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I. Executive Summary 
Deregulation and the increase of renewable electricity generation from wind and solar photovoltaics have 
transformed the U.S. electricity market. Economic and environmental benefits notwithstanding, the 
presence of renewables has increased variability and uncertainty on the supply side of the grid. Managing 
demand, rather than generation – a strategy referred to as “demand response (DR)” – is an attractive 
approach for mitigating this imbalance. DR efforts aim to reduce electricity usage during peak demand 
times, lessening stress on the grid. Industrial users are particularly attractive entities for DR participation 
since they present large, localized loads that can provide significant relief on grid demand and –unlike 
other large loads, such as buildings – are minimally dependent on human needs and preferences.  

In this project, we accomplished three main objectives.  

1. We developed data-driven low-order DR scheduling-relevant dynamic models of chemical 
processes. Concurrently, we studied the formulation and solution of the associated optimal DR 
production scheduling problems.  

a. A prototype air separation unit (ASU) model was used to generate simulated operating data 
for initial modeling efforts, which enabled the later use of industrial data for data-driven 
modeling. 

b. We utilized Hammerstein-Wiener (HW) and Finite Step Response (FSR) models to represent 
nonlinear plant dynamics.  

c. The HW models were linearized using exact linearization so they could potentially be 
embedded in power system models, which are formulated as mixed integer linear programs 
(MILPs) 

d. We solved DR optimization problems under uncertainty and found that even naïve 
predictions of electricity price and product demand led to significant cost savings benefits. 

2. Our DR scheduling optimization problem formulations are amenable to real-time solution.  

a. We utilized Lagrangian Relaxation (LR) to efficiently solve the optimization problem by 
decoupling subproblems linked by complicating constraints. 

b. We have achieved computation times for the 3-day DR scheduling problem of an ASU as 
low as 1.88 minutes [1]. 

3. Our representations of the DR behavior of chemical process as grid-level batteries were embedded 
in power system models. 

a.    For a small-scale grid, we found that incorporating the dynamics of the chemical plant in the 
optimal power flow calculations resulted in better resource management leading to up to 15% 
and 46% cost reduction for the grid and chemical plant operations, respectively, during 
periods of power line congestion. 

We have published several works dedicated to modeling and solving DR optimization problems from 
the user side. These were published in top peer-reviewed journals and are summarized in this report. 
The most recent work (and papers in preparation) considers DR scheduling from the grid side. Future 
efforts will consider networked plants (e.g., air separation units operating on a common pipeline) for 
DR participation, which is expected to amplify the capabilities of industrial DR participants to perform 
load-shifting. Our consideration of uncertainty in DR has inspired future directions in this area as well: 
we plan to develop multistage methods to fully account for the effects of uncertainty in DR scheduling.  
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II. Objectives 
Deregulation and the increase of renewable electricity generation from wind and solar photovoltaics 
have transformed the U.S. electricity market. Economic and environmental benefits 
notwithstanding, the presence of renewables (Figure 1) has increased variability and uncertainty on 
the supply side of the grid. Managing demand, rather than generation – a strategy referred to as DR 
(demand response) is an attractive approach for mitigating this imbalance. DR efforts aim to reduce 
electricity usage during peak demand times, lessening stress on the grid. Industrial users are 
particularly attractive for DR participation since they present large, localized loads that can provide 
significant relief on grid demand and are minimally dependent on human needs such as air 
conditioning, enabling more flexible power demand. Under DR operation, an industrial site 
increases production during off-peak hours, storing product in excess of demand and later using this 
product to meet demand during peak grid power demand times, when production level at the 
industrial site is lowered. Such a scheme effectively amounts to storing energy in the form of a 
physical product. Thus, in order to participate in DR, an industrial site must not be able to store 
product safely and efficiently, as well as being able to modulate production rate on the same 
timescale as electricity price changes. 

 

  
Figure 1: 3-day electricity price and renewables availability for July 3-5, 2017 provided by CAISO [3], 
[4]. 
 
The production modulation strategy outlined above can be imposed via judicious production 
scheduling. Changes in electricity prices can occur at different frequencies, ranging from every 
several hours (Figure 1) to, in some cases, every 5 minutes [5]. These changes are on the same 
timescale as the dynamics of typical key variables in an industrial plant of the kind considered in 
this project (i.e., electricity-intensive chemical plants), and therefore, it becomes necessary to embed 
dynamic process models into DR production scheduling calculations to ensure that scheduling 
moves account for the relevant dynamic behavior. Embedding information on process dynamics 
and control in scheduling calculations is challenging: for industrial processes, dynamic models are 
typically large-scale, nonlinear, and stiff, making the resulting optimization problems difficult to 
solve.  
 
Motivated by the above, in this project, we aim to accomplish the following objectives: 

 
1. Develop data-driven low-order, DR scheduling-relevant dynamic models of chemical processes: 
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Utilize historical operating data (augmented by a limited number of experimental tests) to 
derive low-order models of the nonlinear dynamics of chemical plants that are relevant to 
scheduling their operation for participating in DR programs. Concurrently, the formulation 
and solution of the associated optimal DR production scheduling problems was studied. 

