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ABSTRACT
Stochastic modelling approaches are presented to capture random effects at multiple time and length 
scales.  Random processes that occur at the microscale produce nondeterministic effects at the 
macroscale.  Here we present three stochastic modeling approaches that describe random processes 
at microscopic length scales and map these processes to the macroscopic length scale.  The first 
stochastic modeling approach is based upon a particle based numerical technique to solve a Stochastic 
Differential Equation (SDE) using an arbitrary diffusion process to capture random processes at the 
microstructural level.  The second approach prescribes a Probability Density Function (PDF) for the 
drift and diffusion of the random variable derived using the forward and backward Kolmogorov 
equations.  This method requires mean and drift evolution PDF transport equations.  The third 
approach is the coupling of multiple random variables which are dependent on each other.  The 
relationship of the PDFs and a coupling function, known as a copula, produces a Joint Probability 
Density Function (JPDF).  These stochastic modeling approaches are implemented into a Multiple 
Component (MC) shock physics computational code and used to model statistical fracture and reactive 
flow applications.
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ACRONYMS AND TERMS
Acronym/Term Definition

MC Multiple Component

PDF Probability Density Function

JPDF Joint Probability Density Function

SDE Stochastic Differential Equation

LDRD Laboratory Directed Research and Development

DMGIR DaMaGe Induced Reaction

𝜛 Random variable

𝜍 Random variable

𝜏 Time

∆𝜏 Change in time (timestep)

𝜏𝑠 Time scale based on random variable interactions at the microscale

𝒅𝒇𝒕𝑖(𝑥𝜏,𝜏) Drift function based in time

𝑫𝒊𝒇𝑖𝑗(𝑥𝜏,𝜏) Diffusion tensor based in time

t Scaled time

g Drift vector based in scaled time

H Diffusion tensor based in scaled time

h Diffusion vector based in scaled time

g Drift scalar function based in scaled time

gt Derivative of drift function w.r.t. scaled time t

h Diffusion scalar function based in scaled time

B Random process

𝜇 Mean

𝜎2 Variance

𝜎 Standard deviation (𝜎 = 𝜎2)

𝑛𝑏 Number of bins

∆𝑏𝑖𝑛 Bin size

𝑛𝑝𝑖 Number of particles in a bin

𝑛𝑝𝑡 Total number of particles in all bins

𝑔(𝑥) Arbitrary function of the random variable

𝑓(𝑥) Probability Density Function (PDF)

〈𝑔〉 Mean quantity of the function 𝑔(𝑥)

𝒗𝑝 Velocity vector on the particle

𝒗𝑓 Velocity vector at the cell face
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Acronym/Term Definition

𝒗𝑣𝑡𝑥 Velocity vector at the vertex

𝒑𝒐𝒔 Position vector of particle

𝒑𝒐𝒔𝟎 Initial position of particle vector

𝒄𝒆𝒍𝒍_𝒍𝒆𝒏𝒈𝒕𝒉 Cell size vector

𝜉 Random number

k1 Diffusion calibration coefficients 1

k2 Diffusion calibration coefficient 2

𝔻 Damage random variable

𝔻0 Constant n0=1.58

𝜏0 Time constant

k Boltzmann’s constant 

T Temperature

U Calibration coefficient

𝛾 Calibration coefficient

A Avogadro’s number

S Stress

𝑘𝑤 Weibull constant

𝜆𝑤 Weibull constant

〈𝐹〉 Mean fracture stress

F Fracture stress
〈𝐶𝑝〉 Mean specific heat

𝐴 Calibration coefficient

𝐸𝑎 Activation energy

∆𝐻𝑟𝑒𝑙 Change is energy due to reaction

R Gas constant

𝛼 Thermal diffusivity

C1 Diffusion model calibration coefficient

C2 Diffusion model calibration coefficient

〈𝑇〉 Mean temperature

〈𝜎2
𝑇〉 Mean temperature variance

𝑚𝑤 Weibull PDF calibration coefficient

𝛼𝐹 Fréchet PDF calibration coefficient

𝑚𝐹 Fréchet PDF calibration coefficient

𝑠𝐹 Fréchet PDF calibration coefficient
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Acronym/Term Definition

𝛼𝐸 Extremum PDF calibration coefficient

𝑚𝐸 Extremum PDF calibration coefficient

𝑠𝐸 Extremum PDF calibration coefficient

𝐹(𝑥,𝑦) Multivariant Cumulative Distribution Function (CDF) 

𝐽𝐶𝐷𝐹(𝑥,𝑦) Joint CDF (JCDF)

𝐹𝑥(𝑥) Marginal CDF of random variable x

𝐹𝑦(𝑦) Marginal CDF of random variable y

𝑓(𝑥,𝑦) Bivariant Joint Probability Density Function (JPDF)

𝑓𝑥(𝑥) Marginal PDF of random variable x

𝑓𝑦(𝑦) Marginal PDF of random variable y

corr JPDF correlation coefficient

𝜗 Coupling parameter

𝜇𝑥 Mean of random variable x

𝜇𝑦 Mean of random variable y

𝜎2
𝑥 Variance of random variable x

𝜎2
𝑦 Variance of random variable y

𝜎2
𝑥𝑦 Covariance

𝐹(𝑥) CDF of random variable x

𝐹(𝑦) CDF of random variable y

𝜗 Coupling parameter

𝑓(𝑥) PDF of random variable x

𝑓(𝑦) PDF of random variable y

𝜆 Reaction progress random variable

𝐶+
𝑠 Mass exchange rate for the condensed (solid) phase

𝑇0 Initial temperature

𝛾𝑠 True density of the condensed (solid) phase 

𝐶𝑝 Specific heat at constant pressure

𝐵𝔻 Surface damage model coefficient

𝑚𝔻 Surface damage model exponential coefficient

𝑘𝔻1 Damage diffusion model coefficient

𝑘𝔻2 Damage diffusion model coefficient

𝑘𝜆1 Reaction diffusion model coefficient

𝑘𝜆2 Reaction diffusion model coefficient
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1. INTRODUCTION
Stochastic modeling may be applied to describe the evolution of a family of random variables that are 
associated with a nondeterministic process.  Fokker-Plank equations, also known as 
forward/backward Kolmogorov relationships, form the basis of the modeling approach whereby 
probability distribution functions (PDFs) of random variables are transported.  The Kolmogorov 
equations are expressed as high dimensional transport equations that are functions of space and time, 
as well as the random variables themselves.  A direct numerical integration of the Kolmogorov 
equations is prohibitively expensive, and alternative methods are sought to resolve the PDFs. Here, 
the nondeterministic processes of interest originate from the random material microstructures, that 
are found at lower length scales below the scale of the desired (i.e., macroscale) numerical simulations.

Heterogenous materials, such as particle-composite matrix materials, granular powder beds, or porous 
metals to name a few examples, are inherently random due to their microstructure.  Thus, any 
measurement in these materials must recognize the uncertainties associated with the statistical nature 
of the microstructure.  The focus of this effort is the incorporation of microstructure effects that 
greatly influence the macroscopic behavior of the material response.  The microstructural 
characteristics are due to the random features such as grain structure, grain size, porosity, etc.  These 
random features influence the macroscopic behavior causing variations in the macroscopic variables 
(random variables) such as temperature or stress.  Relating the microstructural random features to the 
macroscopic variables is accomplished by utilizing stochastic computational methods.

As an example of this stochastic modeling approach, consider the shock initiation of a heterogenous 
energetic material near the threshold of self-sustaining reactive behavior [1].  At weak conditions, the 
onset to reaction is statistical due to the random nature of the microstructure of the reactive material.   
Uncertainty in the local composition and geometry introduces randomness of the reactive process.  It 
is well known that energy localization effects produce thermally activated sites known as “hot-spots” 
and the evolution or growth of reaction is greatly dependent on specific surface area of the 
heterogenous material.   When energy addition exceeds the dissipative processes, ignition occurs, and 
reactive waves are generated.  As the reaction wave propagates and becomes self-sustaining, a reaction 
wave can transition to a detonation wave.  Hence, the microstructure of energetic materials has a 
dominate role in determining the threshold of ignition and the resulting energetic performance.

Another example of the stochastic modeling approach considers the fracture of materials [2].  The 
fracture mechanics of materials is controlled by the uncertainty of the microstructure of the material, 
grain bonding, crystalline structure, grain size, etc.  These random microstructural features in the 
heterogenous material dictate the macroscopic fracture process.  When a grain bond or grain crystal 
fractures, a microcrack is formed.  Several microcracks will form within the microstructure at random 
crystal or grain boundaries.  As the microcracks coalesce, they can form a macrocrack resulting in 
macroscopic failure leading to a decrease in the material stress.  The role of the microstructure has a 
dominate role in the rate and how the material fractures. 

Another example of the stochastic modeling approach considers a specific type of material 
manufacturing process, namely additive manufacturing (AM) [3].  Additive manufacturing can be used 
to reduce the manufacturing cost and time of complex parts, using one of many techniques.  The wire-
fed AM process for metals deposits feed stock material and further bonds it together via welding.  The 
microstructure of these additive manufactured parts is unique; the bonding process controls the 
strength of the bonded particles as well as the amount of porosity in the materials.  The uncertainty 
in the porosity of the additive manufactured process is greater than if the material was pressed, forged, 
or cast.  The increase in porosity at the microstructural level controls the macroscopic fracture 
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response.  The porosity in the material creates stress concentrations within the microstructure.  At the 
boundaries of the porosity or particle bonds, the stresses are the greatest and break forming 
microcracks.  Several microcracks will form and result in the formation of a macrocrack.  Once again, 
the role of the microstructure has a dominate role in the macroscopic response of the material.

To characterize the nondeterministic processes occurring at the microstructural level of a material, 
two methods are typically used.  The first method requires repeated experiments to assess the statistical 
nature of the random variable, thus generating the necessary data to determine and characterize a 
PDF.  A second method uses a combination of repeated experiments with computational methods.  
Just as in the first method, the goal of the combined computational-experimental approach is to 
determine and characterize a PDF of the random variable.  This method is typically used when direct 
measurements at the microstructure or directly measuring the random variable are not possible.  A 
Representative Volume Element (RVE) or similar model of the microstructure is generated, where 
mean and variance states of the random variable(s) are determined.  The macroscopic response is 
compared to the measured data from multiple experiments [1,4].  Using the results from either two 
methods, the random features are captured by a constitutive model characterizing the material 
response.  This is accomplished using a PDF of a characterization parameter, or a similar technique 
that is specific to the constitutive model.  Examples of the application of such a technique for 
heterogeneous materials is given in [5].  

