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Executive Summary

Constitutive model parameterizations for the General Plastics [5] EF4003 low density 3
pound per cubic foot are needed for design and qualification purposes in normal and ab-
normal mechanical simulations. The material is expected to be deformed in two ways: first
during preloading, and second under impact conditions of the system (transient dynamic).
All analyses are to be performed at room temperature. The goal is to provide the analysis
community a robust constitutive model parameterization to represent the compression be-
havior of the EF4003 foam from small deformations up to massive compressive deformations
when the foam is densifying. It is worth noting the EF4003 exhibits anisotropy in its stress-
strain behavior between the rise and transverse directions (See figure 2.8c-d in [7]) as well
as plateau behavior that is very likely to cause material stability issues, due to the buck-
ling transition, (and has historically done so) when using Sandia’s current workhorse models
for flexible foams, Hyperfoam and Flex Foam [11][13]. A Stability-informed Hyperfoam pa-
rameterization procedure is developed and executed to calibrate a hyperfoam model for the
EF4003 room temperature, transversely loaded data. A rise orientation parameterization
was not attempted due to localization in the experiments.

In addition to models for the full compression behavior, parameterizations are also desired
that partially account for the foam preload such that analysts can approximate the response
about a preloaded state without actually running the preload step. For example, if a pre-load
of 35% compression is desired, we furnish constitutive model parameterizations that have the
same stiffness in compression when loaded from that point, but the actual pre-loading stress
is not considered. The memo lays out out what we know historically about the EF4003 foam,
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1. EF4003 DATA

the data used in this work, the hyperfoam fitting procedure employed in which model fitting
is penalized to be stable (not lose ellipticity), and fitting results for both full compression
curves as well as curves about different states of preload.

1 EF4003 Data

We review the background knowledge on the EF4003 foam and the compression data available
for this memo. To date, previous efforts to characterize the EF4003 foam have found that
the material is extremely soft, highly anisotropic, exhibits hysteresis under cyclic loading,
exhibits significant damage (reduced stiffness on reloading in multiple cycles), and exhibits
localization/shear banding at the macroscale when loaded at room temperature and low
strain rates along the rise direction of the average pore [7, 13]. Interestingly, localization is
not observed when the EF4003 foam is loaded in compression transverse to its rise direction.
An example of such a deformation is reproduced from the previous references in Figure 1
for the an EF4003 specimen uniaxially loaded parallel to the bubble rise (Figure 1a) and
perpendicular to the bubble rise direction (Figure 1b) at 50% nominal compressive strain.

(a) Rise Loading (b) Transverse Loading

Figure 1: Quasi-statically compressed EF4003 foam at approximately 50% nominal compres-
sive strain [7]. (a) Loaded parallel to the bubble rise direction. (b) Loaded perpendicular to
the bubble rise direction.

From [7], typical compressive stress vs. compressive strain curves as well as lateral strain
vs. axial strain for loading in the transverse direction are reproduced here in Figure 2. Note
that the EF4003 loaded in the rise direction does not undergo a homogenized motion, and
so the nominal compressive stress vs. compressive strain curves for that direction represent
structural data (specific to the 1.75 inch by 1.75 inch cylindrical specimen geometries used).
Moreover, the lateral strains could not be extracted for the rise loading direction.

To measure the lateral strains using edge tracking, two orthogonal cameras were set up
transverse to the loading direction, which in this case was loaded in an orientation transverse
to the rise direction. Two cameras were utilized individually in a way that was identical for
the one camera cases in the other foam densities reported in [7, 13]. The camera denote by
“Camera 1” pointed in the direction of the bubble rise direction, while the camera denoted
by “Camera 2” pointed orthogonal to the loading and the rise direction. Note that the
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2. HYPERFOAM MODELING

(a) Rise Loading (b) Transverse Loading

Figure 2: Nominal compressive stress vs. compressive strain curves and lateral strain vs.
axial strain from [7]. The axial strain rate used in testing was -0.01/s.

lateral strains are negative; the material is auxetic (has a negative Poisson Ratio). While
other flexible foams of higher density do not show this negative lateral strain, the ordering
of the rise vs. trans-trans strains are consistent with different data reduction techniques of
this foam reported here [1].

