.

r%n] = Z Z Price; P;;

l
s.t. Steady-sta]te gain model
Inventory model
Initial Conditions
Process and Quality Constraints
Rate of change constraints

DR1-DRS5 all seek to minimize the operating cost of the ASU, which is a function of the time-
varying power consumption and hourly electricity prices. DR1 utilizes the full-order first-
principles model derived in [6] to represent the ASU. DR2 uses HW models to represent all
scheduling-relevant variables (Table 1), and a continuous time-vector. DR3 utilizes HW models
for all but two scheduling-relevant variables, which are modeled using FSR models. The HW
models in DR3 were linearized with SOS2 and all FSR/HW models were discretized. The
problem structure of DR3 is given in Figure 4, where discrete subproblems representing each
hour in the time horizon are spanned by an overarching common problem, summing over all
subproblems. Each subproblem is linked by a continuity constraint, where states at the end of
the previous hour must be equal to the states at the start of the current hour. The subscript i
represents each hourly time slot considered in the scheduling calculation, while subscript j
corresponds to the discretization time step of the dynamics of the process (typically one
minute).
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Figure 6: Problem structure for DR3.

For DR4, we produced a new Lagrangian Relaxation strategy (LR), which “unlinks” the
subproblems identified based on analyzing the structure of DR3, and enables parallel solution
of the scheduling problem. In LR, the complicating (equality) constraints are dualized and
penalized in the objective function, leading to the objective seen in DR4. The DR4 objective is
the operating cost plus the constraint violations, which in effect, minimizes the operating cost
and the continuity violations. Specifically, the difference between states at the end of a
scheduling slot and the states at the start of the subsequent slot (|xlk_1' N; T x{f j=1|) 1s multiplied

by a penalty multiplier (A¥), for which there are many selection metrics, covered in detail in
[71, [9]. For linear or convex problems, global optimality of the solution to the LR problem can
be proved, wherein the constraint violations go to zero and the objectives of DR3 and DR4 are
equivalent [7], [9].

Lastly, the ROC problem in DRS was used as a comparison to more naive scheduling methods,
where a steady-state gain model represents the relationship between production rate setpoint,
FP, and plant production rate, with the ROC of setpoints between hours limited to be less than
0.5mol/s [7].

Table 5: Summary of results for the 3-day DR scheduling problem of an ASU when optimal schedules
for DR2-DR5 were simulated on the full-order model of the ASU. *ROC solution had several constraint
violations [7]. The constant production rate represents the base case where DR scheduling is not
performed. Savings are calculated relative to the operating cost of this case.

Problem Model Cost ($)  Savings (%) CPU (h) Type
DR1 Full-Order 1012.56 1.22 >100 NLP
DR2 Nonlinear HW 1014.68 1.01 5.10 MINLP
DR3 Discrete HW/FSR 1013.64 1.12 0.119 MILP
DR4 Discrete HW/FSR+LR  1013.64 1.12 0.195 MILP
DR5* ROC 1021.49* 0.35 1.25E-4 LP
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Constant Prod. Rate -- 1025.09 -- - -

The numerical results for the 3-day scheduling problem in [7] are shown in Table 5, where the
full-order model had the lowest objective function but a solution time far too large to be
valuable (i.e., the result for three days — 72 hours) — of operation were obtained in more than
100 hours). The linearization and discretization of the HW models and the introduction of FSR
models significantly reduced the computation time and achieved a comparable objective
function value.

A second set of scheduling problems followed an environmental objective, that is, we
investigated the effect of grid-side emissions (due to time-varying contribution of renewables
to generation mix) on DR scheduling. Emissions related to power generation do follow a similar
profile to electricity prices, in the sense the relative contribution of renewables increases at
night (wind) and during mid-day (solar), while fossil-based power generation is used to satisfy
power demand during the late afternoon peaks. We define an aggregate emissions metric (CO2
equivalent emitted / kWh generate) which we use in the objective function to minimize
emissions related to plant operations. The relevant scheduling problems are described below.