2. Develop DR scheduling optimization problem formulations that are amenable to real-time 
solution. 

Develop a novel, feedback-based DR scheduling paradigm, and consider optimizing process 
operations from a grid-centric or process-centric perspective, allowing for DDR (dispatchable 
DR) for grid stability and improving process economics via NDDR (non-dispatchable DR). 

3. Create representations of the DR behavior of chemical process that can be embedded in power 
system models.  

Devise new pricing and bilateral coordination mechanisms to encourage NDDR behaviors 
that are optimal from a grid perspective. 

 
The proposed research has led to generic tools and methodologies that are applicable to all 
manufacturing facilities in the chemical and petrochemical sector and can be extended to other 
industries. We applied and validated our findings by collaborating with an industrial partner from 
the energy-intensive air separation sector. In addition to the benefits provided to the grid, our 
preliminary results suggest that engaging in DR programs can save up to 3% of operating cost in this 
sector, compared to operating at a constant production rate with fixed energy prices. Significant 
additional income can be generated from providing ancillary services, such as responsive reserve. In 
discussing our approach to completing the project tasks, we will refer to two air separation case 
studies (industrial plant and a model of a prototype air separation plant) to illustrate the concepts that 
we developed. 
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III. Technical Approach 
Task 1.0 Update Project Management Plan (PMP) 
The Recipient updated the PMP to reflect how the project was managed. The PMP followed 
the template provided by DOE in the Funding Opportunity Announcement (FOA). 
 
Task 2.0 Data Collection 
 Task 2.1 Simulation data collection 
 
We considered an air separation unit (ASU) as a prototype electricity-intensive chemical plant. 
A simulation model of an ASU previously developed in our group [6] was used to generate a 
preliminary data set covering the transition of the chemical plant between different production 
rates. The data set contains information relating power demand to the production rate of 
nitrogen, as well as information concerning relevant plant variables (e.g., product purity, 
temperatures and pressures in different locations in the plant where sensors are available in 
practice, etc.). A process flow diagram of the ASU is in Figure 2.  
 

Column
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Condenser
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Figure 2: Process flow diagram for the industrial ASU used to generate preliminary operating data, 
based on Johannsson [6]. 

 
The cryogenic column produces high-purity nitrogen gas, which is delivered via pipeline to 
industrial users. The inlet feed air stream is compressed from ambient pressure to 6.8 bar; the 
compressor is the main electricity consumer in the process. This consumption is partially offset 
by the power supplied by the two turbines, which are assumed to be connected to generators. 
Following the compressor, the air enters the primary multi-stream heat exchanger (PHX), where 
it condenses and is fed to the bottom of the cryogenic distillation column. A near-pure (with 
parts-per-million (ppm) levels of oxygen impurity) nitrogen gas stream is obtained at the top of 
the distillation column. The nitrogen stream passes through the PHX, where it partially provides 
refrigeration for the feed stream, before it is directed either to the users or to the storage system 
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where it is liquefied. The storage tank after the liquefier is modeled as a simple integrator. We 
refer the reader to our work [7] for a complete description of the plant and associated model 
equations.  
  
Task 2.2 Industrial data collection 
Industrial data (Figure 3) were collected from a facility producing nitrogen, oxygen, and argon, 
whose operation was subject to fluctuations in production due to, e.g. demand or changes in 
local electricity prices. These fluctuations were likely imposed by operators based on heuristic 
arguments. The data were recorded at one-minute intervals in the model predictive control 
system and process historian database, during periods of regular, unforced operation. Periods 
of start-up, shut-down, and process or measurement faults were excluded. These periods were 
identified easily in the historical data, as the sensors are either off or produce readings that are, 
e.g., outside the physical bounds for the respective variables. Although shut-downs of the entire 
ASU could potentially be scheduled to avoid consuming electricity during price peaks, they 
were not considered here. However, the shutdown of the liquefier unit was considered. 

 
Figure 3: Historical data from industrial process and preliminary data-driven model predictions from [8]. 

 
 Task 2.3 Model variable selection. 

Physical arguments (e.g., proximity to operating constraints) as well as data-driven 
selection techniques (e.g., variable importance in projection) were considered in building 
a selection algorithm for the variables used in constructing a DR scheduling-relevant 
dynamic model. Scheduling-relevant variables were defined as variables that were at or 
near their operating constraints during normal operation or were directly used to calculate 
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the operating cost of the ASU. In our work [7], we defined 8 scheduling-relevant variables 
for the model single-product ASU, presented in Table 1.  

Table 1: Summary of scheduling-relevant variables and their rationale, from [7]. 

Variable Rationale 

Production rate, F
P
 Objective function; 16 ≤ F

P
 ≤ 24 (mol/s) 

Feed flowrate, F
f
 Objective function 

Impurity level, I
P
 I

p

 
≤ 2000 ppm (1800 ppm backoff) 

Temperature difference, ∆T T
condenser

- T
reboiler

 
≥ 1.8

o
C (2

o
C backoff) 

Zone 1 pressure ratio, P
d
 P

d
 ≤0.96 (0.95 backoff) 

Max flooding fraction, δ
f
 δ

f 
≤ 0.97 (0.96 backoff) 

Reboiler holdup, M
R
 0 ≤ M

R 
≤ 150 kmol; M

R
(0) ≤ M

R
(N

I
T

I
) 

Storage holdup, s 0 ≤ s ≤ 200 kmol ; s(0) ≤ s(N
I
T

I
) 

Production rate, F
P
 Objective function; 16 ≤ F

P
 ≤ 24 (mol/s) 

 
Task 3.0 Low-order Dynamic Model Identification. 
 
