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Background2

Detailed structural analysis and design 
optimization is complex, open-ended

Critical considerations:

◦ Performance requirements

◦ Objective/constraints

◦ Optimization methodology

◦ Design space definition



Common Challenges in Structural Optimization3

Many common methods, such as 
genetic algorithms and particle swarm, 
require many evaluations of  objective 
function (high computational cost for 
high fidelity contexts).

Robust, global search but number of  
design variables can be limited by cost.  
Good for low-fidelity applications.

Low-fidelity structural truss analysis

Finite element beam modeling



Common Challenges in Structural Optimization4

Gradient-based methods are 
efficient for problems with many 
design variables, can be favorable 
for high-fidelity optimization 
[ref  1].

If  design space not defined 
carefully, optimizer can stall or 
produce solutions that are not 
feasible to fabricate. 

Detailed 2D cross-sectional model of a wind 

blade.

Detailed 3D finite element shell model of a wind 

blade.



Solutions to Challenges in Gradient-Based Optimization5

Interpolation between pre-determined 
points a common method for defining 
design space [ref. 2,3].

Though it may often be effective, 
interpolation can lack the flexibility to 
adapt to “hot spots” or small 
problematic areas that drive the 
design.



Solutions to Challenges in Gradient-Based Optimization6

An alternative to conventional 
interpolation is to let all spanwise 
variables be active and apply a smoothing 
operator to preserve continuity

Least-squares homogenization is one 
method of  smoothing



Least-Squares Homogenization7

Let 𝒙 be a vector of  length 𝑛 with a given set of  values.  A modified set of  variables 
𝒙′ with greater continuity and smoothness can be formed by minimizing the sum of  
squared residual of  the following two sets of  equations:

𝒙′ = 𝒙

𝑥𝑖
′ = 𝑥𝑖+1

′

⟹ 𝜇 𝑥𝑖
′ − 𝑥𝑖+1

′ = 0 𝑓𝑜𝑟 𝑖 = 1…𝑛 − 1

Where 𝜇 is a scalar smoothing factor.  This factor controls the strength of  the 
smoothing effect, and provides a way to control the balance between adaptability 
and smoothness.



Analytical Example8

For demonstration of  concept, consider the closed-form analytical objective 
function:

𝐿 𝒙 = ෍

𝑖=1

𝑛

𝑐𝑖𝑥𝑖 + 𝑘𝑖
1

𝑥𝑖

2

The above bears a simplified resemblance to the total mass of  a structure, with a 
penalty term on stress with 𝑥𝑖 representing the thickness of  the 𝑖𝑡ℎ spanwise section.

Seek to minimize 𝐿(𝒙) with respect to 𝒙.



Analytical Example9

For 100 randomly generated variations of  𝒌 in the objective function, perform the 
following 2 tests:

Test 1: Minimize 𝐿 𝒙 with 𝒙 interpolated between a decreasing number of  selected points

Test 2: Minimize 𝐿(𝒙) with all 𝒙 active, with an increasing smoothing factor



Analytical Example10

Interpolation Point Spacing

2 4 8 16 32

Objective Error 1.55E-02 2.26E-02 2.60E-02 2.75E-02 2.84E-02

Iterations to 

Convergence
42 49 54 36 25

Least-Squares Smoothing Factor

0 0.5 1 2 4

Objective Error 1.73E-15 4.45E-15 5.02E-04 7.51E-03 1.63E-02

Iterations to 

Convergence
32 26 66 187 464

Results for cases with 𝒙 interpolated between key points, averaged 

across all 100 variations of  the objective.

Results for cases with smoothing factor applied on 𝒙 averaged 

across all 100 variations of  the objective



Example: Finite Element Wind Blade Model11

Model specifications:

◦ Length: 100 meters

◦ Construction: Fiber glass composite for 
spar caps, reinforcements, skins, 
medium density foam for panel and 
shear web filler

◦ Pre-determined outer mold line/airfoil 
distribution, held constant for present 
analysis.

◦ Thickness of  spar caps, core panels, 
leading and trailing edge reinforcements, 
shear webs and shell skin defined as 
design variables at 30 sections along the 
blade span.

100 m

30 sections



Example: Finite Element Wind Blade Model12

Loading:  Generated from results of  aeroelastic simulation using OpenFAST [ref. 4], 
a tool out of  National Renewable Energy Laboratory (NREL).

Analysis:  Finite element analysis and objective sensitivity run with AStrO, an in-
house open-source code.

Optimizer:  Gradient-based optimizer in MATLAB, fmincon.

Test 1:  Minimize mass of  blade with constraint on maximum stress by changing 
section thicknesses, with thicknesses interpolated between an increasing number of  
pre-selected spanwise sections.

Test 2:  Minimize mass of  blade with constraint on maximum stress by changing 
section thicknesses, with all sections active using an increasing smoothing factor.



Example: Finite Element Wind Blade Model13

Interpolation Point Spacing

2 4 8 16

Normalized Objective

(scaled to initial value)
0.420 0.403 0.362 0.536

Iterations to 

Convergence
26 12 18 54

Least-Squares Smoothing Factor

0.5 1 2 4

Normalized Objective

(scaled to initial value)
0.403 0.390 0.411 0.346

Iterations to 

Convergence
51 85 39 22

Results for cases with spanwise component thicknesses 

interpolated between key points

Results for cases with smoothing operator applied to the spanwise 

thickness



Example Comparison of Final Design, Leading Edge 
Suction Side Filler

14

Thickness interpolated at spacing of  2

Thickness interpolated at spacing of  8

Thickness smoothed at factor of  0.5

Thickness smoothed at factor of  4

Thickness (m)

Spanwise Position (x/L)

Thickness (m)

Thickness (m) Thickness (m)

Spanwise Position (x/L)

Spanwise Position (x/L)Spanwise Position (x/L)



Discussion15

In analytical case, trends were seen in improved solution quality with smoothing 
operator compared to interpolation, but poorer quality and slower convergence for 
very high 𝜇.

Trends are less clear and conclusive for wind blade optimization, but most overall 
favorable result was with a smoothing factor of  4.  Optimizations using very low 
interpolation spacing or very small smoothing factors are prone to stall in 
convergence or produce infeasible solutions.
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Least Squares Homogenization18

[𝐼]
[Μ]

𝒙′ =
{𝒙}
{0}

In the above, [𝐼] is the 𝑛 × 𝑛 identity matrix and Μ is an (𝑛 − 1) × 𝑛 matrix with 
𝜇 on all diagonal terms and −𝜇 on the first band above diagonal,

𝜇 −𝜇 0 0 … 0 0

0 𝜇 −𝜇 0 … 0 0

0 0 𝜇 −𝜇 … 0 0

0 0 0 𝜇 … 0 0

⋮ ⋮ ⋮ ⋮ ⋱ −𝜇 0

0 0 0 0 0 𝜇 −𝜇

Μ =



Least Squares Homogenization19

The least squares solution can be found with QR factorization:

[𝐼]
[Μ]

𝒙′ = 𝑄 𝑅 𝒙′ =
{𝒙}
{0}

⟹ 𝒙′ = 𝑅 −1 𝑄 𝑇 𝒙
0

Since the lower portion of  the vector on the right-hand-side is zero, we can define 
our smoothing operator [𝑇] as 𝑅 −1 times the first 𝑛 columns of  𝑄 𝑇 , leaving:

𝒙′ = 𝑇 {𝒙}