2. Scheduling assuming perfect price, grid-side emissions, and demand knowledge [10]. The
decision variable is the hourly setpoint for production rate, FP.

a. Emissions-minimizing production (EMP)

min G = z Z Power;;Emissions;
Fp
1 i ]

s.t. Timing constraints

Process model (HW/FSR)
Inventory model

Initial Conditions

Process and Quality Constraints
Continuity Constraints

b. DR (equivalent to DR3 above)

r%in] = Z Z Power;jPrice;
i

s.t. Timing constraints

Process model (HW/FSR)

Inventory model

Initial Conditions

Process and Quality Constraints

Continuity Constraints

The EMP and DR problems were solved for three or four 3-day periods within each month of 2017
and compared to a reference problem, where the production rate was kept constant. Data for
emissions and prices were collected for a CAISO node in Fresno, CA. Figure 5 shows the mean
emissions and operating cost across the 3-day periods examined for each month of 2017. It was
found that DR, which minimizes operating cost, consistently reduces emissions when compared
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to the reference problem (up to 3.36%) and that EMP, which minimizes emissions, has the potential
to increase operating cost compared to the reference problem (by up to 7.88%).
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Figure 7: 3-day emissions and operating cost for EMP, DR, and the reference problem (without DR)
from [10].

Subsequently, we addressed the (realistic) question of dealing with uncertainty in forecasts of
electricity prices (beyond the 24h period for which day-ahead prices can be safely assumed to
be known) in the DR scheduling problems. This third set of results is described below.

3. The third set of scheduling problems utilizes chance constraints to represent electricity price
and product demand uncertainty. We solve four scheduling problems and compare them in
terms of objective function value at the optimum and robustness benefit, for the full results
please see [1].

a. Deterministic scheduling problem (equivalent to DR3) (CC1)

min C = z Z Price;Power; ;
ij

s.t. Process model (HW/FSR)
Process constraints

Quality constraints

Initial conditions

Continuity conditions

Demand constraints (D = 20 mol/s )

b. Price uncertainty (CC2)
min C
s.t. C+ (1 —zf)M = ¥, ¥ Price; ,Power;

Zanr >a

r
m, = Pr[P;,]
O0<a<l1

P~ van(#i' 2:i)
Process model (HW/FSR)
Process constraints
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Quality constraints

Initial conditions

Continuity conditions

Demand constraints (Di=20 mol/s)

Demand uncertainty (CC3)

min C = z z Price;Power; ;
L

Sl,]
Z zP > aNg

-
0<acx<l1i

D; ~ U[16,23] tsrare~U[0,72]
Process model (HW/FSR)
Process constraints

Quality constraints

Initial conditions

Continuity conditions

Price and demand uncertainty (CC4)
min C

s.t. C+ (1 —zf)M = ¥, ¥ Price; ,Power;

Zzﬁnr >a

r
m, = Pr[P,,]
Ff; = Dip 2 i, = fi71F =M1 = 27)

Si,j
z zP > aNp?

T

0<a<x<l1
D; ~ U[16,23]

Py ~ Nonom (4, Z4)

Process model (HW/FSR)
Process and quality constraints
Initial conditions

Continuity conditions

For CC2-CC4, chance constraints were used to represent the uncertainty. Chance constraints
ensure that the probability of meeting the constraint containing the uncertain parameter is above
some specified tolerance, a. We utilized binary variable, z, to denote whether the uncertain
constraint was met, for demand (z? Vr = 1...NP) and for price (zf Vr = 1... N?) uncertainty.
If a constraint r was met, z~=1, otherwise, z=0. For price uncertainty, the number of pricing
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scenarios considered was N¥ = 200. For demand uncertainty, N? = 20 samples were considered.
The probability of each price scenario, Price;,Vi = 1...72, occurring is m, where Y, m, = 1.
Since demand was drawn from a uniform distribution (each scenario has equal probability of
occurring), the probability of each scenario is N—lD. For a full discussion of the formulations of CC2-
CC4, please refer to our work, [1].