The purpose of production scheduling for DR operation is to maximize profit (derived from 
operating under time-sensitive electricity prices), while, (i) meeting product demand, (ii) 
abiding by all process constraints, related to e.g., product quality and safety and (iii) accounting 
for the process dynamics. In the context of chemical process operations, DR scheduling is part 
of a hierarchical decision-making structure that also includes process control, as illustrated in 
Figure 2. As mentioned in the introduction, one of the challenges of obtaining a 
computationally-efficient DR scheduling calculation, amenable to real-time solution, is the 
complexity of the process model, which is manifest in its nonlinearity and high dimensionality. 
This issue is exacerbated by the disparity between time horizons of DR scheduling, process 
control and the dynamics of the process itself, meaning that the time horizon of DR scheduling 
typically spans multiple days (as explained later), and the process dynamics must be considered 
explicitly over this entire time interval. 
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Figure 4: Hierarchy of decisions for chemical process operation, where u are the production set-
points/targets and w are the values of the process variables. 

  
A potential approach to deal with these computational challenges lies in representing the plant 
dynamics using a low-order model. This is not necessarily a new approach conceptually 
speaking; the novelty of our work consists in identifying which variables are relevant for DR 
scheduling (and whose dynamics should therefore be modeled), and on introducing the concept 
of Scale-Bridging Models (SBMs), as a representation of the closed-loop dynamics of these 
variables – that is, SBMs capture the dynamic of the process and its control system (Figure 2), 
as they respond to target signals generated at the scheduling level. We note that  “scale bridging” 
thus refers to the fact that these models bridge the (fast) time scale of the process with the 
(longer) time scale of scheduling calculations. We elaborate below.   
 
Task 3.1 Nonlinear model identification. 
 
We considered two classes of low-order models as candidate structures for deriving SBMs: 
finite step response (FSR) and Hammerstein Wiener (HW), and compare the ability of such 
models to reproduce (and predict) the behavior of chemical processes. For the simulated 
problem (Task 2.1), FSR models were fitted for two scheduling-relevant variables: the 
production rate, and the feed flowrate (Table 3). HW models were fit to the remainder of the 
scheduling-relevant variables listed in Table 1. The form of the HW model is given below in 
Figure 3, where a linear state-space model is surrounded at the input/output by static nonlinear 
functions (e.g. polynomials or piecewise linear functions), the fit of the HW models is given in 
Table 2.  
 

H(ui) State-Space W(yij)
ui wij

 
Figure 5: HW model form, from [7]. 

 
For a full discussion of HW and FSR models, we refer the reader to our published works [7], 
[9].  
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Table 2: Summary of model fits for the HW models from [7]. 

Input Output 
Input 

Nonlinearity 
Linear 

Dynamics Output Nonlinearity NMSE 

u w H(u) 
Breakpoints 

State-space 
Order 

W(y) 
Type 

W(y) 
Breakpoints 

Training Validation 

F
p
 I

P
 4 4 PWL 6 0.82 0.52 

F
p
 M

R
 3 4 linear -- 0.78 0.75 

F
p
 δ

f
 5 5 quadratic -- 0.91 0.92 

F
p
 P

d
 2 8 quadratic -- 0.83 0.97 

F
p
 ∆T 9 4 PWL 6 0.69 0.84 

 
  

Table 3: Summary of model fits for the FSR models from [7]. 

Input 
u Variable Sample Time 

(mins) 
NMSE 

Training Validation 

F
p
 F

P
 1 5.1E-08 6.4E-08 

F
p
 F

f
 1 3.9E-08 4.3E-08 

 
 
Task 3.2 Model linearization. 
We note that the HW models are nonlinear; embedding them in a schedule optimization 
calculation results in a nonlinear optimization problem, which poses specific solution 
challenges in terms of, among others, solution time and global optimality guarantees. It is 
advantageous to formulate scheduling problems as (mixed integer) linear programs. To this 
end, the nonlinear input and output functions in the HW models can be linearized. For the cases 
that we considered in our work, we utilized piecewise linear functions for the Hammerstein and 
Wiener blocks, and demonstrated that these functions can be linearized exactly as a set of lnear 
expressions comprising a integer and continuous variables. For a comparison of linearization 
methods, please see our work [9]. Table 4 shows the percent fit between the linearized HW 
models and the nonlinear continuous HW models. Since the SOS2 linearization is exact, the 
slight errors in fit are a result of the discretization of the continuous HW models. 
 

Table 4: Model statistics for linearized HW models. 

