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Variational quantum algorithms are a class of techniques intended to 

be used on near-term quantum computers. The goal of these 

algorithms is to perform large quantum computations by breaking the 

problem down into a large number of shallow quantum circuits, 

complemented by classical optimization and feedback between each 

circuit execution.

One path for improving the performance of these algorithms is to 

enhance the classical optimization technique. Given the relative ease 

and abundance of classical computing resources, there is ample 

opportunity to do so.

In this work, we aim to adapt recently-developed approaches to the 

problem of statistical learning for optimization under uncertainties in 

order to formulate improved statistical estimates of variational cost 

functions from noisy quantum circuit results.

Background and Motivation

Quantum Approximate Optimization Algorithm (QAOA)

Applying PLoM to QAOA

Statistical Learning via PLoM

Probabilistic learning on manifolds (PLoM) is a technique for 

characterizing a process with uncertainty, particularly in the case where 

the process is “expensive” and we want to minimize the number of 

samples we need to take.

[Ghanem and Soize, Int. J. Numer. Meth. Engng. 113, 2018]

At a high level, PLoM involves the following steps:

1. Take several samples of the uncertain, expensive process. These 

samples serve as the training data.

2. Identify a diffusion manifold for the training data and compute the 

associated basis.

3. Construct an Ito stochastic differential equation and evolve the 

system, which will generate additional samples fluctuating around 

the diffusion manifold.

4. Combine the training data and the additional samples and use 

kernel density estimation (KDE) to reconstruct the full landscape 

of the original process.

The idea is that the additional samples will cause the KDE 

reconstruction to be a more faithful representation of the original 

process than using the training data alone.

Idea: a quantum computer is an “expensive” device which has inherent uncertainty in 

measurement results. This is a scenario where the PLoM technique should be able to 

provide a more faithful reconstruction of the many-dimensional landscape, which will 

then provide more accurate information to the classical optimization loop.

For example, if we are searching for the minimum energy value, a more accurate 

reconstruction may provide new parameter values for each iteration that cause the 

optimization loop to converge more quickly.

A key part of variational quantum algorithms is the 

classical optimization loop, which converges on 

an optimal solution by updating the variational 

parameters on each iteration.

If we can improve the efficiency of this classical 

optimization loop by making better parameter 

estimates for a given number of quantum circuit 

evaluations, we can hope to improve the overall 

performance of these near-term algorithms.

Variational Feedback Loop for QAOA
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Ongoing Work

Investigate scaling of this approach for QAOA:

• with number of qubits

• with number of QAOA layers (𝑝)

Show whether PLoM maintains an advantage with larger problem sizes.

Show whether a PLoM-based approach can improve overall performance of variational 

quantum algorithms on near-term devices.
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