In this work, the stochastic computational methods are used to describe the constitutive behavior of 
a material.  The use of stochastic methods in computational tools has been made computationally 
possible with the introduction of particle methods to solve stochastic differential equations [6].  Using 
a particle technique, three different stochastic numerical methods have been implemented into the 
Multiple Component (MC) shock physics computational code [7].

The initial approach builds directly upon the work that was previously performed under a Sandia 
Laboratory Directed Research and Development (LDRD) project [8].  This method investigated the 
effect of a stochastic random variable using an arbitrary diffusion function to describe the stochastic 
nature of a shock-induced reaction.  The primary goal of this method is to determine the PDF that 
describes the stochastic nature of the random variable.  Upon determination of the PDF form, an 
estimate of mean and variance states can be performed.  

The second stochastic modeling approach builds upon a method whereby a prescribed PDF is used 
to describe the stochastic nature of the random variable.  In this method, a PDF form is prescribed 
to evolve the state of the random variable.  This method has two advantages, the PDF of the random 
variable is preserved during the simulation, which results in a reduction of storage memory and 
computational resources to maintain the stochastic nature of the random variable.  This approach uses 
the forward and reverse Kolmogorov equations to derive models for the drift (mean) and diffusion 
that are associated with the evolution of the random variable [9].  Here, there are two definitions of 
the drift and diffusion models, i.e., stationary and non-stationary.  Stationary does not permit the drift 
and diffusion functions to evolve over time, whereas non-stationary allows temporal variation of the 
drift and diffusion functions.  When using the non-stationary modeling approach, additional equations 
are needed to determine the drift and diffusion processes.

The third stochastic modeling approach is the combination of multiple stochastic random variables 
that are coupled to each other.  This process creates a Joint Probability Density Function (JPDF) that 
uses a copula joining various PDFs.  This method accepts any PDF, and the copula is the defining 
feature that generates the JPDF.  There are several different forms of copulas [10,12] and the use of 
methods one and two will help determine the form of the copula needed for the simulation.  The 
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combination of the copula, PDF’s and choice of random variables makes the JPDF application 
specific.

Each of the modeling approaches are described in the following four chapters.  Chapter two outlines 
the general stochastic modeling approach to set a basis for the proceeding chapters.   Chapter three 
describes the first stochastic modeling method with an application to fracture mechanics.  Chapter 
four describes the second stochastic modeling method with an application to energetic ignition and 
performance.  Chapter five describes the third stochastic modeling method by coupling fracture and 
energetic ignition into a JPDF.
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2. GENERAL NUMERICAL SUPPORT FOR INCOPORATING 
STOCHASTICS IN MULTIPLE COMPONENT SHOCK PHYSICS

This section describes the general formalism of stochastic methods, as developed and implemented 
into the computational shock physics code Multiple Component (MC) [7].  This provides a general 
stochastic approach and the infrastructure for modeling random variables at the microscopic length 
scale that are averaged at the macroscopic length scale (i.e., the scale of the calculation).  The statistical 
effects are characterized by a Probability Density Function (PDF) of a random variable that is 
incorporated into a constitutive material model.  Three stochastic modeling methods will be discussed 
in this section.  Note: lower case letter/text and bold is a vector, upper case letter/text and bold is a 
tensor and all others are scalars.

2.1. General Formalism
In this study we present modeling stochastic processes based on the temporal and spatial evolution of 
a Probability Density Function (PDF) based on a Fokker-Planck relationship [1].  This is also known 
as the forward Kolmogorov equation [13].  In terms of N-random variables the transport equation 
for the PDF, 𝑓(𝜛,𝜏) is given as:

∂
∂𝜏𝑓(𝝕,𝜏) = ― ∑𝑁

𝑖=1
∂

∂𝜛𝑖
[𝒅𝒇𝒕𝑖(𝝕,𝜏)𝑓(𝝕,𝜏)] + ∑𝑁

𝑖=1 ∑𝑁
𝑗=1

∂2

∂𝜛𝑖∂𝜛𝑗
𝑫𝒊𝒇𝑖𝑗(𝝕,𝜏)𝑓(𝝕,𝜏) ,  (2.1.1)

where 𝝕 is a vector of random variables, 𝜏 is time and 𝒅𝒇𝒕𝑖(𝝕,𝜏) is a drift vector of random variables.   
𝑫𝒊𝒇𝑖𝑗(𝝕,𝜏) is a diffusion tensor.  The above equation is scaled in time by a time scale, 𝜏𝑠.  The time 
scale is necessary to capture the random interactions at the microstructure level, therefore 𝜏 becomes 
𝑡, scaled time, where 𝑡 =

𝜏
𝜏𝑠

.  Equation 2.1.1 is rewritten as, 

∂
∂𝑡𝑓(𝝕,𝑡) = ― ∑𝑁

𝑖=1
∂

∂𝜛𝑖
[𝒈𝑖(𝝕,𝑡)𝑓(𝝕,𝑡)] + ∑𝑁

𝑖=1 ∑𝑁
𝑗=1

∂2

∂𝜛𝑖∂𝜛𝑗
𝑯𝑖𝑗(𝝕,𝑡)𝑓(𝝕,𝑡)  (2.1.2)

where 𝒈𝑖(𝝕,𝑡) is a drift vector, 𝑓(𝝕,𝑡) is the PDF in time and 𝑯𝑖𝑗(𝝕,𝑡) is a diffusion tensor given 
by:

𝑯𝑖𝑗(𝝕,𝑡) ≜ 1
2∑𝑀

𝑘=1 𝒉𝑖𝑘(𝝕,𝑡)𝒉𝑘𝑗(𝝕,𝑡),  (2.1.3)

where 𝒉𝒊(𝝕,𝑡) is a diffusion vector and M is the dimension of the diffusion process, i.e. Brownian 
motion.  The scaled time, t, is of the scale of the randomness defined by the microstructure.  Note 
that the above transport equation is a function of the spatial coordinates and the set of random 
variables, as one might expect, a numerical solution can be computationally expensive.  An alternative 
equivalent equation is determined using stochastic calculus and is given by the set of Stochastic 
Differential Equations (SDEs):

𝑑𝜛 = 𝑔𝑡(𝜛,𝑡)𝑑𝑡 + ℎ(𝜛,𝑡)𝑑𝐵𝑡,  (2.1.4)

where 𝑔𝑡(𝜛,𝑡) is the drift, ℎ(𝜛,𝑡) is the diffusion and 𝑑𝐵𝑡 is the differential for the random process 
typically taken as the Weiner process.  (Note that the above SDE can then be readily adapted to a 
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particle-based numerical method where each particle represents a stochastic realization).  Furthermore, 
any random function, 𝐺(𝜛,𝑡) that is twice differentiable is expanded using stochastic calculus:

𝑑𝐺(𝜛,𝑡) = ∂𝐺
∂𝑡

+ 𝑔𝑡(𝜛,𝑡) ∂
∂𝜛

𝑓(𝜛,𝑡) + ℎ2

2
∂2

∂𝜛2 𝑓(𝜛,𝑡) 𝑑𝑡 + ℎ(𝜛,𝑡)
∂

∂𝑥𝑡
𝑓(𝜛,𝑡)𝑑𝐵𝑡.  (2.1.5)

This is also known as Ito’s Lemma.  As noted above, equation 2.1.4 and 2.1.5 are readily adapted to a 
particle-based numerical method.  

The first stochastic modeling approach uses a particle-based numerical method to solve the SDE.  The 
drift portion is a standard Ordinary Differential Equation (ODE) and a diffusion model is arbitrarily 
chosen.  To calibrate the diffusion model, two methods may be used.  The first method is based upon 
repeat experiments, where a mean and variance of the random variable are determined from data.  
Using the distribution of results from the analyses, the diffusion model may be calibrated.  A second 
approach is to propose a micromechanical or mesomechanical model to characterize random features 
in the model.  The mean and variance of the random feature determines and characterizes the diffusion 
model of the random variable.  The challenge of the first modeling method is using a sufficient number 
of particles in each computational cell to ensure there is a reasonable and statistically significant 
distribution.  Adaptive particle insertion and deletion have been added to help overcome this difficulty 
and will be discussed in a following section in this chapter.

The second stochastic modeling approach is based on having reasonable knowledge of how the 
random variable behaves.  This knowledge may be based on experimental observation, 
micromechanical or mesomechanical analysis, etc.  Prescribing a given PDF also determines the 
moments of the PDF in terms of the drift and diffusion (non-stationary) and preserves the distribution 
during a given analysis.  To do this, we use the forward/reverse Kolmogorov techniques to derive the 
drift and diffusion models for a given PDF [9].  The details of this stochastic method are discussed in 
chapter four.

The last modeling approach is based upon the coupling of multiple random variables, called a Joint 
Probability Density Function (JPDF).  This technique does not currently use a particle method to 
solve the SDEs’.  In this stochastic modeling approach, we have several random variables and a model 
to couple them, called a copula.  If multiple independent random variables are used, stochastic 
modeling approach two is an appropriate solution method.  This method is the least general of the 
three and to date the JPDF is dependent on the PDFs and the random variables making the JPDF 
application dependent. 