Variable Sample Time (mins) %Fit 
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I
P
 6 99.85 

M
R
 0.5 99.93 

dT 6 99.80 

δ
f
 10 99.63 

P
d
 10 99.97 

 
 

Task 4.0 DR Scheduling Problem Formulation and Solution 
 

The above (full order and reduced-order) representations of the ASU were used to formulate 
and solve multiple scheduling problems. We discuss these problems below based on the 
objective function and type of knowledge assumed (certain/uncertain).  
 
1. DR scheduling assuming perfect price and demand knowledge.  

The problems are compared in terms of model type and solution time. In all cases, the 
decision variable is the hourly setpoint for production rate, 𝐹𝐹𝑝𝑝����. 
 

a. Optimization problem formulated using the full-order first principles model (DR1). 
This problem is a nonlinear dynamic optimization problem.  

min
𝐹𝐹𝑝𝑝����(𝑡𝑡)

𝐽𝐽 = � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑇𝑇𝑚𝑚

0
 

s.t. Timing constraints 
Process model (Full-order) 
Inventory model 
Initial Conditions 
Process and Quality Constraints 
 

b. Optimization problem formulated nonlinear continuous HW models (DR2). This 
problem is a nonlinear dynamic optimization problem. 

min
𝐹𝐹𝑝𝑝����(𝑡𝑡)

𝜙𝜙 = � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑇𝑇𝑚𝑚

0
 

s.t. Timing constraints 
Process model (HW) 
Inventory model 
Initial Conditions 
Process and Quality Constraints 
 

c. Linearized and discretized HW/FSR models (DR3). This problem is a mixed-
integer linear program.  
min
𝐹𝐹𝑝𝑝����

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖     
s.t. Timing constraints 
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Process model (HW/FSR) 
Inventory model 
Initial Conditions 
Process and Quality Constraints 
Continuity Constraints 

 
d. Linearized and discretized HW/FSR models with Lagrangian Relaxation (LR) 

(DR4). This problem is a mixed-integer linear program.  

min
𝐹𝐹𝑝𝑝����

𝐽𝐽 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝑖𝑖𝑖𝑖 −��𝜆𝜆𝑖𝑖𝑘𝑘|𝑥𝑥𝑖𝑖−1,𝑁𝑁𝑗𝑗
𝑘𝑘 − 𝑥𝑥𝑖𝑖,𝑗𝑗=1𝑘𝑘 |

𝑛𝑛

𝑘𝑘=1

𝑁𝑁𝑖𝑖

𝑖𝑖=2𝑗𝑗𝑖𝑖

 

s.t. Timing constraints 
Process model (HW/FSR) 
Inventory model 
Initial Conditions 
Process and Quality Constraints 
𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ 𝒟𝒟𝑥𝑥 ⊂ ℝ𝑛𝑛 ∀𝑖𝑖∀𝑗𝑗 
 

e. Rate of change (ROC) representation of ASU (DR5). This problem is meant to 
reflect the current practice for DR scheduling, where the process dynamics are not 
represented explicitly but rather in the form of rate of change/ramp rate 
limits/constraints.  
min
𝐹𝐹𝑝𝑝���� 

𝐽𝐽 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖𝒫𝒫𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

 

s.t. Steady-state gain model 
Inventory model 
Initial Conditions 
Process and Quality Constraints 
Rate of change constraints 

 
DR1-DR5 all seek to minimize the operating cost of the ASU, which is a function of the time-
varying power consumption and hourly electricity prices. DR1 utilizes the full-order first-
principles model derived in [6] to represent the ASU. DR2 uses HW models to represent all 
scheduling-relevant variables (Table 1), and a continuous time-vector. DR3 utilizes HW models 
for all but two scheduling-relevant variables, which are modeled using FSR models. The HW 
models in DR3 were linearized with SOS2 and all FSR/HW models were discretized. The 
problem structure of DR3 is given in Figure 4, where discrete subproblems representing each 
hour in the time horizon are spanned by an overarching common problem, summing over all 
subproblems. Each subproblem is linked by a continuity constraint, where states at the end of 
the previous hour must be equal to the states at the start of the current hour. The subscript i 
represents each hourly time slot considered in the scheduling calculation, while subscript j 
corresponds to the discretization time step of the dynamics of the process (typically one 
minute). 
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Figure 6: Problem structure for DR3.  

For DR4, we produced a new Lagrangian Relaxation strategy (LR), which “unlinks” the 
subproblems identified based on analyzing the structure of DR3, and enables parallel solution 
of the scheduling problem. In LR, the complicating (equality) constraints are dualized and 
penalized in the objective function, leading to the objective seen in DR4. The DR4 objective is 
the operating cost plus the constraint violations, which in effect, minimizes the operating cost 
and the continuity violations. Specifically, the difference between states at the end of a 
scheduling slot and the states at the start of the subsequent slot (|𝑥𝑥𝑖𝑖−1,𝑁𝑁𝑗𝑗

𝑘𝑘 − 𝑥𝑥𝑖𝑖,𝑗𝑗=1𝑘𝑘 |) is multiplied 
by a penalty multiplier (𝜆𝜆𝑖𝑖𝑘𝑘), for which there are many selection metrics, covered in detail in 
[7], [9]. For linear or convex problems, global optimality of the solution to the LR problem can 
be proved, wherein the constraint violations go to zero and the objectives of DR3 and DR4 are 
equivalent [7], [9].  
 