Even though room temperature is well above the glass transition temperature of the TF6070
and EF4000 series foams, they exhibit some rate dependence (see [4, 2]) and damage (change
in stiffness) on cyclic loading. Here, we report on prior unpublished data showing the rate
dependence through cyclic loading in 2 strain rates, -0.01 and -1 per second for both rise
and transverse loading in Figure 3

2 Hyperfoam Modeling

Our goal is to provide robust and accurate constitutive model parameterizations to available
data in Section 1. By “Robust”, we mean that the material remains stable across a broad
set of deformations. Material model stability is a concern here due to the severe buckling be-
havior of the stress-strain curve and the fact that these foams can have structural responses
when loaded in different directions. All modeling will consider the rate and temperature
independent hyperfoam model [12, 14], an isotropic hyperelastic constitutive model wherein
the strain energy is a function of the principal stretches of the deformation gradient. The
model cannot produce damage, hysteresis due to viscoelasticity or other dissipative mech-
anisms, rate dependent stiffness, nor temperature dependences. However, in spite of these
short falls, it is relatively easy to calibrate and check that the model parameterization re-
mains stable over a large range of deformations. Hence, we will use this model in this work.
Future work may consider the Flex Foam model, which has seen successfully used for higher
density flexible foams and does account for rate and temperature dependences [7, 13], but
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2. HYPERFOAM MODELING

(a) 0.01 per second (b) 1 per second

Figure 3: Cyclic compression behavior for loading in the rise and transverse directions at 2
strain rates. Note that the rise plateau is nearly flat, and the experiments visually localize.
Rise data sets compose the right column in each legend while transversely loaded data sets
are the left columns.

that model is harder to fully calibrate and more difficult to evaluate its stability behavior
[3].

2.1 Hyperfoam Model Review and Loss-of-Ellipticity Criteria

We will use both indicial notation and direct tensor notation (through bold letters with no
indices).

Reproduced directly from [12], we briefly summarize the Hyperfoam model. The strain en-
ergy density per undeformed volume is written in terms of the eigenvalues of the deformation
gradient,

W (λk) =
N∑
i=1

2µi
α2
i

[
λαi
1 + λαi

2 + λαi
3 − 3 +

1

βi

(
J−αiβi − 1

)]
, (1)

where µi and αi are input parameters and J is the determinant of the deformation gradient.
The value of βi is calculated from the parameters νi via

βi =
νi

1− 2νi
. (2)

The parameters νi are initial Poisson Ratio’s for the ith term, and βi are mappings from
those Poisson Ratio’s that are used in the model. As a term becomes incompressible, and
νi → 0.5, βi → ∞. The lower bound for βi is -1/3 for νi → −1. Note that, if different
terms in the model have different νi, then the transverse strain behavior in uniaxial stress
problems is a determined by the competing terms, and furthermore, even if the νi are all
the same, the Poisson ratio may not be constant at finite strains. The strain energy (1) is
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2. HYPERFOAM MODELING

a sum of N contributions. The principal Kirchoff stresses for the hyperfoam model, τk, can
be calculated as

τk = λk
∂W

∂λk
, (3)

which can be used to calculate the components of the Kirchoff stress, τij, through

τij =
3∑

k=1

τkê
k
i ê

k
j . (4)

where êki are the components of the kth eigenvector of the left stretch tensor in the global
Cartesian coordinate system. Note that there is no indicial sum on the eigen index k.

With the Kirchoff stress and the deformation gradient, this relationship can be mapped to
any other stress measures included the First Piola-Kirchoff stress, which is the measure used
to match the uniaxial compression data and used in the stability calculations discussed next.

Πij =
∂W

∂Fij
=

3∑
k=1

∂W

∂λk
ê ki ē

k
j , (5)

where ēkj are the components of the kth eigenvector of the right stretch tensor in the global
Cartesian coordinate system.

Material stability calculations will require the material tangent, which is defined as the rate
of change of the First Piola-Kirchoff stress, Π, with respect to the deformation gradient,
F . For Hyperelastic materials, such as Hyperfoam, the material tangent can be calculated
directly as the second derivative of the strain energy density with respect to the deformation
gradient. However, it should be noted that because the strain energy density is written in
terms of the principal eigenvalues of the deformation gradient, differentiation also involves
the spin (rotation) of the eigenvectors of the deformation gradient.

Π̇ = L : Ḟ =
∂Π

∂F
: Ḟ , (6)

A detailed derivation of the material tangent for the Hyperfoam model, L, is given in [10],
chapter 6.