2.2. Stochastic Particle Method
To solve the stochastic partial differential equations, a particle method is used.  The particle method 
is a Lagrangian technique and is designed to minimize memory use and be robust.  As mentioned in 
the previous section, methods one and two use the particle method to solve the SDE.  The stochastic 
process is assumed to be the Weiner process (i.e. Brownian motion).  In equation 2.1.3, the 𝑑𝐵𝑡 term 
is replaced with a random variable model [14] and the equation is integrated explicitly as,

𝜛𝑛+1 = 𝜛𝑛 + 𝑔𝑡∆𝑡 + ℎ𝜉 ∆𝑡,  (2.2.1)

where 𝜛𝑛 is the random variable at scaled time n, 𝜛𝑛+1 is the random variable at time n+1, 𝜉 is 
random number, (01) generated by a uniform random number generator and ∆𝑡 is the change in 
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time.  The random variable is updated on each particle in the computational cell.  After the random 
variable solution is applied to every particle in a computational cell a binning process is performed by 
separating the particles into bins.  The bin extents of maximum and minimum are found by searching 
through the particle list in the cell.  The bin size is determined by subdividing the range of the 
minimum and maximum values of the random variable on the particle field.  For example, the range 
of the random variable on the particles are a minimum of 0 (X0) and a maximum of 1 (Xh).  Since the 
random variable spans 01 this may be subdivided into 1000 bins and will have a bin size of 0.001.  
Therefore, a particle is a value of 0.5001 will fall into one bin and a particle with a value of 0.5100 will 
fall into a different bin.  The resulting binning process will generate a histogram based upon the 
number of particles in a bin and the bin number, refer to Figure 2-1. 

Figure 2-1. Example of particle binning to generate probability density function

There are two horizontal axes in Figure 2-1, one horizontal axis is for the sorting bin number that 
starts at 0 and ends at the total number of bins (0 to 7 in the above figure).  The second horizontal 
axis is the value of the random variable (X0 to Xh) field on the particles.  Therefore, a normalization 
process is needed to relate the binning of the particles to physical domain of the random variable 
defining the PDF, 𝑓(𝜛).  We start with the following definition:

∫∞
―∞ 𝑓(𝜛)𝑑𝜛 ≜ 1  (2.2.2)

Using Figure 2-1, we represent the above equation numerically, 



18

∫𝑋ℎ

𝑋𝑜
𝑓(𝜛)𝑑𝜛~∑𝑛𝑏

𝑖=1 𝑓(𝜛𝑖)∆𝜛,  (2.2.3)

and
∆𝜛 = 𝑋ℎ ― 𝑋𝑜

𝑛𝑏 ,  (2.2.4)

where 𝑛𝑏 is the number of bins.  Next, the distribution function is scaled according to the particle 
count in each bin, 𝑛𝑝𝑖:

𝑓(𝜛𝑖) =
𝑛𝑝𝑖

𝑠𝑐𝑎𝑙𝑒.  (2.2.5)

Using the above equation with Equation 2.2.2 and 2.2.3:

∑𝑛𝑏
𝑖=1

𝑛𝑝𝑖

𝑠𝑐𝑎𝑙𝑒
∆𝜛 = 1.  (2.2.6)

Since ∑𝑛𝑏
𝑖=1 𝑛𝑝𝑖 = 𝑛𝑝𝑡, where 𝑛𝑝𝑡 is the total number of particles in the cell, then:

𝑓(𝜛𝑖) =
𝑛𝑝𝑖

∆𝜛 𝑛𝑝𝑡.  (2.2.7)

The mean of the PDF is defined as:

𝑚𝑒𝑎𝑛 = 𝜇 ≜ ∫∞
―∞𝜛𝑓(𝜛)𝑑𝜛.  (2.2.8)

Integrating over the extent of the random variable, 

∫∞
―∞𝜛𝑓(𝜛)𝑑𝜛 = ∫𝑋ℎ

𝑋𝑜
(𝜛 ― 𝑋𝑜)𝑓(𝜛)𝑑𝜛 + 𝑋𝑜,  (2.2.9)

and numerically,

𝜇 = 𝑋𝑜 +
∆𝜛
𝑛𝑝𝑡∑

𝑛𝑏
𝑖=1 𝑖 ― 1

2
∗ 𝑛𝑝𝑖.  (2.2.10)

The variance of the PDF is defined as:

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 ≜ ∫∞
―∞ (𝜛 ― 𝜇)2𝑓(𝜛)𝑑𝜛.  (2.2.11)

Integrating over the extent of the random variable, 

∫∞
―∞ (𝜛 ― 𝜇)2𝑓(𝜛)𝑑𝜛 = ∫𝑋ℎ

𝑋𝑜
[𝜛 ― 𝑋𝑜 ― (𝜇 ― 𝑋𝑜)]2𝑓(𝜛)𝑑𝜛,  (2.2.12)

and numerically,

𝜎2 =
1

𝑛𝑝𝑡∑
𝑛𝑏
𝑖=1 𝑖 ― 1

2
∆𝜛 ― 𝜇

2
∗ 𝑛𝑝𝑖,  (2.2.13)
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where

𝜇 =
∆𝜛
𝑛𝑝𝑡∑

𝑛𝑏
𝑖=1 𝑖 ― 1

2
∗ 𝑛𝑝𝑖.  (2.2.14)

Lastly, the mean and variance are used to map the random variable from the particles to the grid.  This 
is performed using the following equation,

〈𝑔〉 = ∫∞
―∞ 𝑔(𝜛)𝑓(𝜛)𝑑𝜛,  (2.2.15)

where 𝑔(𝜛) is an arbitrary function that is dependent on the random variable 𝜛 and 𝑓(𝜛) is a PDF 
describing the distribution of the random variable on the grid.  The mean and variance from equations 
2.2.4 and 2.2.5 are used to compute coefficients of a prescribed PDF.  As an example, the Normal or 
Gaussian PDF uses the mean and variance directly,

𝑓(𝜛) =
1

𝜎 2𝜋𝑒 ― (𝜛 ― 𝜇)2

2𝜎2
.  (2.2.16)

Performing the integration in Equation 2.2.6, the mean quantity 〈𝑔〉 is determined on the 
computational grid.

2.3. Particle Motion
In this section, the particle motion will be highlighted.  Previous work on particle methods has been 
performed in [15]; and for this work, only the motion of the particle is used.  The position of the 
particle is updated using the following equation, 

𝒑𝒐𝒔𝑛+1 = 𝒑𝒐𝒔𝑛 + 𝒗𝑝∆𝜏,  (2.4.1)

where 𝒗𝑝 is the velocity vector interpolated to the particle from the computational grid and ∆𝜏 is the 
current timestep.  In the case of the velocities located on the face, the velocities are linearly interpolated 
to the particle, Figure 2.2.  In the case of the velocities located at the vertex, the velocities are linearly 
interpolated for one-dimensional problems; refer to Figure 2-3.  Note: bilinear and trilinear 
interpolation methods are used for two-dimensional and three-dimension problems, respectively.  
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Figure 2-2. Particle face velocity interpolation and position update

Figure 2-3. Particle vertex velocity interpolation and position update

.    
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2.4. Adaptive Particle Insertion and Deletion
In this section, an adaptive particle insertion or deletion process is described.  This adaptive process 
is implemented to control the number of particles during the analysis where computational domains 
maybe large or where regions of interest do not have enough particles to properly form the particle 
distribution described above.  In the event of a low particle count in a computation cell, the PDF 
moments cannot generate a mean and variance state with statistical relevance.  In contrast, in the event 
of high particle counts in an area that are not of interest, the particles may be removed.  Overall, the 
adaptive technique, add particles where they are needed and removes particles where they are not 
needed.

This process mirrors the adaptive mesh refinement (AMR) technique that is used in MC [16].  As was 
done in AMR, splitting and combining of a block is performed using indicators.  Here the indicators 
communicate the insertion and deletion of the particles in the computational domain. The particles 
are inserted into the computational cell with the mean value of the cell at the current timestep.  The 
position of particle is randomized using the following equation, 

𝒑𝒐𝒔 = 𝒑𝒐𝒔0 + 𝜉𝑖∆𝒄𝒆𝒍𝒍_𝒔𝒊𝒛𝒆,  (2.4.1)

where 𝒑𝒐𝒔 is the particle position vector, 𝒑𝒐𝒔0 is the cell lowest global position vector, 𝜉𝑖 is a random 
number (0 < 𝜉< 1) by grid axis direction and ∆𝒄𝒆𝒍𝒍_𝒔𝒊𝒛𝒆 is the cell size vector (length, width, and 
height).  Lastly, when particles are introduced (or removed) into the computational cell, the PDF is 
preserved.
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3. STOCHASTIC PARTICLE METHOD USING ARBITRARY DIFFUSION
The first of three stochastic modeling approaches that was added to the shock physics code Multiple 
Component (MC) is a particle based numerical method that uses an arbitrary diffusion model.  The 
stochastic particle method is used to solve a Stochastic Differential Equation (SDE) and the primary 
distinction between this method and the other methods is the arbitrary nature of the diffusion model.  
This diffusion model is not specific to a given Probability Density Function (PDF).  This stochastic 
modeling approach is used to determine the PDF that describes the behavior of the random variable.

3.1. Description
This stochastic modeling approach explicitly integrates equation 2.1.3 and is given as equation 2.2.1 
on each particle.  The drift portion is a standard Ordinary Differential Equation (ODE) and the 
diffusion model is arbitrarily chosen.  A diffusion model that has been previously assumed for various 
applications [8] is given by,

ℎ = 𝑘1𝑒𝑘2𝑡,  (3.1.1)

where, 𝑘1 and 𝑘2 are model coefficients and 𝑡 is the current scaled time.  There are several choices 
for diffusion models and this model has a broad range of applicability.  If 𝑘2 = 0 then the diffusion 
model is a constant.  If additional models are required, they may be added to the computational code 
as necessary.  An existing database of models and their calibration coefficients may be used.

3.2. Example:  Stochastic Damage
The failure and damage of materials is of great interest in modeling statistical fracture.  The fracture 
of materials is predominately dictated by the microstructure of the material.  Fracture can occur from 
an accumulation of nucleation sites that eventually coalesce leading to a macroscopic crack.  The 
microstructural damage is generated from several physical phenomena occurring at a level that one 
cannot measure such as crystal debonding, crystal fracture, etc.  These microstructural effects 
dominate the macroscopic result, and thus stochastic methods are used to model the random 
generation of damage sites that coalesce into macroscopic failure.