Figure 9 shows that the chance-constrained problem, CC2, has the lowest mean operating cost
compared to the two methods which don’t consider electricity price uncertainty.
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Figure 8: Histogram of the simulated operating cost across all scenarios for CC1-CC2 and the
reference problem (no DR), with labeled vertical lines representing the mean values from [1].

In the interest of ensuring feasibility when considering scheduling under demand uncertainty,
we assumed that product can be purchased from a competitor at a high premium, when it is not
available locally (either from current production or from the storage tank). This penalty is
reflected in the operating cost in scenarios where the simulated optimal schedule of CC1 and
the reference schedule led to storage depletion and an inability to meet demand, and can be seen
in Figure 10 in the bi-modal distributions for the reference and CC1 operating costs (9). While
the mean operating cost of the deterministic problem, CC1, is the lowes, the potential for a
significantly greater cost is evident, therefore, the risk of not considering uncertainty is high.
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Figure 9: Histogram of the simulated operating cost across all scenarios for CC1, CC4, and the
reference problem (no DR), with labeled vertical lines representing the mean values from [1].

The final metric we use to compare scheduling methods is the energy benefit for the subsequent
scheduling time horizon (meaning, if the scheduling process were to be continued for
subsequent times in the future), which arises from any material available in storage at the end
of the time horizon in excess of the initial storage level. This energy benefit translates to an
increased potential for flexible operation in the next time horizon. As shown (Figurell), the
reference case and CC1 both have potential for storage depletion (as evident in the negative
energy benefit), compared to the consistently high energy benefit of CC3.
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Figure 10: Energy benefit for the next time horizon, where a negative benefit signifies depleted
storage, from [1].

4. Another means for dealing with uncertainty in e.g., electricity price and product demand, is
rescheduling. We refer to the new method that we proposed as “moving-horizon (MH)
scheduling” (in reference to moving horizon optimal control, an advanced control
technique). In MH scheduling, deterministic scheduling problems are solved periodically
and the solutions are updated once new information becomes available. The problems are
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solved on a fixed time horizon, that “shifts” in time (the shift occurs when new information
is received). Information updates could include new values for the uncertain variables
and/or measurements form the process. Within the MH framework, several different
scheduling problems were considered. The examples below use a six-day horizon but the
concepts we developed are generic and can be adapted to any time horizon. We refer the
reader to our work [11] for more detail. Below we describe the concept behind these MH
formulations graphically, rather than relying on mathematical descriptions figures
describing the scheduling methods, rather than the scheduling formulations shown in
previous sections.

a. Periodic pricing updates

For the case of periodic pricing updates (Figure 10), we consider a scenario where
electricity prices are known with certainty for all six days of the time horizon (PP1),
a scenario where we only know prices for day one, and use these to estimate the
prices on days two and three of the scheduling window (PP2), and a scenario where
we assume we have three days of price knowledge at a time. In PP1, we solve the
scheduling problem once. In PP2-PP3, we re-solve the problem each day as more
prices become available, for a total of four solution cycles (note that this process
would continue infinitely as new information arrives). Scenarios PP1-PP3 are a
reflection of our ability to forecast electricity prices, and reflect some limit cases:
PP2 assumes no forecasting (i.e., reusing prices from one day to forecast prices for
all days in the horizon), while PP1 is the opposite case of a fully prescient and
accurate price prediction algorithm. We chose to use these limit cases rather than
incorporate a price forecasting algorithm in order to fully elucidate the impact of
production scheduling on demand response. One can anticipate that the results with
a “true” forecasting algorithm would lie between these two limits.

