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Investigation of Spatial Smoothing

Techniques Applied to Design Variables

in Structural Optimization Problems

§ .
TS e o TN e
—— o T | I
I_“.“_ L] :l-:l =
PRESENTED BY
Evan Anderson
B . — @ENERGY AISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



, | Background

Detailed structural analysis and design
optimization 1s complex, open-ended

Critical considerations:
° Performance requirements

> Objective/constraints
> Optimization methodology

> Design space definition
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; | Common Challenges in Structural Optimization

Many common methods, such as
genetic algorithms and particle swarm,
require many evaluations of objective
function (high computational cost for

high fidelity contexts).

Robust, global search but number of
design variables can be limited by cost.

Good for low-fidelity applications.

Low-fidelity structural truss analysis

Finite element beam modeling
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+ | Common Challenges in Structural Optimization

Gradient-based methods are
etficient for problems with many
design variables, can be favorable
for high-fidelity optimization
[ref 1].

If design space not defined
caretully, optimizer can stall or
produce solutions that are not
feasible to fabricate.

Detailed 2D cross-sectional model of a wind
blade.
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Detailed 3D finite element shell model of a wind
blade.
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s | Solutions to Challenges in Gradient-Based Optimization

Interpolation between pre-determined
points a common method for defining

design space [ref. 2,3].

Though it may often be effective,
interpolation can lack the flexibility to
adapt to “hot spots” or small
problematic areas that drive the

design.
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¢ | Solutions to Challenges in Gradient-Based Optimization

An alternative to conventional
interpolation 1s to let all spanwise
variables be active and apply a smoothing
operator to preserve continuity

Least-squares homogenization is one
method of smoothing
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; | Least-Squares Homogenization

Let x be a vector of length n with a given set of values. A modified set of variables
x' with greater continuity and smoothness can be formed by minimizing the sum of
squared residual of the following two sets of equations:

x' =x

ro__
Xi = Xiyq

= ulx; —x;,,) =0 fori=1..n—-1

Where u is a scalar smoothing factor. This tactor controls the strength of the
smoothing effect, and provides a way to control the balance between adaptability
and smoothness.



s | Analytical Example

For demonstration of concept, consider the closed-form analytical objective

function:
n

2
L(X) — Z CiX; + ki (xl)

=1

The above bears a simplified resemblance to the total mass of a structure, with a

penalty term on stress with x; representing the thickness of the it" spanwise section.

Seck to minimize L(x) with respect to X.



9 ‘ Analytical Example

For 100 randomly generated variations of K in the objective function, perform the
following 2 tests:

Test 1: Minimize L(x) with X interpolated between a decreasing number of selected points
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o | Analytical Example

Results for cases with X interpolated between key points, averaged

across all 100 variations of the objective.

Interpolation Point Spacing

2

4

8

16

32

Objective Error

1.55E-02

2.26E-02

2.60E-02

2.75E-02

2.84E-02

Iterations to
Convergence

42

49

54

36

25

Results for cases with smoothing factor applied on X averaged

across all 100 variations of the objective

Least-Squares Smoothing Factor
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Objective Error

1.73E-15
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7.51E-03

1.63E-02

Iterations to
Convergence
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1 | Example: Finite Element Wind Blade Model

Model specifications:
°> Length: 100 meters

> Construction: Fiber glass composite for
spar caps, reinforcements, skins,
medium density foam for panel and
shear web filler

30 sections

> Pre-determined outer mold line/airfoil
distribution, held constant for present
analysis.

° Thickness of spar caps, core panels,
leading and trailing edge reinforcements,
shear webs and shell skin defined as P
design variables at 30 sections along the

blade span.



1 | Example: Finite Element Wind Blade Model

Loading: Generated from results of aeroelastic simulation using OpenFAST |[ref. 4],
a tool out of National Renewable Energy Laboratory (NREL).

Analysis: Finite element analysis and objective sensitivity run with AStrO, an in-
house open-source code.

Optimizer: Gradient-based optimizer in MATLAB, tmincon.

Test 1: Minimize mass of blade with constraint on maximum stress by changing
section thicknesses, with thicknesses interpolated between an increasing number of
pre-selected spanwise sections.

Test 2: Minimize mass of blade with constraint on maximum stress by changing
section thicknesses, with all sections active using an increasing smoothing factor.



i3 | Example: Finite Element Wind Blade Model

Results for cases with spanwise component thicknesses
interpolated between key points

Interpolation Point Spacing
4 8 16

Normalized Objective

(scaled to initial value)

Iterations to
Convergence

Results for cases with smoothing operator applied to the spanwise
thickness

Least-Squares Smoothing Factor
0.5 1 2 4

Normalized Objective 0.403

(scaled to initial value)

Iterations to

51
Convergence




Example Comparison of Final Design, Leading Edge
Suction Side Filler

Thickness interpolated at spacing of 2 Thickness smoothed at factor of 0.5
0.06 - - : - 0.06
“\ - \ll g
0.05 | \ | 0.05 |
\ I|
\ 0.04 | ‘| -
. 0.04 V] : | |\
Thickness (m) Thickness (m) oos| d V O\ ]
0.03 ¢ II",I / ".I\ 1 0.02 | \
0.02 | 001} \
0.01 ' ' ' ' b 0 ' ' ' '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Spanwise Position (x/L) Spanwise Position (x/L)
Thickness interpolated at spacing of 8 Thickness smoothed at factor of 4
0.045 - : . : 0.05 - - . :
0.04 —
0.04 1
0.035 | \“\\\
Thickness (m) 0.03 } Thickness (m) e ™~
0.025|
0.02 ¢
0.02
N % 02 04 o6 o8 1

Spanwise Position (x/L) Spanwise Position (x/L.)



s | Discussion

In analytical case, trends were seen in improved solution quality with smoothing
operator compared to interpolation, but poorer quality and slower convergence for

very high (.

Trends are less clear and conclusive for wind blade optimization, but most overall
favorable result was with a smoothing factor of 4. Optimizations using very low
interpolation spacing or very small smoothing factors are prone to stall in
convergence or produce infeasible solutions.
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s | Least Squares Homogenization

ol =3 = (i)

In the above, [I] is the n X n identity matrix and [M] is an (n — 1) X n matrix with
p on all diagonal terms and —u on the first band above diagonal,

u —u 0 0 0 O
0O u —u O 0 O
[M] — O 0 u —u .. 0 O
0 0 0 wu 0 O
.. —u 0

0O 0 0 O O u —u



s | Least Squares Homogenization

The least squares solution can be found with QR factorization:
ey N (%)
| & = QRIS = (]

= () = R 1e) { ]

Since the lower portion of the vector on the right-hand-side is zero, we can define
our smoothing operator [T] as [R]™? times the first n columns of [Q]”, leaving:

'} = [Tl{x}