There are several fracture models given in the literature, and a rate dependent damage model is 
considered here, i.e., the kinetic theory of fracture [17],

𝑑𝔻
𝑑𝑡 = (𝔻0 ― 𝔻)

𝜏0
𝑒

―(𝑈―𝛾𝑆)
𝑘𝑇𝐴 ,  (3.2.1)

where 𝔻 is damage, 𝔻0 = 1.58, 𝜏0 is a time constant of 1e-13 seconds, 𝑆 is stress, 𝑘 is Boltzmann’s 
constant (1.380649e-16 erg/K), 𝑇  is temperature, 𝐴 is Avogadro’s number, 𝑈 and 𝛾 are calibration 
coefficients.  Using equations 2.2.1, 3.1.1 and 3.2.1 we arrive at the following SDE,

𝔻𝑛+1
𝑡 = 𝔻𝑛

𝑡 + (𝔻𝑡0 ― 𝔻𝑛
𝑡 )

𝜏0
𝑒

―(𝑈―𝛾𝑆)
𝑘𝑇𝐴 ∆𝑡 + 𝑘1𝑒𝑘2𝑡𝜉 ∆𝑡.  (3.2.2)
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As outlined in chapter two, the above equation is solved on the particles and the collection of particles 
is binned to determine the mean damage and variance in the computational cell.

A Weibull distribution is assumed to represent the overall distribution of the random fracture in the 
cell [2].  First, the Weibull coefficients are given in terms of the mean and variance,  

𝑓(𝔻) =
𝑘𝑤

𝜆𝑤

𝔻
𝜆𝑤

𝑘𝑤―1
𝑒

― 𝔻
𝜆𝑤

𝑘𝑤

,  (3.2.3)

where 𝑘𝑤 and 𝜆𝑤 are Weibull calibration coefficients.  The Weibull coefficient 𝑘𝑤 is computed using 
an iterative process whereby the left-hand side of the equation is known and the values of gamma are 
equated to the right-hand side,

𝜎2

𝜇2 +1 =
2

𝑘𝑤
Γ 2

𝑘𝑤
1

𝑘𝑤
Γ 1

𝑘𝑤

2.  (3.2.4)

where 𝜎2 is the variance.  Once 𝑘𝑤 is known, 𝜆𝑤 may be determined,

𝜆𝑤 =
𝜇

1
𝑘𝑤

Γ 1
𝑘𝑤

.  (3.2.5)

This calibrated Weibull distribution is used to determine the mean state of the fracture stress 𝐹 in 
the cell.  Here we use equation 2.2.6,

〈𝐹〉 = ∫1
0

𝑘𝑤

𝜆𝑤

𝔻
𝜆𝑤

𝑘𝑤―1
𝑒― 𝔻

𝜆𝑤

𝑘𝑤

𝐹(1 ― 𝔻)𝑑𝔻.  (3.2.6)

where 〈𝐹〉 is the mean fracture stress.  The mean fracture stress is used in the fracture algorithm for 
inserting material or void, reducing the internal stress and numerically depicting the occurrence of 
failure.

3.3. Result
To demonstrate the use of this stochastic modeling method, a symmetric impact analysis of copper 
on copper is performed in one-dimension.  The intent of the analysis is to investigate the spall behavior 
of the copper where microstructure defects may affect the spall strength, time, and location of the 
spall fracture.  To induce spall fracture, two pieces of copper are used where one is an impactor 
traveling at 210 m/s and the other is a target.  The target is twice the length of the impactor; therefore, 
the spall fracture should occur near the center of the target, L= 1 mm.  A graphical description of the 
analysis problem is shown in Figure, 3-1.   The constitutive material model is the Mie-Gruneisen model 
for the Equation of State, elastic-plastic assuming no hardening and a yield strength value of 25 MPa 
and the failure model is as described above with an initial spall of 3.5 GPa.  
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Figure 3-1. Symmetric copper-copper impact

In each cell, a minimum of 100 particles is set to model the stochastic spall behavior.  A statistical 
sample size of 100 was chosen to be of significant size to capture the stochastic spall behavior, 
therefore 100 analyses have been performed.  The spall fracture was determined when the mean 
fracture stress was exceeded by the material stress.  At this point, the analysis was ended, and the time, 
location and mean fracture stress were recorded.  The resulting mean fracture stress is shown in Figure 
3-2.  

Figure 3-2. Mean fracture stress for symmetric copper-copper impact.

The average fracture stress is 1.67 GPa at fracture and a deviation of 5.28 MPa.  The resulting 
fracture location is shown in Figure 3-3
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Figure 3-3. Fracture location for symmetric copper-copper impact.

The front of the target is initially located at 0.2 mm.  The average fracture location is at 0.307 cm 
with a deviation of 0.00148 cm.  The resulting fracture time is shown in Figure 3-4.

Figure 3-4. Fracture time for symmetric copper-copper impact

The average fracture time is 7.45e-7 seconds and the deviation is 4.85e-10 seconds.  The fracture time 
is shown to be “banded” as the timestep is based upon the Currant-limited timestep.  Therefore, the 
spall fracture occurred within 6 cycles of each other for all 100 analyses.

The variation in the mean fracture stress, time and location are modeled by the diffusion model and 
its calibration coefficients.  For the above analyses, one diffusion model and calibration coefficients 
were used.  With the addition of extra data, the calibration model and coefficients may be refined.  In 
addition, the confirmation of the Weibull PDF may also be performed.  Ultimately, the results show 
the stochastic modeling approach is providing a reasonable result given the assumptions and 
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calibration coefficients.  Assuming this material characterization is correct, the copper material model 
maybe added to larger system analysis where the copper material used.
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4. STOCHASTIC PARTICLE METHOD BASED UPON 
FORWARD/BACKWARD KOLMOGOROV METHODS

This chapter highlights the second stochastic approach developed and implemented into the 
computational shock physics code MC.  Once again, this method uses the stochastic particle method 
to describe the material stochastic behavior.  The primary difference in this approach is that the 
diffusion and drift models are based upon the Probability Density Function (PDF) through the 
forward and backward Kolmogorov equations.  

This stochastic modeling method preserves the form of the PDF fit to the random variable using 
defined drift and diffusion models.  The drift and diffusion models are defined based upon the PDF 
and the forward/backward Kolmogorov equations.  Using this stochastic modeling approach there 
are two different types of Kolmogorov results, stationary and non-stationary.  A non-stationary 
Kolmogorov result provides the drift and diffusion models of the PDF that evolve in time.  In 
contrast, the stationary Kolmogorov result provides the drift and diffusion models of the PDF fixed 
(stationary) in time.  Additional equations are needed to describe the evolution of the mean and 
variance quantities.  To help understand this process, we first start with a description of the 
forward/backward Kolmogorov approach with models implemented into MC and finally an 
application with results.

4.1. Forward/Backward Kolmogorov with Stochastic Models of Drift and 
Diffusion

The forward Kolmogorov approach has been well documented in literature [9].  Starting with 
Equation 2.1.1, 

𝑑𝜛 = 𝑔𝑡(𝜛,𝑡)𝑑𝑡 + ℎ(𝜛,𝑡)𝑑𝐵𝑡  (4.1.1)

where 𝑔𝑡 is a drift function, ℎ is a diffusion function, 𝜛 is the random variable and 𝑡 is scaled time.  
Now, we introduce the forward/backward Kolmogorov equations as,

∂𝑓(𝜛,𝑡)
∂𝑡 + ∂(𝑔(𝜛,𝑡)𝑓(𝜛,𝑡))

∂𝜛 ― 1
2

∂2 ℎ(𝜛,𝑡)2𝑓(𝜛,𝑡)
∂𝜛2 = 0  (4.1.2)

∂𝑓(𝜍,𝑠)
∂𝑠 +𝑔(𝜍,𝑠)

∂𝑓(𝜍,𝑠)
∂𝜍 + 1

2ℎ(𝜍,𝑠)2∂2𝑓(𝜍,𝑠)
∂𝜍2 = 0  (4.1.3)

The first equation, 4.1.2, is the forward Kolmogorov equation based in independent variables 𝜛 and 
𝑡.  The second equation, 4.1.3, is the backward Kolmogorov equation based in independent variables 
𝜍 and 𝑠.  The change in 𝜛 ― 𝜍 occurs over the timestep, 𝑡 ― 𝑠.  Using these two equations and a given 
distribution function 𝑓, equations for 𝑔 and ℎ are derived as functions of forward variables only, 𝜛 
and 𝑡.  A strongly stationary designation requires the mean and variance do not vary with time.  The 
weakly stationary designation defines the mean and variance will vary with time.  The functions 𝑔 and 
ℎ are provided below for a few given PDFs’.
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4.1.1. Normal/Gaussian

𝑓(𝜛,𝑡) =
1

2𝜋𝜎𝑒―1
2

𝜛―𝜇
𝜎

2

 (4.1.4)

𝑔(𝜛,𝑡) = 1
2[𝜛 ― 𝜇] + ∂𝜇

∂𝑡  (4.1.5)

ℎ2(𝜛,𝑡) = 𝜎2 + ∂𝜎2

∂𝑡  (4.1.6)

4.1.2. Weibull

𝑓(𝜛,𝑡) =
𝑘𝑤

𝜆𝑤

𝜛 ― 𝑚𝑤

𝜆𝑤

𝑘𝑤―1
𝑒― 𝜛―𝑚𝑤)

𝜆𝑤

𝑘𝑤

 (4.1.7)

𝑔(𝜛,𝑡) = [𝜛 ― 𝑚𝑤] + [𝜛 ― 𝑚𝑤]1―𝑘𝑤 𝜆𝑤
𝑘𝑤

𝑘𝑤
+

∂𝜆𝑤𝑘𝑤

∂𝑡
𝑘𝑤2

+ ∂𝑚𝑤

∂𝑡  (4.1.8)

ℎ2(𝜛,𝑡) = 2[𝜛 ― 𝑚𝑤]2―𝑘𝑤 𝜆𝑤
𝑘𝑤

𝑘𝑤
+

∂𝜆𝑤𝑘𝑤

∂𝑡
𝑘𝑤2

 (4.1.9)

4.1.3. Frechet

𝑓(𝜛,𝑡) =
𝛼𝐹

𝑠𝐹

𝜛 ― 𝑚𝐹

𝑠𝐹

―1―𝛼𝐹
𝑒― 𝜛―𝑚𝐹)

𝑠𝐹

―𝛼𝐹

 (4.1.10)