I:I Scheduling Window I:I Unscheduled Day ‘:‘ Day in the past

pp1 |deal

Reschedule 1 | Day 1 [ Day2 | Day 3 | Day 4 Day5 [ Day 6
pp2 Realistic

Reschedule 1 Day1 Day 1 Day 1

Reschedule 2 Day 1 Day 2 Day 2 Day 2

Reschedule 3 Day 1 Day 2 Day 3 Day 3 Day 3

Reschedule 4 Day 1 Day 2 Day 3 Day 4 Day 4 Day 4

pp3 Less realistic

Reschedule 1 Day 1 Day 2 Day 3

Reschedule 2 Day 1 Day 2 Day 3 Day 4

Reschedule 3 Day 1 Day 2 Day 3 Day 4 Day 5

Reschedule 4 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Figure 11: Scheduling schemes for periodic (daily) pricing updates, where three scheduling methods
are considered, from [11].

b. Periodic temperature updates

For the case of periodic temperature updates (Figure 11), we assume temperature
predictions become available every 6 hours and consider three scenarios. PT2
considers a scenario where prices and temperatures are known for the entire time
horizon, PT3 considers temperature updates every 6 hours on a shrinking horizon
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up until the next day begins, where another full day is added to account for new
electricity prices, and PT4 maintains a 3-day scheduling window which is shifted
forward in time every 6 hours when new temperatures and prices become available.

. Scheduling Window \:’ Unscheduled Day |:| Day in the past

| Day1 ‘ Day 2 | Day 3 ‘ Day 4 | Day5 ‘ Day 6 |
PT2 |deal scenario

Reschedule 1

PT3 Realistic scenario

Reschedule 1
Reschedule 2
Reschedule 3
Reschedule 4
Reschedule 5
Reschedule 6
Reschedule 7
Reschedule 8
Reschedule 9

pTa Less realistic scenario

Reschedule 1
Reschedule 2
Reschedule 3
Reschedule 4
Reschedule 5
Reschedule 6
Reschedule 7
Reschedule 8
Reschedule 9

Figure 12: Scheduling schemes for periodic (every 6 hours) temperature updates, where three
scheduling methods are considered, from [11].

C.

Event-driven rescheduling: product demand (Figure 12)

Lastly, we consider event-driven rescheduling, in the form of demand disturbances.
We consider four possible scenarios. PD2 considers planned maintenance, wherein
the length and time of the demand disturbance are known, the schedule for PD2 is
generated just once. PD3 considers unplanned maintenance, where the start time of
the disturbance is unknown but the length is known once it starts, triggering a
rescheduling point at the start of the disturbance. PD4 considers a random failure,
where neither the start time of the disturbance or the length of the disturbance are
known, triggering a rescheduling point at the beginning of the disturbance (where it
is assumed the disturbance will carry on throughout the time horizon) and the end
of the disturbance. Lastly, PD5 considers the case of random failure, but uses chance
constraints to anticipate when the disturbance may end.
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Figure 13: Scheduling schemes for event-driven rescheduling.

For the different scenarios considered, the economics of using a moving horizon rescheduling
strategy did not differ significantly from the best case of a scheduling calculation based on
perfect knowledge of all disturbances and considering the entire time horizon. This observation
is true in the case where moving horizon scheduling itself possesses perfect knowledge of the
disturbances for the scheduling window considered. However, even simplistic forecasting
strategies for periodic disturbances (e.g., using information from the preceding day) led to
economic gains. In terms of event-driven rescheduling, we found that PD4 led to the possibility
of depleted storage, but that this shortcoming was remedied by the addition of chance-
constraints in PDS5. The results from this work are extensive given the number of scheduling
schemes provided, so we refer to reader to our published work for a detailed description of the
results [11].

Task 5.0 Representation of DR Dynamics of Chemical Processes in Power Systems Models.
Task 5.1 Mathematical modeling
We used a DC approximation of the power grid and aimed to incorporate the chemical process

into the grid model for power flow optimization [2]. From the grid perspective, an electricity-
intensive chemical process is regarded as a large scale battery and modeled accordingly; we used

24



a linear model that indicates power consumption limits and storage capacity of chemical products.
The transient properties of the grid-connected load (we used a chlor-alkali electrolysis plant as an
example) were explicitly represented in the low-order models. Thus, while this modified process
model was amenable for use in grid-relevant computations, it also guarantees safe and feasible
manipulation of the chemical plant load during DR activities.