Lastly, the ROC problem in DR5 was used as a comparison to more naïve scheduling methods, 
where a steady-state gain model represents the relationship between production rate setpoint, 
𝐹𝐹𝑝𝑝����, and plant production rate, with the ROC of setpoints between hours limited to be less than 
0.5mol/s [7].  
 
Table 5: Summary of results for the 3-day DR scheduling problem of an ASU when optimal schedules 
for DR2-DR5 were simulated on the full-order model of the ASU. *ROC solution had several constraint 
violations [7]. The constant production rate represents the base case where DR scheduling is not 
performed. Savings are calculated relative to the operating cost of this case.  

Problem Model Cost ($) Savings (%) CPU (h) Type 

DR1 Full-Order 1012.56 1.22 >100 NLP 

DR2 Nonlinear HW 1014.68 1.01 5.10 MINLP 

DR3 Discrete HW/FSR 1013.64 1.12 0.119 MILP 

DR4 Discrete HW/FSR+LR 1013.64 1.12 0.195 MILP 

DR5* ROC 1021.49* 0.35 1.25E-4 LP 
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Constant Prod. Rate -- 1025.09 -- -- -- 

 
The numerical results for the 3-day scheduling problem in [7] are shown in Table 5, where the 
full-order model had the lowest objective function but a solution time far too large to be 
valuable (i.e., the result for three days – 72 hours) – of operation were obtained in more than 
100 hours). The linearization and discretization of the HW models and the introduction of FSR 
models significantly reduced the computation time and achieved a comparable objective 
function value.   
 
A second set of scheduling problems followed an environmental objective, that is, we 
investigated the effect of grid-side emissions (due to time-varying contribution of renewables 
to generation mix) on DR scheduling. Emissions related to power generation do follow a similar 
profile to electricity prices, in the sense the relative contribution of renewables increases at 
night (wind) and during mid-day (solar), while fossil-based power generation is used to satisfy 
power demand during the late afternoon peaks. We define an aggregate emissions metric (CO2 
equivalent emitted / kWh generate) which we use in the objective function to minimize 
emissions related to plant operations. The relevant scheduling problems are described below.  
2. Scheduling assuming perfect price, grid-side emissions, and demand knowledge [10]. The 

decision variable is the hourly setpoint for production rate, 𝐹𝐹𝑝𝑝����. 
a. Emissions-minimizing production (EMP)  

min
𝐹𝐹𝚤𝚤
𝑝𝑝����
𝐺𝐺 = ��𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝑖𝑖𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗𝑖𝑖

 

s.t. Timing constraints 
Process model (HW/FSR) 
Inventory model 
Initial Conditions 
Process and Quality Constraints 
Continuity Constraints 

b. DR (equivalent to DR3 above) 
min
𝑢𝑢�𝑖𝑖

𝐽𝐽 = ��𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑗𝑗𝑖𝑖

 

s.t. Timing constraints 
Process model (HW/FSR) 
Inventory model 
Initial Conditions 
Process and Quality Constraints 
Continuity Constraints 

The EMP and DR problems were solved for three or four 3-day periods within each month of 2017 
and compared to a reference problem, where the production rate was kept constant. Data for 
emissions and prices were collected for a CAISO node in Fresno, CA. Figure 5 shows the mean 
emissions and operating cost across the 3-day periods examined for each month of 2017. It was 
found that DR, which minimizes operating cost, consistently reduces emissions when compared 
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to the reference problem (up to 3.36%) and that EMP, which minimizes emissions, has the potential 
to increase operating cost compared to the reference problem (by up to 7.88%).  

 
Figure 7: 3-day emissions and operating cost for EMP, DR, and the reference problem (without DR) 
from [10]. 

Subsequently, we addressed the (realistic) question of dealing with uncertainty in forecasts of 
electricity prices (beyond the 24h period for which day-ahead prices can be safely assumed to 
be known) in the DR scheduling problems. This third set of results is described below. 
3. The third set of scheduling problems utilizes chance constraints to represent electricity price 

and product demand uncertainty. We solve four scheduling problems and compare them in 
terms of objective function value at the optimum and robustness benefit, for the full results 
please see [1].  

a. Deterministic scheduling problem (equivalent to DR3) (CC1) 
min𝐶𝐶 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖,𝑗𝑗

𝑗𝑗𝑖𝑖

 

s.t.  Process model (HW/FSR) 
Process constraints 
Quality constraints 
Initial conditions 
Continuity conditions 
Demand constraints (𝐷𝐷 = 20 𝑚𝑚𝑚𝑚𝑚𝑚/𝑠𝑠 ) 

b. Price uncertainty (CC2) 
min𝐶𝐶 
s.t. 𝐶𝐶 + (1 − 𝑧𝑧𝑟𝑟𝑃𝑃)𝑀𝑀 ≥ ∑ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖,𝑗𝑗𝑗𝑗𝑖𝑖  

�𝑧𝑧𝑟𝑟𝑃𝑃𝜋𝜋𝑟𝑟 ≥ 𝛼𝛼
𝑟𝑟

 