𝑔(𝑥,𝑡) = [𝜛 ― 𝑚𝐹] + [𝜛 ― 𝑚𝐹]1+𝛼𝐹 𝑠―𝛼𝐹

𝛼𝐹
+

∂𝑠―𝛼𝐹
∂𝑡

𝛼𝐹2
+ ∂𝑚𝐹

∂𝑡  (4.1.11)

ℎ2(𝜛,𝑡) = 2[𝜛 ― 𝑚𝐹]2+𝛼𝐹 𝑠―𝛼𝐹

𝛼𝐹
+

∂𝑠―𝛼𝐹
∂𝑡

𝛼𝐹2
 (4.1.12)

4.1.4. Generalized Extremum

𝑓(𝜛,𝑡) =
1
𝑠𝐸

1 + 𝛼𝐸
𝜛 ― 𝑚𝐸

𝑠𝐸

―1― 1
𝛼𝐸𝑒― 1+𝛼𝐸

𝜛―𝑚𝐸
𝑠𝐸

― 1
𝛼𝐸

 (4.1.13)

𝑔(𝜛,𝑡) = 𝑠𝐸 + 𝛼𝐸(𝜛 ― 𝑚𝐸) + 𝛼𝐸𝑠𝐸
― 1

𝛼𝐸[𝑠𝐸 + 𝛼𝐸(𝜛 ― 𝑚𝐸)]1+ 1
𝛼𝐸 +
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𝛼𝐸[𝑠𝐸 + 𝛼𝐸(𝜛 ― 𝑚𝐸)]1+ 1
𝛼𝐸 + 𝑠𝐸

1+ 1
𝛼𝐸

∂𝑠𝐸
―

1
𝛼𝐸

∂𝑡
+ ∂𝑚𝐸

∂𝑡 (4.1.14)

ℎ2(𝜛,𝑡) = 2[𝑠𝐸 + 𝛼𝐸(𝜛 ― 𝑚𝐸)]2+ 1
𝛼𝐸 𝑠𝐸

― 1
𝛼𝐸 + ∂𝑠𝐸

―
1

𝛼𝐸

∂𝑡
 (4.1.15)

4.2. Example:  Stochastic Reactive Flow
This example is built upon previous work performed by Baer et. al. [1] and Baer [18], where a 
stochastic ignition model has been previously developed.  The purpose of the model is to 
macroscopically capture the ignition process that occurs within the microstructure using stochastics.  
We start with the first law of thermodynamics applied at the microstructure level to capture the 
hotspot phenomena and the coalescence of the hotspots to generate ignition; these equations are 
presented below as,

∂〈𝑇〉
∂𝑡 = 𝛼∇2〈𝑇〉 + ∫∞

0
∆𝐻𝑟𝑒𝑙

〈𝐶𝑝〉 𝐴𝑒―𝐸𝑎
𝑅𝜁𝑓(𝜁)𝑑𝜁,  (4.2.1)

and
∂〈𝜎2

𝑇〉
∂𝑡 = 𝛼∇2𝜎2

𝑇 +2𝐶1 ―2𝐶2𝜎2
𝑇 + ∫∞

0
∆𝐻𝑅

〈𝐶𝑝〉 𝐴𝑒―𝐸𝑎
𝑅𝜁2(𝜁 ― 〈𝑇〉)𝑓(𝜁)𝑑𝜁,  (4.2.2)

where 𝑇 is the solid temperature (random variable), 𝛼 is the material thermal diffusivity, 𝐶𝑝 is the 
specific heat capacity, ∆𝐻𝑟𝑒𝑙 is the heat release by reaction, 𝑅 is the gas constant, 𝐴 and 𝐸𝑎 are 
calibration coefficients and 𝐶1 and 𝐶2 are diffusion model calibration coefficients.  In the above 
references, the distribution was assumed to be Gaussian and here we present the distribution as the 
Fréchet PDF.  This PDF has been chosen based upon the results of mesoscale analysis where the 
Fréchet distribution shows a better agreement to energetic ignition processes.  The integrations are 
performed using the Laplace expansion method resulting in the following for the integration in 
Equation 4.2.1,

∫∞
0

∆𝐻𝑅

〈𝐶𝑝〉 𝐴𝑒―𝐸𝑎
𝑅𝜁𝑓(𝜁)𝑑𝜁 = 2𝜋

𝑀|𝜙′′(𝑥0)|ℎ(𝑥0)𝑒(𝑀𝜙(𝑥0))  (4.2.3)

𝑥0 =
1

(1 + 𝑃)2  (4.2.4)

𝑀 = 𝐸𝑎

𝑠𝐹𝑅𝛼𝐹

𝛼𝐹
𝛼𝐹+1  (4.2.5)

𝑃 = 𝑚𝐹

𝑠𝐹

𝐸𝑎

𝑠𝐹𝑅𝛼𝐹

―1
𝛼𝐹+1  (4.2.6)

𝜙(𝑥0) =
― 𝛼𝐹

𝑥
1

𝛼𝐹
0 + 𝑃

― 𝑥0  (4.2.7)
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𝜙′′(𝑥0) =
𝑃(𝛼𝐹 ― 1)𝑥

1
𝛼𝐹

―2

0 + (𝛼𝐹 + 1)𝑥
2

𝛼𝐹
―2

0

𝛼𝐹 𝑃 + 𝑥
1

𝛼𝐹
0

3  (4.2.8)

ℎ(𝑥0) = 𝐴𝑀
∆𝐻𝑅

〈𝐶𝑝〉  (4.2.9)

Where 𝛼𝐹 is the PDF calibration parameter, not to be confused with 𝛼 as the thermal diffusivity.  The 
integration of the integral in equation 4.2.2 is shown below, 

∫∞
0

∆𝐻𝑅

〈𝐶𝑝〉 𝐴𝑒―𝐸𝑎
𝑅𝜁2(𝜁 ― 〈𝑇〉)𝑓(𝜁)𝑑𝜁 = 2𝜋

𝑀|𝜙′′(𝑥0)|ℎ(𝑥0)𝑒(𝑀𝜙(𝑥0))  (4.2.10)

𝑥0 =
1

(1 + 𝑃)2  (4.2.11)

𝑀 = 𝐸𝑎

𝑠𝐹𝑅𝛼𝐹

𝛼𝐹
𝛼𝐹+1  (4.2.12)

𝑃 = 𝑚𝐹

𝑠𝐹

𝐸𝑎

𝑠𝐹𝑅𝛼𝐹

―1
𝛼𝐹+1  (4.2.13)

𝜙(𝑥0) =
― 𝛼𝐹

𝑥
1

𝛼𝐹
0 + 𝑃

― 𝑥0  (4.2.14)

𝜙′′(𝑥0) =
𝑃(𝛼𝐹 ― 1)𝑥

1
𝛼𝐹

―2

0 + (𝛼𝐹 + 1)𝑥
2

𝛼𝐹
―2

0

𝛼𝐹 𝑃 + 𝑥
1

𝛼𝐹
0

3  (4.2.15)

ℎ(𝑥0) = 2𝐴
∆𝐻𝑅

〈𝐶𝑝〉 𝑚𝐹 + 𝑥0𝑠𝐹𝑀
1

𝛼𝐹 ― 〈𝑇〉  (4.2.16)

The mean and variance equations 4.2.1 and 4.2.2 provide the non-stationary equations needed to 
complete the Fréchet stochastic equation of 4.1.1.  Using the mathematical relationship of the mean 
and variance,

〈𝑇〉 = 𝑚𝐹 + 𝑠𝐹Γ 1 ― 1
𝛼𝐹

 (4.2.17)

〈𝜎2
𝑇〉 = 𝑠𝐹

2 Γ 1 ― 2
𝛼𝐹

― Γ 1 ― 1
𝛼𝐹

2
 (4.2.18)

We take the non-dimensional time derivate on these functions,

∂𝑚𝐹

∂𝑡 = ∂〈𝑇〉
∂𝑡 ― ∂𝑠𝐹

∂𝑡 Γ 1 ― 1
𝛼𝐹

― 𝑠𝐹
∂
∂𝑡Γ 1 ― 1

𝛼𝐹
 (4.2.19)
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∂𝑠𝐹
2

∂𝑡 = 1

Γ 1 ― 1
𝛼𝐹

― Γ 1 ― 2
𝛼𝐹

2
∂〈𝜎2

𝑇〉
∂𝑡

― 𝑠𝐹
∂
∂𝑡

Γ 1 ― 2
𝛼𝐹

― Γ 1 ― 1
𝛼𝐹

2
 (4.2.20)

These equations are solved on each particle just as in stochastic modeling method one.  The particles 
are binned according to the solid temperature and new mean and variance values are computed.  From 
the mean and variance, the new 𝑠𝐹, 𝑚𝐹 and 𝛼𝐹 values are computed for the Fréchet PDF.
 

4.3. Result
To demonstrate the use of this stochastic modeling approach, we will be modeling a piston 
compaction experiment consisting of Bullseye gunpowder in one-dimension, Figure 4.1.  Bullseye 
gunpowder composition is (60% NC-13, 40 % NG) and the density used in this study is 0.68 g/cc 
(tap density where solid volume fraction is 41.5%).  Previous work has been performed to calibrate a 
reactive flow model from experimental data (see Schumacher and Baer [19]), where the calibration is 
deterministic however, energetic materials are known to be non-deterministic near the threshold of 
ignition.  In this case, the piston compresses the distended Bullseye to near full dense and the material 
ultimately reacts.  Here we will use the stochastic reactive flow model as described above.  

Figure 4-1. Piston impact of distended energetic material

We first start with a PDF that is assumed to be the Fréchet PDF as motivated by mesoscale modeling 
[20].  The Fréchet distribution is initialized so the first moment is set to the mean room temperature, 
Figure 4-2.  The particle field is initialized using a randomization of the mean state using the second 
moment and random variables.  Therefore, the mean state of the temperature in a computation cell is 
the mean room temperature and the binning process of the particle field replicates the initial PDF.
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Figure 4-2. Fréchet probability density function initial state.

Once the particles have been initialized the simulation proceeds using Equations 4.1.1, 4.1.11 and 
4.1.12 to compute the solid temperature on each particle.  The particle field is therefore binned and 
the new first moment, 𝜇𝑛, and second moment, 𝜎𝑛

2 , are computed.  From these moments the 
updated Fréchet PDF constants 𝑠𝐹 and 𝑚𝐹 are computed with a constant 𝛼𝐹.  