Loss of ellipticity, or a loss of material stability, is determined when any eigenvalue of the
Acoustic Tensor becomes less than or equal to zero [9, 3]. The acoustic tensor is defined
through the contraction of the material tangent by an arbitrary unit direction vector, nj,

Aik = njLijklnl. (7)

Our condition for loss of material stability for a model calibration is when any eigenvalue of
an arbitrary acoustic tensor, which is constructed in Equation 7 from the material tangent
and an arbitrary unit vector, is less then or equal to zero for a motion of interest. In
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2. HYPERFOAM MODELING

practice, we do not know up front which motions our material models will be subjected to,
especially in abnormal mechanical environments. Devising a sufficiently complete sampling
of deformation space remains a challenge, so we pursue some simple analytic motions in the
principal frame of the material point and leave more sophisticated sampling approaches to
future work. Our sampling of deformation space is discussed in the algorithms below.

2.2 Hyperfoam Fitting Approach

With stability tools in hand, we describe our procedure for calibrating the Hyperfoam model
for the 3PCF foam compressively loaded and checking material stability during that calibra-
tion process. Our goal is to best fit the stress-strain behavior in Figure 2 with a hyperfoam
model that also does not exhibit any loss of ellipticity for any of the motions we sample.
Since we will be considering rate independent and non-linear elastic modeling (no viscoelas-
ticity and no damage), we will independently fit the loading portion of the first and second
loading cycles for each of the data sets. In this way, we the fits provide a means to bound
undamaged and damaged responses.

Also, for all fitting, we will consider the lateral strains to be zero rather than modeling the
negative and anisotropic Poisson’s ratio behavior. The choice of asserting zero transverse
strain also reduces the model parameter space since all νi = βi = 0. Yet another reason to fit
the data assuming zero lateral straining was because for the rise loading, where the material
buckled at the specimen scale, it is not clear what the lateral strains were since the motion
was not homogenous. Hence, setting the lateral strains to zero was a unique choice and a
reasonable approximation.

Our Algorithm for fitting the full first loading curves of each data set is defined in Algo-
rithm 1. Specifically, we utilize differential evolution [6] in python’s scipy library for the
optimizer and we sample unit normal vectors following the spherical sampling approach
outlined in [9]. Default convergence behavior for the optimizer was used.

The algorithm for checking stability is new to this work and is broken out here and presented
in detail. Conceptually, using a set of material parameters from the optimizer, the suite of
deformations discussed above are swept through, and for each deformation state, a suite of
unit normals sampled across the unit sphere in a Cartesian sense are then swept through. For
each state (6 for loops deep), the acoustic tensor is formed, and its eigenspace is examined
for any values less than or equal to zero. If any are found, an unstable flag is returned, which
severely penalizes the returned objective function value laid out in the Algorithm 1. The
algorithm of stability checking is presented in detail in Algorithm 2.

2.3 Full Compressive Stress vs. Strain Curve Fits

The full compressive stress-strain curves associated with the loading portion of the first and
second loading cycle were fit for each of the tests in Figure 3 following the procedures laid
out in Algorithms 1 and 2. In all cases, the lateral strains were assigned to be zero for
all deformations by assigning all βI = 0 since we did not have lateral strains for any of
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2. HYPERFOAM MODELING

Algorithm 1 Algorithm for fitting uniaxial compression flexible foam behavior with a
stability-checked Hyperfoam Model

procedure Fit Compressive Stress-Strain Curve
Load Experimental Stress Strain Data
Define Number of Hyperfoam Terms and Bounds for Shear Moduli, Powers, and Poisson

Ratios per Term
Define set of eigenvalues that two axes of principal deformation gradient will each

sweep through, {λ1,2} = {0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.25, 1.5, 2.0, 3.0}
Define the set of Jacobians of the deformation gradient, that, together with λ1,2 will

define λ3 = J/λ1/λ2. {J} = {0.1, 0.3, 0.5, 0.7, 0.9,.0, 1.25, 1.5, 2.0, 3.0 }.
Define the solid angle increment in normal vectors that sample the unit sphere in

a Cartesian manner, which we define through an increment in each cartesian direction
dx = 0.4 [9].

Loop through all combinations of principal stretches and Jacobians which together de-
fine a unique principal deformation gradient. Compute the material tangent, L. Evaluate
the Objective.