𝜋𝜋𝑟𝑟 = Pr�𝑃𝑃𝑖𝑖,𝑟𝑟� 
0 < 𝛼𝛼 ≤ 1  
𝑃𝑃𝑖𝑖 ∼ 𝒩𝒩𝑚𝑚𝑚𝑚𝑚𝑚(𝜇𝜇𝑖𝑖, Σi) 
Process model (HW/FSR) 
Process constraints 
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Quality constraints 
Initial conditions 
Continuity conditions 
Demand constraints (D

i
=20 mol/s) 

c. Demand uncertainty (CC3) 
min𝐶𝐶 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖,𝑗𝑗

𝑗𝑗𝑖𝑖

 

s.t. 𝐹𝐹𝑖𝑖,𝑗𝑗
𝑝𝑝 − 𝐷𝐷𝑖𝑖,𝑟𝑟 ≥ 𝑓𝑓𝑠𝑠𝑖𝑖,𝑗𝑗

𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑠𝑠𝑖𝑖,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑀𝑀(1 − 𝑧𝑧𝑟𝑟𝐷𝐷) 

�𝑧𝑧𝑟𝑟𝐷𝐷 ≥ 𝛼𝛼𝑁𝑁𝑅𝑅𝐷𝐷
𝑟𝑟

 

0 ≤ 𝛼𝛼 ≤ 1 
𝐷𝐷𝑖𝑖 ∼ 𝒰𝒰[16,23] 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~𝒰𝒰[0,72]  
Process model (HW/FSR) 
Process constraints 
Quality constraints 
Initial conditions 
Continuity conditions 

 
d. Price and demand uncertainty (CC4) 

min𝐶𝐶 

s.t. 𝐶𝐶 + (1 − 𝑧𝑧𝑟𝑟𝑃𝑃)𝑀𝑀 ≥ ∑ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑖𝑖,𝑗𝑗𝑗𝑗𝑖𝑖  

�𝑧𝑧𝑟𝑟𝑃𝑃𝜋𝜋𝑟𝑟 ≥ 𝛼𝛼
𝑟𝑟

 

𝜋𝜋𝑟𝑟 = Pr�𝑃𝑃𝑖𝑖,𝑟𝑟� 

𝐹𝐹𝑖𝑖,𝑗𝑗
𝑝𝑝 − 𝐷𝐷𝑖𝑖,𝑟𝑟 ≥ 𝑓𝑓𝑠𝑠𝑖𝑖,𝑗𝑗

𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑠𝑠𝑖𝑖,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑀𝑀(1 − 𝑧𝑧𝑟𝑟𝐷𝐷) 

�𝑧𝑧𝑟𝑟𝐷𝐷 ≥ 𝛼𝛼𝑁𝑁𝑅𝑅𝐷𝐷
𝑟𝑟

 

0 ≤ 𝛼𝛼 ≤ 1 

𝐷𝐷𝑖𝑖 ∼ 𝒰𝒰[16,23]  

𝑃𝑃𝑖𝑖 ∼ 𝒩𝒩𝑚𝑚𝑚𝑚𝑚𝑚(𝜇𝜇𝑖𝑖, Σi) 
Process model (HW/FSR) 
Process and quality constraints 
Initial conditions 
Continuity conditions 
 

For CC2-CC4, chance constraints were used to represent the uncertainty. Chance constraints 
ensure that the probability of meeting the constraint containing the uncertain parameter is above 
some specified tolerance, α. We utilized binary variable, z, to denote whether the uncertain 
constraint was met, for demand (𝑧𝑧𝑟𝑟𝐷𝐷 ∀ 𝑟𝑟 = 1 …𝑁𝑁𝐷𝐷) and for price (𝑧𝑧𝑟𝑟𝑃𝑃 ∀ 𝑟𝑟 = 1 …𝑁𝑁𝑃𝑃) uncertainty. 
If a constraint r was met, zr=1, otherwise, zr=0. For price uncertainty, the number of pricing 
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scenarios considered was 𝑁𝑁𝑃𝑃 = 200. For demand uncertainty, 𝑁𝑁𝐷𝐷 = 20 samples were considered. 
The probability of each price scenario, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖,𝑟𝑟∀𝑖𝑖 = 1 … 72 , occurring is πr, where ∑ 𝜋𝜋𝑟𝑟𝑟𝑟 = 1. 
Since demand was drawn from a uniform distribution (each scenario has equal probability of 
occurring), the probability of each scenario is 1

𝑁𝑁𝐷𝐷
. For a full discussion of the formulations of CC2-

CC4, please refer to our work, [1].  
 
Figure 9 shows that the chance-constrained problem, CC2, has the lowest mean operating cost 
compared to the two methods which don’t consider electricity price uncertainty. 
 

 
Figure 8: Histogram of the simulated operating cost across all scenarios for CC1-CC2 and the 
reference problem (no DR), with labeled vertical lines representing the mean values from [1]. 