𝑠𝐹 =
𝜎𝑛

2

1 ― 2
𝛼𝐹

― Γ 1 ― 1
𝛼𝐹

2  (4.3.1)

𝑚𝑛
𝐹 = 𝜇𝑛 ― 𝑠𝐹Γ 1 ― 1

𝛼𝐹
 (4.3.2)

A statistical sample size of 100 realizations were chosen to capture the stochastic ignition of the 
Bullseye material, therefore 100 analyses have been performed.  The ignition of the energetic was 
assumed when the product gas exceeded a temperature of approximately 4000 K. This temperature 
was chosen because it is approximately the Chapman-Jouguet temperature, 4061 K, for reacted 
Bullseye when the reactive wave travels at the detonation velocity.  At this ignition point the ignition 
temperature, time and location were recorded.   The resulting mean gas temperature is shown in Figure 
4-3.  
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Figure 4-3. Gas Temperature at ignition of Bullseye with piston velocity at 150 m/s.

The mean gas temperature is 4395 K at ignition and a deviation of 942 K.  The resulting ignition 
time is shown in Figure 4-4.

 
Figure 4-4. Ignition time of Bullseye with piston velocity at 150 m/s

The average ignition time is 2.87e-4 seconds and the deviation is 2.03e-4 seconds.  The resulting 
ignition location is shown in Figure 4-5.
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Figure 4-5. Ignition location of Bullseye with piston velocity at 150 m/s

The initial location front of the Bullseye is at 0 cm.  The average ignition location is at 6.15 cm with a 
deviation of 5.57 cm.  

The results demonstrate the use of stochastic modeling technique using the forward/backward 
Kolmogorov approach.  As mentioned above, the technique includes the effect of the microstructure 
to describe the mean and variance evolution of the PDF.  The reaction rate is controlled using a single 
step chemical kinetic equation with the Fréchet PDF.  These moments determine the stochastic nature 
of the energetic ignition process.  The influence of the chosen Fréchet PDF is readily seen in Figures 
4-4 and 4-5 with the noticeable banding at the bottom of the figures and tails in the upper portion of 
the Figures.  

Additional analysis cases have been omitted from the above figures because the product gas did not 
meet or exceed 4000K.  However, several instances of the product gas ranged between 2000K – 
3999K.  In these cases, the reactive wave was traveling at 1500 m/s to 2000 m/s.  The reaction was 
not entirely supported by the detonation state, but the reaction wave is traveling fast enough that the 
net outcome of a test would be labeled “violent” or “significant reaction”.
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5. STOCHASTIC MODELING METHOD FOR JOINT PROBABILITY 
DENSITY FUNCTIONS

The last stochastic modeling approach is the union of multiple random variables.  This is performed 
by joining multiple single random processes using a copula which is a multivariant Cumulative 
Distribution Function (CDF) or Joint Cumulative Distribution Function (JCDF).  A copula function 
describes the interdependence of the random variables.  For the special case of a bivariant, two random 
variables of 𝜛 and 𝜍,

𝐽𝐶𝐷𝐹(𝜛,𝜍) = 𝐹(𝜛,𝜍) = 𝜇𝜛,𝜇𝜍,𝜎2
𝜛,𝜎2

𝜍 ,𝐹(𝜛),𝐹(𝜍)  ,  (5.0.1)

where, 𝜇𝜛 and 𝜇𝜍 are the means, 𝜎2
𝜛 and 𝜎2

𝜍  are the variances, and 𝐹(𝜛) and 𝐹(𝜍) are the CDFs for 
random variables 𝜛 and 𝜍, respectively.  The marginal CDFs are computed using the following,

𝐹𝜛(𝜛) ≜ lim
𝜍→∞

𝐹(𝜛,𝜍)     𝑓𝑜𝑟 𝑎𝑛𝑦 𝜛 ,  (5.0.2)

𝐹𝜍(𝜍) ≜ lim
𝜛→∞

𝐹(𝜛,𝜍)     𝑓𝑜𝑟 𝑎𝑛𝑦 𝜍 ,  (5.0.3)

also,

𝐹(∞,∞) = 1 ,  (5.0.4)
𝐹( ―∞,𝜍) = 0 ,  (5.0.5)

and
𝐹(𝜛, ― ∞) = 0 .  (5.0.6)

The bivariant Joint Probability Distribution Function (JPDF) is defined from the bivariant CDF as,

𝑓(𝜛,𝜍) ≜
∂^2𝐹(𝜛,𝜍)

∂𝜛∂𝜍 .  (5.0.7)

A general relationship for a bivariant JPDF is,

∫∞
―∞ ∫∞

―∞ 𝑓(𝜛,𝜍)𝑑𝜛𝑑𝜍 ≜ 1 .  (5.0.8)

The marginal computation for a bivariant JPDF with random variables is 𝜛 and 𝜍:

𝑓𝜛(𝜛) ≜ ∫∞
―∞ 𝑓(𝜛,𝜍)𝑑𝜍 ,  (5.0.9)

and
𝑓𝜍(𝜍) ≜ ∫∞

―∞ 𝑓(𝜛,𝜍)𝑑𝜛 ,  (5.0.10)

where 𝑓𝜛(𝜛) and 𝑓𝜍(𝜍) are the marginal PDFs for random variables 𝜛 and 𝜍, respectively.  In 
addition, the CDF and PDF are related by the following definitions,
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𝑓𝜛(𝜛) ≜ ∂𝐹𝜛(𝜛)
∂𝜛  ,  (5.0.11)

and

𝑓𝜍(𝜍) ≜
∂𝐹𝜍(𝜍)

∂𝜍  .  (5.0.12)

The mean and variance of the random variable 𝜛 is shown below where the mean and variance of 
the random variable, 𝜍, is similar,

𝜇𝜛 ≜ ∫∞
―∞ 𝜛𝑓𝜛(𝜛)𝑑𝜛  (5.0.13)

𝜎2
𝜛 ≜ ∫∞

―∞ (𝜛 ― 𝜇𝜛)2𝑓𝜛(𝜛)𝑑𝜛  (5.0.14)

The covariance is computed as,

𝜎2
𝜛𝜍 ≜ ∫∞

―∞ ∫∞
―∞(𝜛 ― 𝜇𝜛)(𝜍 ― 𝜇𝜍)𝑓(𝜛,𝜍)𝑑𝜛𝑑𝜍,  (5.0.15)

or

𝜎2
𝜛𝜍 = ∫∞

―∞ ∫∞
―∞ 𝜛𝜍𝑓(𝜛,𝜍)𝑑𝜛𝑑𝜍 ― 𝜇𝜛𝜇𝜍,  (5.0.16)

where 𝜎2
𝜛𝜍 is the covariance.  A measure of the interdependence of the random variables 𝜛 and 𝜍 is 

described by the correlation coefficient.  The classical coefficient of correlation as,

𝑐𝑜𝑟𝑟 ≜
𝜎2

𝜛𝜍

𝜎2
𝜛𝜎2

𝜍
 .  (5.0.17)

Typical values range from -1 (strong negative relationship) to +1(strong positive relationship).  In the 
case of a strong positive relationship, if random variable 𝜛 increases, then 𝜍 will increase also.  In the 
case of a strong negative relationship, if random variable 𝜛 decreases, then 𝜍 will increase.

5.1. Copula
There are several forms of copula functions available to couple PDFs.  Insight into the random 
variable interdependency is useful, however it is difficult to determine.  Using techniques such as 
mesoscale modeling may help provide insight into the coupling of the variables.  For the purpose of 
this work, we present the following copula function from Gumbel [10,11] (also known as the Farlie-
Gumble-Morgenstern (FGM) copula),

𝐹(𝜛,𝜍) = 𝐹(𝜛)𝐹(𝜍){1 + 𝜗[(1 ― 𝐹(𝜛))(1 ― 𝐹(𝜍))]}  (5.1.1)

where 𝐹(𝜛,𝜍) is the bivariant CDF of random variables 𝜛 and 𝜍, 𝐹(𝜛) is the CDF of random variable 
𝜛, 𝐹(𝜍) is the CDF for random variable 𝜍 and 𝜗 is a coupling coefficient, ( ―1 < 𝜗 < 1).  Computing 
the marginals of the JCDF using Equations 5.0.2 and 5.0.3 we arrive at,

𝐹𝜛(𝜛) = 𝐹(𝜛) = lim
𝜍→∞

𝐹(𝜛,𝜍) ,  (5.1.2)
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and
𝐹𝜍(𝜍) = 𝐹(𝜍) = lim

𝜛→∞
𝐹(𝜛,𝜍) ,  (5.1.3)

where
lim

𝜛→∞
𝐹(𝜛) = 1 ,  (5.1.4)

and
lim
𝜍→∞

𝐹(𝜍) = 1 .  (5.1.5)

To obtain the Joint Probability Density Function (JPDF) we use Equation 5.0.7 and 5.1.1.  Expanding 
Equation 5.1.1 and taking the first derivative in x, we derive,

𝐹(𝜛,𝜍) = 𝐹(𝜛)𝐹(𝜍) +𝜗𝐹(𝜛)𝐹(𝜍) ―𝜗𝐹(𝜛)2𝐹(𝜍) ―𝜗𝐹(𝜛)𝐹(𝜍)2 +𝜗𝐹(𝜛)2𝐹(𝜍)2,  (5.1.6)

and

∂𝐹(𝜛,𝜍)
∂𝜛 = 𝑓(𝜛)𝐹(𝜍) +𝜗𝑓(𝜛)𝐹(𝜍) ―𝜗2𝐹(𝜛)𝑓(𝜛)𝐹(𝜍) ―𝜗𝑓(𝜛)𝐹(𝜍)2 +𝜗2𝐹(𝜛)𝑓(𝜛)𝐹(𝜍)2.

