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2 | Introduction

* Leading edge erosion (LEE) is a prominent issue for wind turbine blade reliability, causing
gradual performance decrease and persistent maintenance costs

* Main driver of erosion is the impact of rain droplets on leading edge of blade
* Erosion rate typically has an incubation period with little damage, then a linear growth period

* A model of the power loss due to erosion has been developed based on wind tunnel tests of
simulated eroded airfoils

* The present work aims to validate the loss predicted in this model through the comparison of
turbines with unrepaired LEE damage to repaired turbines with protection tape
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[3] Maniaci, D.C., Westergaard, C., Hsieh, A., and Paquette, J.A., Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance, in Torque 2020.




Erosion Model: Steady State Power Curve Erosion Effect

* Steady state power curve of the NRT* turbine simulated using AeroDyn from the OpenFAST

code suite
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[3] Maniaci, D.C., Westergaard, C., Hsieh, A., and Paquette, J.A., Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance, in Torque 2020. 2020.
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*NRT (National
Rotor Testbed)
is deployed at
Sandia’s SWiFT
facility, it is
27m diam.
functionally
scaled version
of a 2000’s era
utility turbine.



Erosion Model: Probabilistic Power Curve Uncertainty Analysis

* Monte Carlo sampling was conducted to randomly sample 10,000 simulations, each 10 minutes long, for each of the four
erosion categories

* Dakota’ used for UQ analysis, with TurbSim* for inflow and OpenFAST* for turbine simulation

* Uncertain aleatoric parameters: hub-height wind speed, turbulence intensity, shear exponent, air density, yaw offset,
collective blade pitch

*  Power increase at low wind speeds due to small number of samples relative to inflow variance
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[3] Maniaci, D.C., Westergaard, C., Hsieh, A., and Paquette, J.A., Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance, in Torque 2020. 2020
[4] NWTC Information Portal (OpenFAST)," ed. https://nwtc.nrel.gov/OpenFAST. Last modified 14-June-2016; Accessed 05-December-2019

[5] Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual. Sandia National Laboratories. SAND2014-4633.



7 | Erosion Model: AEP Impact from Probabilistic Power Curve Analysis

* Annual energy production relative to no erosion for a range of mean wind speeds using a Rayleigh
wind distribution, based on the probabilistic power curve cloud results.

Annual Energy Production Loss due to Erosion, Model Predicted

Mean Wind Speed (m/s)
Erosion Category 4 6 7.5 8.5 10
0 0.0% 0.0% 0.0% 0.0% 0.0%
2 -1.0% -0.9% -0.7% -0.6% -0.4%
3 -1.9% -1.6% -1.3% -1.1% -0.8%
4 -3.0% -2.6% -2.2% -1.9% -1.6%
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Field Data Analysis

*Archival SCADA data from the turbines and nearby meteorological
towers was collected in 10-minute records.
* Measurements include windspeed, wind direction, temperature, atmospheric

pressure, power production, turbine state, and nacelle direction, among other
channels.

*The data 1s corrected by comparing multiple measurements of the same
i]ﬁantity when possible. Power curves are then calculated according to
C 61400-12 [10] for each turbine over smaller time intervals.

*The power curves were then quantified by mean, standard deviation, and
other metrics over windspeed bins.

* Combining these data points across all the smaller intervals givesa
multivariate time series. From this, any systematic reduction in productivity
was identified.

*Specifically focusing on a pair of Class 4 level erosion wind turbines,

Turbine B was repaired in September 2019, while its pair Turbine A was

not repaired.

* Comparing the power generated by each turbine at a given 10-minute time bin

will allow the change in performance based on the repairs to be assessed.

* The data to compare these turbines spans from January 2016 to June 2020, which

does limit the data available post-repairs.

[10] IEC 61400-12-1:2017 Wind energy generation systems - Part 12-1: Power performance measurements of electricity producing wind turbines, International Electrotechnical Commission, 2017.

