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an optimal solution by updating the variational
parameters on each fteration. Variational Feedback Loop for QAOA

https://overqgc.sandia.gov

If we can improve the efficiency of this classical
optimization loop by making better parameter

Quantum Approximate Optimization Algorithm (QAOA)

estimates for a given number of quantum circuit e . A
_ ] Proposed values of variational parameters Repeat until
evaluations, we can hope to improve the overall Vo vpand By B, Jariational
performance of these near-term algorithms. : ¥ g parameters
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One path for improving the performance of these algorithms is to

and abundance of classical computing resources, there is ample (L)

enhance the classical optimization technique. Given the relative ease \\ He = z hiZ; + Z]ijZiZj Hp =
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opportunity to do so.
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In this work, we aim to adapt recently-developed approaches to the Applylng PLoM to QAOA

problem of statistical learning for optimization under uncertainties in

order to formulate improved statistical estimates of variational cost Idea: a quantum computer is an “expensive” device which has inherent uncertainty in
functions from noisy quantum circuit results. measurement results. This is a scenario where the PLoM technique should be able to

provide a more faithful reconstruction of the many-dimensional landscape, which will
then provide more accurate information to the classical optimization loop.

Statistical Learning via PLoM

For example, if we are searching for the minimum energy value, a more accurate
reconstruction may provide new parameter values for each iteration that cause the
optimization loop to converge more quickly.

Probabilistic learning on manifolds (PLoM) is a technique for
characterizing a process with uncertainty, particularly in the case where
the process is “expensive” and we want to minimize the number of
samples we need to take. Taking dala and aunxiiiary'sampies; n=20 KDE reconstruction of expectation values
[Ghanem and Soize, Int. J. Numer. Meth. Engng. 113, 2018] - Heponns - true expeciation vae

« naive KDE w/training only
« KDE w/training+PLoM

At a high level, PLoM involves the following steps:
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1. Take several samples of the uncertain, expensive process. These
samples serve as the training data.

2. ldentify a diffusion manifold for the training data and compute the
associated basis.

3. Construct an Ito stochastic differential equation and evolve the
system, which will generate additional samples fluctuating around
the diffusion manifold.

4. Combine the training data and the additional samples and use
kernel density estimation (KDE) to reconstruct the full landscape 150, 5 e - ﬁf;igm-“‘
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The idea is that the additional samples will cause the KDE
reconstruction to be a more faithful representation of the original

rocess than using the training data alone. .
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I A 5 L0 sy, o, e Investigate scaling of this approach for QAOA:
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