(5.1.7)

Lastly, taking the second derivative in 𝜍 and collecting terms,

∂𝐹(𝜛,𝜍)
∂𝜛∂𝜍 = 𝑓(𝜛,𝜍) = 𝑓(𝜛)𝑓(𝜍){1 + 𝜗[(2𝐹(𝜛) ― 1)(2𝐹(𝜍) ― 1)]}.  (5.1.8)

The marginals of Equation 5.1.8 are computed using Equations 5.0.9 and 5.0.10 resulting in the 
following,

𝑓𝜛(𝜛) = 𝑓(𝜛) = ∫∞
―∞ 𝑓(𝜛,𝜍)𝑑𝜍,  (5.1.9)

and
𝑓𝜍(𝜍) = 𝑓(𝜍) = ∫∞

―∞ 𝑓(𝜛,𝜍)𝑑𝜛.  (5.1.10)

5.2. Example:  Stochastic Reactive Flow with Damage
The modeling of damaged energetics has been performed in several forms in the past.  Here we present 
another path for modeling damaged energetic materials in the aspect of energetic ignition.  One of the 
challenges is to define what damage physically represents since direct measurements of damage do not 
currently exist.  Here, we will define damage as the creation of additional surface area within the 
energetic without causing volume changes.  This is a similar modeling approach developed at SNL 
with the resulting model called the DaMaGe Induced Reaction model (DMGIR) [20].   Experiments 
were performed where energetics ignited under given loadings producing ignition that is not 
sufficiently modeled using our classic Standard Detonation Transition (SDT) pressure-based modeling 
techniques.  In the previous modeling approach, damage is modeling the increase in surface area, that 
does not produce a volume change.  Other definitions of damage include the concept of increased 
surface area with the increase in porosity, and here we will consider the porosity as a separate physical 
process that is not considered a damaged process.  Specific damage processes are not separated in this 
analysis, therefore crack formation, decohesion, etc. are all combined as, “damage”.  
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The problem of interest centers on determining when reaction takes place, that defines an “ignition” 
condition.  To define an ignition condition, a model is needed to describe the reaction and the damage 
“enhanced” reaction behavior.  Therefore, we appeal to a stochastic model, specifically, a JPDF is 
required to couple the reaction and damage to define an averaged mass/energy source as needed for 
the Multiple Component (MC) computational shock physics code [7].  To describe the reaction 
behavior, we appeal to a reaction progress random variable, 𝜆, where 0 < 𝜆 < 1.  A similar process 
has been performed using the “Ignition and Growth” model [8] and rather than using the “Ignition 
and Growth” model, an Arrhenius model will be used for this analysis.  The reaction progress random 
variable as,

𝑑𝜆
𝑑𝑡 = 𝐶+

𝑠
𝛾𝑠

,  (5.2.1)

where 𝐶+
𝑠  is the mass exchange rate and 𝛾𝑠 is the true density of the condensed (solid) phase.  A 

reasonable approximation of the thermal field at the microstructural level as related to the reaction 
progress random variable is,

𝑇~𝑇0 +
∆𝐻𝑟𝑒𝑙𝜆

𝛾𝑠𝐶𝑝
,  (5.2.2)

where 𝑇 is temperature, 𝑇0 is the initial temperature, ∆𝐻𝑟𝑒𝑙 is the change in energy due to reaction 
and 𝐶𝑝 is the specific heat at constant pressure.  Therefore, the proposed model for the mass exchange 
rate is given as,

〈𝐶+
𝑠 〉 = ― 𝛾𝑠∫1

0 ∫1
0 𝐴𝑒

―𝐸𝑎
𝑅𝑇 𝐺(𝔻)𝑓(𝔻,𝜆)𝑑𝔻𝑑𝜆,  (5.2.3)

where 𝑓(𝔻,𝜆) is the JPDF as defined in terms of damage random variable, 𝔻 (0 < 𝔻 < 1), and the 
reaction progress random variable, 𝜆; also 𝐴 and 𝐸𝑎 are model constants and 𝑅 is the gas constant.  𝐺
(𝔻) reflects the change in specific surface area as defined by the damage random variable, 

𝐺(𝔻) = 1 + 𝐵𝔻𝔻𝑚𝔻,  (5.2.4)

where 𝐵𝔻 and 𝑚𝔻 are model constants.   From above, the undamaged material is reflected as 𝐺(𝔻)
= 1 and as 𝔻→1, the surface area changes increase the mass exchange rate 𝐺(𝔻) = 1 + 𝐵𝔻.  The 
model parameter 𝐵𝔻 maybe set to 𝐵𝔻 ≫ 0, thus greatly enhancing the reaction process.  Similar to 
the spall fracture problem presented in Chapter 3, we have the evolution of the random damage and 
reaction progress variables on the particle.  The drift function for the damage random variable on the 
particle is given as (Equation 3.2.1),

𝑑𝔻
𝑑𝑡 = (𝔻0 ― 𝔻)

𝜏0
𝑒

―(𝑈―𝛾𝑆)
𝑘𝑇𝐴 ,  (5.2.5)

where  𝑇 is provided by Equation 5.2.2, 𝑈and 𝛾 are model constants, 𝑆 is stress, 𝑘 is Boltzmann’s 
constant, 𝐴 is Avogadro’s number, 𝔻0 = 1.58, 𝜏0 is a time constant of 1e-13.  The reaction progress 
random variable on the particle is given as,
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𝑑𝜆
𝑑𝑡 = 𝑒

―𝐸𝑎
𝑅𝑇 .  (5.2.6)

As was in the case of Chapter 3, a particle method is used to define the moments of the random 
variables 𝔻 and 𝜆.  The ordinary differential equations in Equation 5.2.5 and 5.2.6 contain the 
dependence of both 𝔻 and 𝜆.  The correct application of the Ito Calculus is to define the Stochastic 
Differential Equations (SDEs) on a particle where information for 𝔻 and 𝜆 are carried by the particle.  
Just as in the case of stochastic spallation in Chapter 3, a diffusion model is assumed.  Potentially, 
meso-scale modeling or representative volume elements can provide insight to these descriptions, 
however for the purpose of this analysis and exponential function is used, Equation 3.1.1.  The 
explicitly integrated SDE for the damage random variable on the particle is given as, 

𝔻𝑛+1 = 𝔻𝑛 + (𝔻0 ― 𝔻𝑛)
𝜏0

𝑒
―(𝑈―𝛾𝑆)
𝐵𝑜𝑙𝑡𝑧𝑇𝐴 ∆𝑡 + 𝑘𝔻1𝑒𝑘𝔻2𝑡𝜉 ∆𝑡.  (5.2.7)

where 𝑘𝔻1 and 𝑘𝔻2 are model coefficients, 𝑡 is scaled time, ∆𝑡 is the change scaled time and 𝜉 is 
random number, (01) generated by a random number generator.  The explicitly integrated SDE for 
the reaction progress random variable on the particle is given as,

𝜆𝑛+1 = 𝜆𝑛 + 𝑒
―𝐸𝑎
𝑅𝑇 ∆𝑡 + 𝑘𝜆1𝑒𝑘𝜆2𝑡𝜉 ∆𝑡.  (5.2.8)

where 𝑘𝜆1 and 𝑘𝜆2 are calibration coefficients.    

The JPDF is generated using the copula described above in Section 1, Equation 5.1.6.  The CDF for 
the damage random variable is assumed to be the Weibull as was done in Chapter 3,

𝐹(𝔻) = 𝐹𝔻(𝔻) = 1 ― 𝑒― 𝔻
𝜆𝑤

𝑘𝑤

,  (5.2.9)

and the PDF is,

𝑓(𝔻) = 𝑓𝔻(𝔻) =
𝑘𝑤

𝜆𝑤

𝔻
𝜆𝑤

𝑘𝑤―1
𝑒

― 𝔻
𝜆𝑤

𝑘𝑤

.  (5.2.10)

The CDF for the reaction progress random variable is assumed to be the Fréchet model as was done 
in Chapter 4,

𝐹(𝜆) = 𝐹𝑟(𝜆) = 𝑒― 𝜆
𝑠𝐹

―𝛼𝐹

,  (5.2.11)

and the PDF is,

𝑓(𝜆) = 𝑓𝜆(𝜆) =
𝛼𝐹

𝑠𝐹

𝜆
𝑠𝐹

―1―𝛼𝐹
𝑒― 𝜆

𝑠𝐹

―𝛼𝐹

.  (5.2.12)

Furthermore, the correlation coefficient using the above PDFs for damage and reaction progress is 
used to solve for the coupling coefficient.  The correlation coefficient, 𝑐𝑜𝑟𝑟, can be determined using 
the particle field.  Therefore, using the JPDF, Weibull PDF and the Fréchet PDF we can determine 
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the relationship of the correlation coefficient to the coupling coefficient, 𝜗.  The variance of the 
Weibull PDF is computed as,

𝜎2
𝔻 = 𝜆𝑤

2 Γ 1 + 2
𝑘𝑤

― Γ 1 + 1
𝑘𝑤

2
 (5.2.13)

and for the Fréchet PDF where (𝛼𝐹 > 2),

𝜎2
𝜆 = 𝑠𝐹

2 Γ 1 ― 2
𝛼𝐹

― Γ 1 ― 1
𝛼𝐹

2
 (5.2.14)

Using Equation 5.0.11, we compute the covariance using the JPDF, Weibull PDF and the Fréchet 
PDF as,

𝜎2
𝔻𝜆 =  𝜗 𝜇𝔻𝜇𝜆 ― 𝜇𝜆𝑠𝐹2

1
𝛼𝐹Γ 1 ― 1

𝛼𝐹
+ Γ 1 + 1

𝑘𝑤
2𝜆𝑤 ― 𝜆𝑤

2
1

𝑘𝑤

𝜇𝜆 ― 𝑠𝐹21+ 1
𝛼𝐹Γ 1 ― 1

𝛼𝐹
 

(5.2.15)

Using Equation 5.0.17, the correlation coefficient (corr) is computed using the particle field.  Once 
the correlation coefficient is computed, the coupling coefficient may be computed by combining 
Equations, 5.2.13-5.2.15 and Equation 5.0.17 as:

𝜗 =
𝑐𝑜𝑟𝑟 𝜆𝑤

2𝑠𝐹
2 Γ 1 + 2

𝑘𝑤
― Γ 1 + 1

𝑘𝑤

2
Γ 1 ― 2

𝛼𝐹
― Γ 1 ― 1

𝛼𝐹

2

𝜇𝔻𝜇𝜆 ― 𝜇𝜆𝑠𝐹2
1

𝛼𝐹Γ 1 ― 1
𝛼𝐹

+ Γ 1 + 1
𝑘𝑤

2𝜆𝑤 ― 𝜆𝑤

2
1

𝑘𝑤

𝜇𝜆 ― 𝑠𝐹2
1+

1
𝛼𝐹Γ 1 ― 1

𝛼𝐹

 .  (5.2.16)

5.3. Result
To demonstrate this use of this stochastic modeling approach, we will be modeling a piston impacting 
a billet of Composition B energetic material (40% TNT and 60% RDX) in one-dimension, Figure 5-
1.  The impact velocity of the piston is 250 ms/s.