We refer to the integrated problem as “cooperative demand response.” For a small-scale grid,
incorporating the dynamics of the chemical plant in the optimal power flow calculations results in
better resource management leading to up to 15% and 46% cost reduction for the grid and chemical
plant operations, respectively, during periods of power line congestion [2]. For the chemical plant,
the savings were twice as high as the amount achieved when the chemical plant scheduling is
carried out with the chemical plant as a pure “price taker”. Additionally, our simulations reveal
that industrial loads can be deployed to achieve smoother DR and correspondingly peak shaving
and valley filling at the level of the entire grid.

Task 5.2 Electricity pricing algorithms.

We have developed stochastic programming problems that consider strategies for optimal
splitting of electricity purchases in the day-ahead and short term markets [12].

We are currently working on an iterative scheme where the optimal power flow problem is
solved at the grid level and the local scheduling problems at the plant level provide additional
constraints/feasibility cuts. We expect that this will eventually lead to new pricing/bidding
strategies.
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IV. Accomplishments and Conclusions

The key objectives stated at the start of this project were:

1. Develop data-driven low-order, DR scheduling-relevant dynamic models of chemical
processes:
To this effect, we utilized historical and simulated operating data to derive low-order models of
the nonlinear dynamics of chemical plants that are relevant to scheduling their operation for
participating in DR programs. We identified SBMs in the form of HW and FSR models for
simulated plant data [7] and historical operating data [8]. Concurrently, the formulation and
solution of the associated optimal DR production scheduling problems was studied.

2. Develop models and DR scheduling optimization problem formulations that are
amenable to real-time solution.

To this effect, we developed a scheduling framework utilizing discretization, linearization, and
low-order modeling to represent complex chemical processes. We applied LR to the optimization
problem to enable the parallel solution of decoupled subproblems. At the time of publication, we
reported a solution time for the 3-day DR scheduling problem of 7.12 minutes [7]. Since then, the
solution time for the same problem has reduced to a minute and a half (due to upgrades in
optimization solvers and hardware). This fast solution time demonstrates that we have a problem
formulation amenable to real-time solution. With this computationally efficient model, we have
solved the DR scheduling problem for instances of electricity price uncertainty, product demand
uncertainty, and changes in ambient conditions such as temperature [1], [11]. We have also used
the scheduling framework to determine the impact of DR on grid-side power generation emissions
[10].

3. Create representations of the DR behavior of chemical process that can be embedded in
power system models.
Low-order dynamic models for a chlor-alkali process were developed and incorporated into the
grid model for power flow optimization [2]. Implementation of this chemical plant model in the
optimal power flow calculations resulted in better resource management leading to up to 15% and
46% cost reduction for the grid and chemical plant operations respectively during periods of power
line congestion.

We believe we have accomplished the objectives of this project. In order to build a strong
foundation for the project, we have several works dedicated to modeling and solving DR
optimization problems from the user-side. Our work in preparation begins to look at the problem
from the grid-side. We also want to look at networked plants (e.g., air separation units operating
on a common pipeline) for DR participation to try and increase the capabilities of industrial DR
participants to perform load-shifting. Our considerations of uncertainty in DR have inspired future
directions in this area as well: we plan to try multistage methods of optimization under uncertainty
to fully investigate the effects of uncertainty (and mitigating this uncertainty) in DR scheduling.

26



APPENDIX A: Product or Technology Production

Publications:

Kelley, M. T., Baldick, R., & Baldea, M. (2019). Demand Response Operation of Electricity-
Intensive Chemical Processes for Reduced Greenhouse Gas Emissions: Application to an Air
Separation Unit. ACS Sustainable Chemistry & Engineering, 7(2), 1909-1922. Retrieved
from http://pubs.acs.org/doi/10.1021/acssuschemeng.8b03927 OSTI ID: 1615231