Define the Objective Function
Execute scipy.optimize.differential evolution(Objective)

end procedure

procedure Objective Function Evaluation
Read in material parameters for each Hyperfoam term
Execute uniaxial stress calculations iterating on the lateral strains to satisfy the uni-

axial stress BVP at each experimental compressive strain. See reference [8] for details and
discussion on this procedure.

Obtain the L2 norm error, e, between experimental and simulated stress-strain behav-
ior.

Evaluate stability
if Instabilities Found then

Add 1020 to the error, e.
end if
Return e

end procedure
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2. HYPERFOAM MODELING

Algorithm 2 Algorithm for fitting uniaxial compression flexible foam behavior with a
stability-checked Hyperfoam Model

procedure Evaluate Stability
Stable = True
for λ1 in {λ1,2} do

for λ2 in {λ1,2} do
for λ3 in {J}/λ1/λ2 do

Compute L

nrange = {-1, -1+dx, -1+2dx, ... 1}
for x in nrange do

for y in nrange do
for z in nrange do

if x, y, and z are all near zero then
Ignore This Direction

else
N =

√
x2 + y2 + z2

ex = x/N
ey = y/N
ez = z/N
n = exex + eyey + ezez

Compute the Acoustic Tensor, Aik = njLijklnl

Compute Eigenvalues of A

if Any eigenvalue is less than or equal to zero then
Stable = False
Return Stable

end if
end if

end for
end for

end for
end for

end for
end for
Return Stable

end procedure
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2. HYPERFOAM MODELING

the rise curves, and we cannot model anisotropy with the Hyperfoam model seen in the
transverse loading experiments. Because the loading is expected to be dynamically applied
in an impulse/impact scenario with higher stresses due to viscoelastic effects, we will only
present the 1/s strain rate results. The cycle 1 loading at 1/s curves for the rise and transverse
configurations are presented in Figure 4. The sharp plateau of the rise behavior cannot
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Figure 4: Three term Hyperfoam fits to rise and transversely loaded plugs of 3PCF foam.

easily be fit by the Hyperfoam model especially when unstable model parameterizations are
thrown out in Algorithm 2. Even the transversely loaded curves are not well fit as they
transition from linear elastic behavior to the cell buckling plateau. In all cases, densification
is reasonably well modeled for the data available. Recall that the rise loading behavior is
unstable experimentally with obvious localizations, so we are ignoring such details with the
modeling here (which has assumed uniform motion).
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2. HYPERFOAM MODELING

2.4 Fitting behavior about the preloaded state of 35% compression

The 3PCF foam is likely the softest material in the entire system, and so, when it is loaded
in series with any other material/component, it will accomodate most of the deformation.
But, as we can see in the stress-strain curves for example in Figure 4, the stiffness changes
considerably at different strains. Ideally, the analyst would like the ability to simulate the
stiffness response of the 3PCF foam in a preloaded state without actually having to run
a preloading step of the simulation. Here we present a simplified approach to modify the
experimental data and fit a new hyperfoam model to a material about a preloaded state.
This approach will not consider the stress in the foam, but it will get the right stiffness of
the foam about the state of preload under further compression (though not if the foam is
immediately unloaded in tension; that response would be incorrect).

Our procedure for creating a material parameterization to mimic the material response about
a preloaded state is as follows. Given an estimated pre-strain, we shift the stress-strain curve
so that the new zero stress at zero strain state is at the point where the original data was
at the pre-strain/stress point. See Figure 5 for a visual aid. This approximation has a few

Figure 5: Shifting the data to represent the stiffness and subsequent loading behavior about
the preloaded state.

negative features. The stress-free state (now in the preloaded state) is not actually stress-
free in reality, which could affect normal vibration and handoff simulations to structural
dynamics. Other approaches for calibrating models to a preloaded state should be considered.

