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Background and Motivation

Soot emissions are a health and climate concern, are
regulated from ground transport sources, and are an
area of concern for aviation

Soot formation chemistry is very complex & semi-fused
aggregate morphology of soot particles makes surface
growth and oxidation rates difficult to predict

Phenomenological soot models are tuned to match
limited sets of data based on soot concentrations and, in
some cases, mobility size distributions from physically
probing laminar flat flames
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Background and Motivation

In many applications, the formation of soot impacts the
temperature field through its radiant emission and
absorption (i.e. it forms a participating media)

There are few datasets for soot formation in turbulent
flames that are conducive to modeling, particularly when
there is significant turbulence and sufficient soot to
affect the T field

Previously we have reported on soot concentrations and
radiant emission profiles for ethylene and JP-8 fuels —
herein focus on soot T distributions in these flames
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Experimental Approach — Sooty Piloted Turbulent
Non-Premixed Jet Flames

Utilize design knowledge of TNF
Workshop flames to produce piloted
(attached), fully developed turbulent jet
flames with conditioned air coflow

ID = 3.35 mm surrounding the flame
(pilot = 2% of jet heat release)
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Reference Flame: Re = 20,000

Focus on Re = 20,000
flame — minimize

buoyancy effects and fast-shutter

local extinction events: SLR camera
images
24.0 kW heat release (ethylene
flame height ~ 870 mm flames)
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Soot Temperature/Concentration Measurements

3-line technique, combining soot extinction and 2-color pyrometry

e ceramic (Al,O;) probes (6.35 mm OD) define probe volume: 10 mm long line

Experimental arrangement Typical time record
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Soot LIl and OH PLIF Measurements

LIl: 300—600 nm | OH: 305=320 nm
50-ns prompt detection PAH: 330-480 nm

(fast-gating)

ICCD

(512X512)
LIl Imaging

To Powe/ Meter
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OH/PAH LIF Imaging
Nd:YAG Laser

1064 nm
66 mJ/pulse

2 mJ/pulse
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Results: LII-Derived Mean Soot Concentrations
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Simultaneous
OH PLIF/LII
Images Provide
Key Insights
into Soot T
Trends
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Low

consumption of fuel and
vortical motions break

apart fuel-rich regions;

radiation loss continues

flame is wider, vortical motions
distribute soot, radiation loss
decreases peak T

soot rarely forms, and
then only in vortices
near the flame sheet



Results:
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PDFs of Soot Temperature in Ethylene Flame
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Results: PDFs of Soot Temperature in JP-8 Surrogate Flame
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In Summary
e Soot temperatures are highest low and in outer radial positions (towards
flame edge) in both ethylene and JP-8 surrogate flames

e Soot temperatures in outer radial positions consistently fall with
increasing height, presumably due to radiant losses from flames

e Soot temperatures along centerline decrease shortly after inception, then
stay fairly constant with height

e Soot temperatures in the JP-8 surrogate flame are consistently lower than
those in the ethylene flame, by approximately 100 K

e This combined data set of soot f, and T (+ radiation), makes for a
challenging target for modelers
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