Tsay, C., Kumar, A., Flores-Cerrillo, J., & Baldea, M. (2019). Optimal demand response
scheduling of an industrial air separation unit using data-driven dynamic models. Computers and
Chemical Engineering, 126, 22—34. https://doi.org/10.1016/j.compchemeng.2019.03.022 OSTI
ID: 1547602

C Tsay and M Baldea. Integrating production scheduling and process control using latent
variable dynamic models. Control Eng. Pract., 2019. (accepted, awaiting publication)

C Tsay and M Baldea. 110th Anniversary: Using data to bridge the time and length scales of
process systems. Ind. Eng. Chem. Res. 58:16696-16708, 2019. OSTI ID: 1550774

Kelley, M. T., Pattison, R. C., Baldick, R., & Baldea, M. (2018). An efficient MILP framework
for integrating nonlinear process dynamics and control in optimal production scheduling
calculations. Computers & Chemical Engineering, 110, 35—

52. https://doi.org/10.1016/j.compchemeng.2017.11.021 OSTI ID: 1549167

Kelley, M. T., Pattison, R. C., Baldick, R., & Baldea, M. (2018). An MILP framework for
optimizing demand response operation of air separation units. Applied Energy, 222, 951—
966. https://doi.org/doi.org/10.1016/j.apenergy.2017.12.127 OSTI ID: 1537994

Conference Presentations:

Kelley, M. T., Baldick, R., & Baldea, M. (2019). Greener operation of chemical processes using
emissions-based scheduling. In Texas, Wisconsin, California Control Consortium (TWCCC).
Austin, TX.

Kelley, M. T., Baldick, R., & Baldea, M. (2018). Green Operation of an Air Separation Unit
Using an Efficient MILP Optimal Scheduling Framework. In American Institute of Chemical
Engineers (AIChE) Annual Meeting. Pittsburgh, PA.

Kelley, M. T., Baldick, R., & Baldea, M. (2019). Demand Response Operation of Electricity-
Intensive Chemical Processes for Reduced Greenhouse Gas Emissions: Application to an Air
Separation Unit. In Industrial & Engineering Chemistry Research Student Award Symposium.
San Diego, CA.

27


http://pubs.acs.org/doi/10.1021/acssuschemeng.8b03927
https://doi.org/10.1016/j.compchemeng.2019.03.022
https://doi.org/10.1016/j.compchemeng.2017.11.021
https://doi.org/doi.org/10.1016/j.apenergy.2017.12.127

Tsay, C., Baldea, M., Shi J., Kumar, A., Flores-Cerrillo, J., (2018). Data-driven models and
algorithms for demand response scheduling of air separation units. Texas-Wisconsin-California
Control Consortium, Madison, WI.

Tsay, C., Baldea, M., Shi J., Kumar, A., Flores-Cerrillo, J., (2018). Optimal demand response
operation of an industrial air separation unit using data-driven, scheduling-relevant dynamic
models. AIChE Annual Meeting, Pittsburgh, PA.

Kelley, M. T., Baldick, R., & Baldea, M. (2019). Chance-constrained optimal scheduling of an
air separation unit for demand response under uncertainty. In Computational Science Graduate
Fellowship (CSGF) Program Review. Washington, D.C.

Kelley, M. T., Baldick, R., & Baldea, M. (2019). Proactive (re)scheduling of an air separation
unit in demand response scenarios. In Energy Research Expo. Austin, TX.

Kelley, M.T., R. Baldick, and M. Baldea, “Green Operation of an Air Separation Unit Using an
Efficient MILP Optimal Scheduling Framework,” in American Institute of Chemcial Engineers
(AIChE) Annual Meeting.

Kelley, M.T., R. Baldick, and M. Baldea, “Optimal Production Scheduling for Greenhouse Gas
Reduction,” in McKetta Department of Chemical Engineering 1st/3rd Year Seminar Series.
(10/26/2018)

Kelley, M.T., R. Baldick, and M. Baldea, “Demand Response Operation of Air Separation Units
with an Efficient MILP Modeling Framework,” in DOE Computational Science Graduate
Fellowship (CSGF) Annual Program Review, (7/17/2018).