The user must input the estimated preload strain, and then with this shifting procedure, the
new stress-strain curve is then fit with the Hyperfoam modeling following the procedure and
tools from the previous sections. For the 3PCF foam, fits were produced for the 35% preload
case as shown in Figure 6. Regarding the shifted experimental curves in Figure 6, the effect
of the first and second cycle of loading is negligible. Damage (loss of stiffness) appears to be
concentrated at smaller strains than 35%. Indeed, there is only a small difference between
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3. SUMMARY AND CONCLUSIONS
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Figure 6: Three term Hyperfoam fits to rise and transversely loaded plugs of 3PCF foam
after the 35% nominal compressive preload strain has been removed. I think you need to
remove the % from the xlabels

the rise and transverse loading curves after this 35% preload shifting procedure is applied.
The models fit the experimental curves only roughly and really do not capture the lock-up
behavior. This shortcoming may be due to the stability requirement, but it is the best we
were able to produce given the short timeframe of the effort.

3 Summary and Conclusions

This memo provides Hyperfoam fits for the room temperature, large deformation behavior
of the EF4003 (3 PCF) foams loaded both along the bubble rise and transverse to the bubble
rise directions to support large deformation, transient dynamics finite element simulations.
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Cyclic compression experimental results are shown at 0.01 and 1/s for two cycles. The rise
direction experiments show localized deformation (loss of homogenous motion) while the
motion remained homogenous for the transversely loaded specimens. For the transversely
loaded specimens, lateral strains were collected both along the rise direction and lateral to
it. Lateral strains were different and negative.

The rate independent, isotropic hyperelastic Hyperfoam model was used for all fits. For all
curves, a zero Poisson Ratio was considered such that the lateral strains were identically
zero. The loading curves for the first and the second cycles were fit separately at each strain
rate. The model does not consider viscoelasticity or damage (loss of stiffness between the
two loading cycles).

A fitting procedure was developed that minimized the L2 error between the experimental
and simulated uniaxial compressive stress-strain curves subject to a severe penalty if the
specific model parameterization was found to violate the strong ellipticity condition. Such a
procedure generally resulted in fits of the compressive stress-strain curves that exhibited a
less abrupt transition from the linear elastic regime to the cell buckling region (the plateau
region) compared with the experiments. Fits are much better if stability is ignored, but
stability-unaware fits have proven problematic in large finite element simulations. All fits
were reasonable at large deformations where the foam is densifying. It was pointed out by
the reviewers that this severe stability penalization approach may be too restrictive, and
perhaps it is worth considering alternative, possibly smoother, penalizations to the objective
function when loss-of-ellipticity is encountered for a particular parameter set.

A second fitting procedure was developed to model the stiffness response of the 3PCF foam
about a specific state of prestrain. Such model parameterizations enable the analyst to
model the foam response in a state of prestrain (as assembled in the system) without having
to model the preloading step. Model fits to the modified (prestrain) data do not fit the
experimental data as well as fits to the full compression stress strain curves, but they still
provide a reasonable approximation for large deformation behavior. Future efforts should
consider alternative ways to model pre-strained foams.

Model parameterizations are provided in the appendix.
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4 Model Parameterizations for Sierra/SM Finite Element Analy-
sis

For all models attached, the stress units are in pounds force per square inch (PSI). The
“ALPHA” and “POISSON” parameters are dimensionless.

4.1 Parameterization for the rise loading, 1/s, first cycle loading (Sample 8)

#####

begin parameters for model hyperfoam

Shear Modulus = 29.881832 # Initial Shear Modulus

Bulk Modulus = 19.921221 # Initial Bulk Modulus

#

N = 3

#

SHEAR = 1.452e-01 8.678e+00 2.106e+01

#

ALPHA = -9.984e-01 3.597e+01 3.877e+01

#

POISSON = 0.000e+00 0.000e+00 0.000e+00

#

end parameters for model hyperfoam

4.2 Parameterization for the rise loading, 1/s, second cycle loading (Sample 8)

#####

begin parameters for model hyperfoam

Shear Modulus = 22.852317 # Initial Shear Modulus

Bulk Modulus = 15.234878 # Initial Bulk Modulus

#

N = 3

#

SHEAR = 1.811e+01 5.304e-02 4.684e+00

#

ALPHA = 3.928e+01 -2.300e+00 3.089e+01

#

POISSON = 0.000e+00 0.000e+00 0.000e+00

#

end parameters for model hyperfoam
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4.3 Parameterization for the transverse loading, 1/s, first cycle loading (Sample
12)