Figure 5-1. Piston impact of Composition B energetic material

Piston
50 cm

V
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For the stochastic ignition process, the Fréchet Probability Density Function (PDF) is chosen, and 
for the stochastic damage evolution process the Weibull PDF is chosen.  The PDF’s are coupled using 
the copula given in Equation 5.1.1 and the initial coupling coefficient is computed from the PDFs 
initial conditions using Equation 5.2.16.  The Fréchet distribution is initialized to a near constant room 
temperature, Figure 5-2, and the Weibull distribution is initialized to a near 0 damage state of the 
energetic, Figure 5-3.

Figure 5-2. Fréchet probability density function initial state.

Figure 5-3. Weibull probability density function initial state.

The damage model is calibrated to Hopkinson Bar data generated by Thompson, et al. [21].  This 
calibration fit is shown below for Composition B in tension and compression, in Figures 5-4 and 5-5.  
To support this material behavior the damage model was modified to support the tension and 
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compression failure state of the material.  The same Weibull distribution model is assumed in tension 
and compression.  The model coefficients are provided in Table 5-1.

Table 5-1 Kinetic Theory of Fracture parameters for Composition B
U 

(erg/mole)
Gamma

(1/(dynes/cm^2)) 
Tension 1.08E5 7300

Compression 1.14E5 7300

Figure 5-4. Tension failure model calibration (data in blue and the model fit in orange).

Figure 5-5. Compression failure model calibration (data in blue and the model fit in orange).
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A statistical sample size of 100 realizations were chosen to capture the stochastic ignition of the 
Composition B material, therefore 100 analyses have been performed.  The ignition of the energetic 
was assumed when the product gas exceeded a temperature of approximately 3500 K. This 
temperature was chosen because it is approximately the Chapman-Jouguet temperature, 3544 K, for 
reacted Composition B when the reactive wave travels at the detonation velocity.  At this ignition 
point the ignition temperature, time and location were recorded.   The resulting mean gas temperature 
is shown in Figure 5-6.  

 
Figure 5-6.  Gas Temperature at ignition of Composition B with piston velocity at 250 m/s.

The mean gas temperature is 4114 K at ignition and a deviation of 252 K.  The resulting ignition 
time is shown in Figure 5-7.
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Figure 5-7. Ignition time of Composition B with piston velocity at 250 m/s.

The average ignition time is 8.06e-5 seconds and the deviation is 2.13e-6 seconds.  The resulting 
ignition location is shown in Figure 5-8.

Figure 5-8. Ignition location of Composition B with piston velocity at 250 m/s.

The initial location front of the Composition B is at 0 cm.  The average ignition location is 6.15 cm 
with a deviation of 0.635 cm.  The resulting damage state at ignition is shown in Figure 5-9.
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Figure 5-9. Damage state at ignition of Composition B with piston velocity at 250 m/s

The average damage at ignition is 0.96 and the deviation is 0.026.  

To further illustrate the use of the coupled damage and reaction model with stochastics, we have 
recorded the PDF coefficients and the coupling coefficient in Table 5-2.  These values are recorded 
at the ignition point.

Table 5-2 JPDF model coefficients at ignition
Time (s) 𝑘𝑤 𝜆𝑤 𝛼𝐹 𝑠𝐹 𝜗

0 3.9 4.60e-9 7.50 3.47e-11 -6.80e-3
60e-6 75.8 0.95 20.2 7.63e-5 -0.12

79.2e-6 46.1 0.95 3.10 0.09 -6.17e-4

The initial (time zero) condition of the energetic material JPDF is plotted in Figure 5-10.  The range 
of the JPDF is (0 >  𝔻 > 1) for damage and (0 >  𝜆 > 1) for the reaction progress.  However, at the 
initial condition, the values are near 0, so the axis ranges have been altered for visualization purposes.  
The JPDF is plotted at 60e-6 seconds in Figure 5-11 where the data is taken from the computational 
cell with the highest temperature in the energetic material.  The cell data shows the damage is near a 
value of 1 and the reaction is still near 0.  The damage is due to the impact and reaction is seen to start 
building, but ignition has not occurred.  At ignition, time 79.2e-6 seconds for this instance, the 
resulting JPDF is provided in Figure 5-12.  The damage state is approximately the same as at 60e-6 s, 
however the reaction progress variable has change by ~5 orders of magnitude.  The reaction progress 
variable is ~ 0.12 at ignition.  The reaction is enhanced by the damage and for this instance, the 
reaction is enhanced ~4 times the undamaged material.  In Equation 5.2.3, the mass exchange rate 
includes the coupled damage and rate of reaction.  Figure 5-13 is provided to help visualize the JPDF 
by changing the plot range.
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Figure 5-10. initial JPDF for Composition B.

Figure 5-11. JPDF for Composition B at 60e-6 seconds. 
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Figure 5-12. JPDF for Composition B at 79.2e-6 seconds. 

Figure 5-13. Magnified JPDF for Composition B at 79.2e-6 seconds.



50

A second set of analyses were performed where damage of the energetic is neglected from the solution.  
Once again, a statistical sample size of 100 realizations were chosen to capture the stochastic ignition 
of the Composition B material, therefore 100 analyses have been performed.  The ignition of the 
energetic was once again assumed when the product gas exceeded a temperature of approximately 
3500 K.  The resulting mean gas temperature is shown in Figure 5-10.  

Figure 5-14.  Gas Temperature at ignition of Composition B with piston velocity at 250 m/s without 
damage modeling.

The mean gas temperature is 4224 K at ignition and a deviation of 305 K.  The resulting ignition 
time is shown in Figure 5-11.
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Figure 5-15. Ignition time of Composition B with piston velocity at 250 m/s without damage 

modeling.

The average ignition time is 1.75e-4 seconds and the deviation is 9.82e-6 seconds.  The resulting 
ignition location is shown in Figure 5-12.

Figure 5-16. Ignition location of Composition B with piston velocity at 250 m/s without damage 
modeling.

The initial location front of the Composition B is at 0 cm.  The average ignition location is at 4.4 cm 
with a deviation of 1.53 cm.  
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From the results above the inclusion of the damage results in an increase in the reaction rate of the 
energetic material resulting in a decrease to ignition time as seen by comparing Figures 5-7 and 5-11.  
The inclusion of damage is shown to reduce the variability in the solution as compared to the no 
damage solution.  As damage progresses, the mass exchange rate increases due to the increasing 
surface area, thus reducing the time to ignition.  The diffusion model used in the solution is dependent 
on the solution time, where more diffusion is present in the solution as the ignition time increases, see 
Equations 5.2.7 and 5.2.8.  In addition, the diffusion model is based upon Brownian motion and the 
type of diffusion model chosen.  As time increases the amount of diffusion increases, thus increasing 
the variability in ignition time and position.       
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6. CONCLUSION
In conclusion, this report discusses three stochastic modeling approaches using random variables to 
capture stochastic processes.  The stochastic methods are based in computational shock physics 
coupled with a particle method to solve a set of random variables computed using Stochastic 
Differential Equation (SDEs).  This approach applies stochastic methods to the material and/or 
exchange model where the SDE is used to describe effects at the microstructural length scale.  The 
microstructural effects modeled by the stochastic processes greatly affect the outcome of an event.  
Examples of spallation of materials and the reaction of energetic materials has been presented.  In the 
case of spallation, the nucleation of cracks at the microstructure length scale, coalesce forming a 
macrocrack.  In the case of energetic reaction, energy localization at the microscopic length scale 
causes ignition of the energetic at the macroscopic level.  

In this report, damage, temperature and/or reaction have been selected as random variables in three 
example applications.  The collection of particles in the computational cell is used to describe the 
fluctuations of temperature, crack nucleation (damage) or energy localization effects (reaction).  These 
fluctuations are captured by binning the random variables across the particle field in the computational 
cell.  From the particle binning process, a mean and variance are computed, and these values are used 
to compute characteristic values of a chosen Probability Density Function (PDF).  The PDF is used 
to compute an averaged macroscopic quantity in the computational grid cell describing the effect of 
the random variable on the material behavior.  The choice of the random variable is one of the most 
critical aspects of the stochastic modeling process.

Three distinct stochastic modeling methods have been presented where each method has strengths 
and weaknesses.  In all three methods, particles are the basis for computing a mean and variance of 
each random variable.  The first method, is based upon a single random variable and the third method, 
is based upon the coupling of N-random variables.  Both methods use an arbitrary diffusion model.  
The random variable evolves in time “arbitrarily” without the constraint of an assumed PDF on the 
particle.  In the case of method two, the diffusion model is based upon a chosen PDF where the 
evolution of the random variable on the particles preserves the PDF distribution.  Both the diffusion 
and drift models are determined based upon the PDF and the forward and backward Kolmogorov 
equations.  Using the distribution of the random variable on the particle, the mean and variance are 
computed from the particle field in the computational grid cell.  

All methods compute an average macroscopic quantity in the computational grid cell that describes 
the effect of the random variable on the material behavior.  Using the mean and variance computed 
from the distribution of the random variable on the particle, coefficients of a PDF are computed.  For 
method one, where the diffusion model is arbitrary, the coefficients are computed for an assumed 
PDF.  For method two, the coefficients are computed for the PDF that defined the diffusion model.  
For method three, the coefficients for the marginals from the Joint Probability Distribution Function 
(JPDF) are computed.  Using the PDF or JPDF, an averaged macroscopic material property or 
material state is computed.

Lastly, as the choice of the random variable is one of the most critical steps, choosing the PDF or 
JPDF is also one of the most critical steps of the stochastic modeling process.  The choice may be 
determined several ways and two examples are meso/microscale analysis and experimental data.  
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