Kelley, M.T., R. C. Pattison, R. Baldick, and M. Baldea, “Demand Response Operation of Air
Separation Units Utilizing an Efficient MILP Modeling Framework,” in Process Science and
Technology Center Meeting. (04/03/2018)

Kelley, M.T., R. Baldick, and M. Baldea, “Demand Response Operation of Air Separation Units
with an Efficient MILP Modeling Framework,” in UT Austin Energy Week. (01/29/2018)

Kelley, M.T., “An MILP framework for solving industrial demand response optimal scheduling
problems,” in PhD Candidacy Examination. (11/30/2017)

Kelley, M.T., Pattison, R. C., Baldick, R., & Baldea, M. (2017). Linear Surrogate Dynamical
Models for Embedding Process Dynamics in Optimal Production Scheduling Calculations. In
AIChE Annual Meeting. Minneapolis. (11/02/2017)

Kelley, M.T., Pattison, R. C., Baldick, R., & Baldea, M. (2017). Demand Response Operation of

Air Separation Units Utilizing an Efficient MILP Modeling Framework. In AIChE Annual
Meeting. Minneapolis. (11/01/2017)

28



REFERENCES

[1] M. T. Kelley, R. Baldick, and M. Baldea, “Demand response scheduling under uncertainty:
chance-constrained framework and application to an air separation unit,” AIChE Journal, under
Rev., 2020.

[2] J. I. Otashu and M. Baldea, “Cooperative demand response based on extended optimal power
flow problem,” Prep.

[3] “Daily Renewables Output Data,” Folsom, CA, 2017.

[4] CAISO, “California Independent System Operator,” 2017. [Online]. Available:
http://www.caiso.com/Pages/default.aspx.

[5] ERCOT, “Energy Reliability Council of Texas,” 2017. [Online]. Available:
http://www.ercot.com/. [ Accessed: 03-Apr-2017].

[6] T. Johansson, “Integrated Scheduling and control of Air Separation Unit Subject to Time-
Varying Electricity Price,” KTH Royal Institute of Technology, Stockholm, Sweden, 2015.

[7] M. T. Kelley, R. C. Pattison, R. Baldick, and M. Baldea, “An MILP framework for
optimizing demand response operation of air separation units,” Appl. Energy, vol. 222, pp. 951—
966, Jul. 2018. OSTI ID: 1537994

[8] C. Tsay, A. Kumar, J. Flores-Cerrillo, and M. Baldea, “Optimal demand response scheduling
of an industrial air separation unit using data-driven dynamic models,” Comput. Chem. Eng.,
vol. 126, pp. 22-34,2019. OSTI ID: 1547602

[9] M. T. Kelley, R. C. Pattison, R. Baldick, and M. Baldea, “An efficient MILP framework for
integrating nonlinear process dynamics and control in optimal production scheduling
calculations,” Comput. Chem. Eng., vol. 110, pp. 35-52, Feb. 2018. OSTI ID: 1549167

[10] M. T. Kelley, R. Baldick, and M. Baldea, “Demand Response Operation of Electricity-
Intensive Chemical Processes for Reduced Greenhouse Gas Emissions: Application to an Air
Separation Unit,” ACS Sustain. Chem. Eng., vol. 7, no. 2, pp. 1909-1922, Jan. 2019. OSTI ID:
1615231

[11] M. T. Kelley, R. Baldick, and M. Baldea, “An empirical study of moving horizon closed-
loop demand response scheduling,” J. Process Control. under Rev., 2020.

[12] J. Simkoff and M. Baldea, “Stochastic scheduling and control using data-driven nonlinear
dynamic models: application to demand response operation of a chlor-alkali plant purchasing of
electricity,” Ind. Eng. Chem. Res. Submitt.

29



	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS AND ABBREVIATIONS
	I. Executive Summary
	II. Objectives
	III. Technical Approach
	IV. Accomplishments and Conclusions
	APPENDIX A: Product or Technology Production
	REFERENCES