In the interest of ensuring feasibility when considering scheduling under demand uncertainty, 
we assumed that product can be purchased from a competitor at a high premium, when it is not 
available locally (either from current production or from the storage tank). This penalty is 
reflected in the operating cost in scenarios where the simulated optimal schedule of CC1 and 
the reference schedule led to storage depletion and an inability to meet demand, and can be seen 
in Figure 10 in the bi-modal distributions for the reference and CC1 operating costs (9). While 
the mean operating cost of the deterministic problem, CC1, is the lowes, the potential for a 
significantly greater cost is evident, therefore, the risk of not considering uncertainty is high. 
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Figure 9: Histogram of the simulated operating cost across all scenarios for CC1, CC4, and the 
reference problem (no DR), with labeled vertical lines representing the mean values from [1]. 

The final metric we use to compare scheduling methods is the energy benefit for the subsequent 
scheduling time horizon (meaning, if the scheduling process were to be continued for 
subsequent times in the future), which arises from any material available in storage at the end 
of the time horizon in excess of the initial storage level. This energy benefit translates to an 
increased potential for flexible operation in the next time horizon. As shown (Figure11), the 
reference case and CC1 both have potential for storage depletion (as evident in the negative 
energy benefit), compared to the consistently high energy benefit of CC3.  

 
Figure 10: Energy benefit for the next time horizon, where a negative benefit signifies depleted 

storage, from [1]. 
 

4. Another means for dealing with uncertainty in e.g., electricity price and product demand, is 
rescheduling. We refer to the new method that we proposed as “moving-horizon (MH) 
scheduling” (in reference to moving horizon optimal control, an advanced control 
technique). In MH scheduling, deterministic scheduling problems are solved periodically 
and the solutions are updated once new information becomes available. The problems are 
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solved on a fixed time horizon, that “shifts” in time (the shift occurs when new information 
is received). Information updates could include new values for the uncertain variables 
and/or measurements form the process. Within the MH framework, several different 
scheduling problems were considered. The examples below use a six-day horizon but the 
concepts we developed are generic and can be adapted to any time horizon. We refer the 
reader to our work [11] for more detail. Below we describe the concept behind these MH 
formulations graphically, rather than relying on mathematical descriptions figures 
describing the scheduling methods, rather than the scheduling formulations shown in 
previous sections. 

a. Periodic pricing updates 
For the case of periodic pricing updates (Figure 10), we consider a scenario where 
electricity prices are known with certainty for all six days of the time horizon (PP1), 
a scenario where we only know prices for day one, and use these to estimate the 
prices on days two and three of the scheduling window (PP2), and a scenario where 
we assume we have three days of price knowledge at a time. In PP1, we solve the 
scheduling problem once. In PP2-PP3, we re-solve the problem each day as more 
prices become available, for a total of four solution cycles (note that this process 
would continue infinitely as new information arrives). Scenarios PP1-PP3 are a 
reflection of our ability to forecast electricity prices, and reflect some limit cases: 
PP2 assumes no forecasting (i.e., reusing prices from one day to forecast prices for 
all days in the horizon), while PP1 is the opposite case of a fully prescient and 
accurate price prediction algorithm. We chose to use these limit cases rather than 
incorporate a price forecasting algorithm in order to fully elucidate the impact of 
production scheduling on demand response. One can anticipate that the results with 
a “true” forecasting algorithm would lie between these two limits.  

 
Figure 11: Scheduling schemes for periodic (daily) pricing updates, where three scheduling methods 

are considered, from [11]. 

b. Periodic temperature updates 
For the case of periodic temperature updates (Figure 11), we assume temperature 
predictions become available every 6 hours and consider three scenarios. PT2 
considers a scenario where prices and temperatures are known for the entire time 
horizon, PT3 considers temperature updates every 6 hours on a shrinking horizon 
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up until the next day begins, where another full day is added to account for new 
electricity prices, and PT4 maintains a 3-day scheduling window which is shifted 
forward in time every 6 hours when new temperatures and prices become available.  

 
Figure 12: Scheduling schemes for periodic (every 6 hours) temperature updates, where three 
scheduling methods are considered, from [11]. 

c. Event-driven rescheduling: product demand (Figure 12) 

Lastly, we consider event-driven rescheduling, in the form of demand disturbances. 
We consider four possible scenarios. PD2 considers planned maintenance, wherein 
the length and time of the demand disturbance are known, the schedule for PD2 is 
generated just once. PD3 considers unplanned maintenance, where the start time of 
the disturbance is unknown but the length is known once it starts, triggering a 
rescheduling point at the start of the disturbance. PD4 considers a random failure, 
where neither the start time of the disturbance or the length of the disturbance are 
known, triggering a rescheduling point at the beginning of the disturbance (where it 
is assumed the disturbance will carry on throughout the time horizon) and the end 
of the disturbance. Lastly, PD5 considers the case of random failure, but uses chance 
constraints to anticipate when the disturbance may end.  
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Figure 13: Scheduling schemes for event-driven rescheduling. 

For the different scenarios considered, the economics of using a moving horizon rescheduling 
strategy did not differ significantly from the best case of a scheduling calculation based on 
perfect knowledge of all disturbances and considering the entire time horizon. This observation 
is true in the case where moving horizon scheduling itself possesses perfect knowledge of the 
disturbances for the scheduling window considered. However, even simplistic forecasting 
strategies for periodic disturbances (e.g., using information from the preceding day) led to 
economic gains. In terms of event-driven rescheduling, we found that PD4 led to the possibility 
of depleted storage, but that this shortcoming was remedied by the addition of chance-
constraints in PD5. The results from this work are extensive given the number of scheduling 
schemes provided, so we refer to reader to our published work for a detailed description of the 
results [11]. 
 