Example Cat4 Erosion



Turbine Data Comparative Analysis

Power Curve (Month 4 ) Paired Turbines A and B

Before Repairs After Repairs
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*In the exploratory analysis, powet
curves for matched pairs before
and after repairs were made using
the wind speed binning method

described in IEC 61400-12 [10].

*Some months showed Scaled Wind Speed Scaled Wind Speed
improvement in Turbine B1 after

repairs, while some showed little
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*Some observations showed
underperformance during below
freezing temperatures which
atfects the wind speed bin mean
power output in some of the
curves.
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[10] IEC 61400-12-1:2017 Wind energy generation systems - Part 12-1: Power performance measurements of electricity producing wind turbines, International Electrotechnical Commission, 2017.



Power Difference over Wind Speeds Before and After Repairs

10 I Turbine Data Comparative Analysis

*The model shows an increase in Turbine B1’s
power generated compared to Turbine Al, after
Turbine B1 was repaired.

*The final model included the following

predictors:
* Indicator of Turbine B1 having been repaired - o0, NTEURR N N DU | W A N .
* Alr Temperature

* Wind Speed
* Power Generated by Turbine Al

Difference in Normalized Power Generated (TurB - TurA)

Turbine B Repair Status
0.005- — Repaired

* Difference in set and actual Torque Value for __p——
both turbines

* Torque for both turbines
L Month v " Scaled maﬁlrjnd Speed v v

* Two artificial variables related to air density



Turbines A1 and B1 Power Curve (Month 2, B1 Repaired)
Before Repairs After Repairs

11 I Turbine Al & Bl by Month
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applied at lower wind speeds.
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*We can still see some improvement
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12 I Turbine A2 & B2 by Month

*We can see some improvements in Turbine B2
compared to Turbine A2 after Turbine B2 is repaired.

*There are some areas that need more investigation
and filtering, such as Month 10 Turbine A2 before
repairs and Month 5 before repairs.
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Turbines A2 and B2 Power Curve (Month 5, B2 Repaired)
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13 I Low and High Wind Speed Turbine Bl Minus Turbine Al Power Difference

*Using Simulated Data based on a regression model which takes the average value for predictors for
each Wind Speed Bin (size 1 m/s) and for each month, we predict the difference for both repaired

(B1) and unrepaired Turbine (Al).
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*The low wind speeds were further filtered to have
average blade angle at least 0.
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*Alternate regression methods are being
investigated.

*Additional pairs of turbines with a range of
erosion categories will be investigated.



14 | Results Interpretation

°In region 2 operation, the computational model predicted ~1% power loss
in power for category 2 erosion, 2% for category 3, and 3% for category 4.

*The model predicted relatively constant percentage power loss across region
2, quickly dropping to zero loss as rated power was reached.

*The comparative turbine field data analysis showed a peak power loss similar
to the model predictions in repaired versus unrepaired power at lower wind

speeds.

*The disagreement in the magnitude of power loss at higher wind speeds due
to erosion indicate improvements are needed in the computational model
and the field data analysis, which are currently underway.

* Additionally, more field data is anticipated.



15 Conclusions

*Field data of two turbines was compared to assess the change in performance before and
after leading edge erosion repairs.

*A statistical analysis was performed to assess whether the measured performance difference
was plausible, and the analysis showed that there was an improvement in power with the
repatrs that was statistically significant, but less than the erosion model predictions.

*Despite the differences between the trend of power loss with wind speed due to LEE from
the model Eredictions and the field data analysis, the observation that both data sets show
similar peak power loss in region 2 is encouraging toward future model improvements and
data analysis.

Future Work

*Future work will include cont_inued analysis over a longer time period and using more
turbines with a range of erosion categories.

*A predictive computational model will be developed that more directly represents the
turbines specific to this site.

*A probabilistic simulation of the specific site conditions over the test period will also be
deployed to better represent observed var1ab1ht¥, measurement uncertainty, and turbine
condition uncertainty for comparison to the field data.

*An uncertainty analysis of the field data and modeling data will allow for a direct
comparative analysis, allowing for validation of the computational model.
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