#####

begin parameters for model hyperfoam

Shear Modulus = 13.724517 # Initial Shear Modulus

Bulk Modulus = 9.149678 # Initial Bulk Modulus

#

N = 3

#

SHEAR = 8.115e+00 6.479e-02 5.545e+00

#

ALPHA = 3.015e+01 -1.754e+00 2.010e+01

#

POISSON = 0.000e+00 0.000e+00 0.000e+00

#

end parameters for model hyperfoam

4.4 Parameterization for the transverse loading, 1/s, second cycle loading (Sam-
ple 11)

#####

begin parameters for model hyperfoam

Shear Modulus = 13.724517 # Initial Shear Modulus

Bulk Modulus = 9.149678 # Initial Bulk Modulus

#

N = 3

#

SHEAR = 8.115e+00 6.479e-02 5.545e+00

#

ALPHA = 3.015e+01 -1.754e+00 2.010e+01

#

POISSON = 0.000e+00 0.000e+00 0.000e+00

#

end parameters for model hyperfoam

4.5 Parameterization for the 35% preloaded foam from rise loading, 1/s, first
cycle loading (Sample 8)

#####

15



4. MODEL PARAMETERIZATIONS FOR SIERRA/SM FINITE ELEMENTREFERENCESANALYSIS

begin parameters for model hyperfoam

Shear Modulus = 3.144318 # Initial Shear Modulus

Bulk Modulus = 2.096212 # Initial Bulk Modulus

#

N = 3

#

SHEAR = 1.381e+00 4.880e-01 1.275e+00

#

ALPHA = 3.994e+01 -2.879e+00 -2.534e+00

#

POISSON = 0.000e+00 0.000e+00 0.000e+00

#

end parameters for model hyperfoam

4.6 Parameterization for the 35% preloaded foam from rise loading, 1/s, second
cycle loading (Sample 8)

#####

begin parameters for model hyperfoam

Shear Modulus = 3.091692 # Initial Shear Modulus

Bulk Modulus = 2.061128 # Initial Bulk Modulus

#

N = 3

#

SHEAR = 1.256e+00 9.562e-01 8.792e-01

#

ALPHA = 4.000e+01 -2.743e+00 -2.393e+00

#

POISSON = 0.000e+00 0.000e+00 0.000e+00

#

end parameters for model hyperfoam

4.7 Parameterization for the 35% preloaded foam from transverse loading, 1/s,
first cycle loading (Sample 12)

#####

begin parameters for model hyperfoam

Shear Modulus = 2.285408 # Initial Shear Modulus

Bulk Modulus = 1.523606 # Initial Bulk Modulus

#
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N = 3

#

SHEAR = 7.280e-01 7.585e-01 7.988e-01

#

ALPHA = -2.488e+00 -2.499e+00 3.994e+01

#

POISSON = 0.000e+00 0.000e+00 0.000e+00

#

end parameters for model hyperfoam

4.8 Parameterization for the 35% preloaded foam from transverse loading, 1/s,
second cycle loading (Sample 12)

#####

begin parameters for model hyperfoam

Shear Modulus = 2.551853 # Initial Shear Modulus

Bulk Modulus = 1.701235 # Initial Bulk Modulus

#

N = 3

#

SHEAR = 8.186e-01 7.228e-01 1.010e+00

#

ALPHA = -2.629e+00 -2.505e+00 3.996e+01

#

POISSON = 0.000e+00 0.000e+00 0.000e+00

#

end parameters for model hyperfoam
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Internal Distribution:

MS-0845 J. Thomas Org. 1542
MS-0840 S. Klenke Org. 1550
MS-0840 A. Brundage Org. 1554
MS-0840 D. Burnett Org. 1554
MS-0840 S. Gomez Org. 1554
MS-0346 P. Grimmer Org. 1554
MS-0840 C. Hammeter Org. 1554
MS-0840 D. Vangoethem Org. 1554
MS-0346 D. Najera-Flores Org. 1556
MS-0840 E. Corona Org. 1558
MS-0840 E. Fang Org. 1558
MS-0840 C. Hamel Org. 1558
MS-0840 B. Lester Org. 1558
MS-0840 K. Long Org. 1558
MS-0346 M. Neilsen Org. 1558
MS-0840 W. Scherzinger Org. 1558
MS-0840 C. Vignes Org. 1558
MS-9042 J. Crowell Org. 8752
MS-9042 G. De Frias Org. 8752
MS-9042 J. Dike Org. 8752
MS-9042 K. Karlson Org. 8752
MS-9042 V. Pericoli Org. 8752
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