 
 

Task 5.0 Representation of DR Dynamics of Chemical Processes in Power Systems Models. 
 
 Task 5.1 Mathematical modeling 
 
We used a DC approximation of the power grid and aimed to incorporate the chemical process 
into the grid model for power flow optimization [2]. From the grid perspective, an electricity-
intensive chemical process is regarded as a large scale battery and modeled accordingly; we used 
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a linear model that indicates power consumption limits and storage capacity of chemical products. 
The transient properties of the grid-connected load (we used a chlor-alkali electrolysis plant as an 
example) were explicitly represented in the low-order models. Thus, while this modified process 
model was amenable for use in grid-relevant computations, it also guarantees safe and feasible 
manipulation of the chemical plant load during DR activities.  
 
We refer to the integrated problem as “cooperative demand response.” For a small-scale grid, 
incorporating the dynamics of the chemical plant in the optimal power flow calculations results in 
better resource management leading to up to 15% and 46% cost reduction for the grid and chemical 
plant operations, respectively, during periods of power line congestion [2]. For the chemical plant, 
the savings were twice as high as the amount achieved when the chemical plant scheduling is 
carried out with the chemical plant as a pure “price taker”. Additionally, our simulations reveal 
that industrial loads can be deployed to achieve smoother DR and correspondingly peak shaving 
and valley filling at the level of the entire grid.  
 
 Task 5.2 Electricity pricing algorithms. 
 
We have developed stochastic programming problems that consider strategies for optimal 
splitting of electricity purchases in the day-ahead and short term markets [12]. 
 
We are currently working on an iterative scheme where the optimal power flow problem is 
solved at the grid level and the local scheduling problems at the plant level provide additional 
constraints/feasibility cuts. We expect that this will eventually lead to new pricing/bidding 
strategies. 
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IV. Accomplishments and Conclusions 
The key objectives stated at the start of this project were: 

1. Develop data-driven low-order, DR scheduling-relevant dynamic models of chemical 
processes: 

To this effect, we utilized historical and simulated operating data to derive low-order models of 
the nonlinear dynamics of chemical plants that are relevant to scheduling their operation for 
participating in DR programs. We identified SBMs in the form of HW and FSR models for 
simulated plant data [7] and historical operating data [8]. Concurrently, the formulation and 
solution of the associated optimal DR production scheduling problems was studied. 

2.  Develop models and DR scheduling optimization problem formulations that are 
amenable to real-time solution. 

To this effect, we developed a scheduling framework utilizing discretization, linearization, and 
low-order modeling to represent complex chemical processes. We applied LR to the optimization 
problem to enable the parallel solution of decoupled subproblems. At the time of publication, we 
reported a solution time for the 3-day DR scheduling problem of 7.12 minutes [7]. Since then, the 
solution time for the same problem has reduced to a minute and a half (due to upgrades in 
optimization solvers and hardware). This fast solution time demonstrates that we have a problem 
formulation amenable to real-time solution. With this computationally efficient model, we have 
solved the DR scheduling problem for instances of electricity price uncertainty, product demand 
uncertainty, and changes in ambient conditions such as temperature [1], [11]. We have also used 
the scheduling framework to determine the impact of DR on grid-side power generation emissions 
[10].  

3.  Create representations of the DR behavior of chemical process that can be embedded in 
power system models.  

Low-order dynamic models for a chlor-alkali process were developed and incorporated into the 
grid model for power flow optimization [2]. Implementation of this chemical plant model in the 
optimal power flow calculations resulted in better resource management leading to up to 15% and 
46% cost reduction for the grid and chemical plant operations respectively during periods of power 
line congestion. 
 
We believe we have accomplished the objectives of this project. In order to build a strong 
foundation for the project, we have several works dedicated to modeling and solving DR 
optimization problems from the user-side. Our work in preparation begins to look at the problem 
from the grid-side. We also want to look at networked plants (e.g., air separation units operating 
on a common pipeline) for DR participation to try and increase the capabilities of industrial DR 
participants to perform load-shifting. Our considerations of uncertainty in DR have inspired future 
directions in this area as well: we plan to try multistage methods of optimization under uncertainty 
to fully investigate the effects of uncertainty (and mitigating this uncertainty) in DR scheduling. 
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Kelley, M. T., Baldick, R., & Baldea, M. (2019). Demand Response Operation of Electricity-
Intensive Chemical Processes for Reduced Greenhouse Gas Emissions: Application to an Air 
Separation Unit. ACS Sustainable Chemistry & Engineering, 7(2), 1909–1922. Retrieved 
from http://pubs.acs.org/doi/10.1021/acssuschemeng.8b03927 OSTI ID: 1615231 
 
Tsay, C., Kumar, A., Flores-Cerrillo, J., & Baldea, M. (2019). Optimal demand response 
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