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Introduction

Actuator methods (line and disk) have 3 major components
◦ Interpolate fluid properties 
◦ Aerodynamic model
◦ Spreading function – typically Gaussians

Focus on spreading function for disk application
◦ Two primary purposes: 

◦ Transfer the force from the aerodynamic model
◦ Create a geometric representation which determines wake 

development
◦ Point sampling with Gaussians can get expensive
◦ Dependency on Gaussian width can be confusing
◦ Explore alternative to Gaussian
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Spreading Function:3

Actuator forcing term: 
𝑭 𝒙 = 𝒇!𝜉!(𝒙)

Spreading function defines the geometric representation of  the actuator
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Can also be thought of  as a projection onto a sub-space where the actuator geometry is defined (i.e. 
sub-space of  ℝ&)
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𝒙 ∈ −∞,∞ , 𝜗(𝒙) ∈ ℝ&



Foundations for Looking Beyond the Gaussian4

Gaussian is not the only option for spanning the actuator sub-space

Requirements for the projection function:
◦ Normalized so point force is conserved i.e. ∫ 𝜉'∗ 𝒙 𝑑𝒙 = 1
◦ Ideally it will be smooth and strictly positive as well

Metrics for comparing Gaussian with alternative projection functions
◦ Accuracy: 

◦ Measure the value of  the normalized projection function on the background mesh

𝑅 = 1.0 −
Δ𝑥)
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◦ Performance:
◦ Count the number of  projection function calls required to compute the actuator sub-space
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Traditional Method: Gaussians5

Forcing must become diffuse to get a smooth sub-space (geometry)
◦ Lots of  overlap between forcing from each actuator point



Accuracy and Performance: Gaussian6

Accuracy is quite good, even with mid-point integration 

Requires large foot print on the background mesh (10 cells > in each direction) based on common 
metric (Sorensen and Shen, 2002; Martinez-Tossas, Churchfield and Leonardi, 2014)



Another Word on Epsilon7

Forcing sub-space geometry is dependent on 
combination of  number of  actuator points and epsilon
◦ Must adequately span the distance between actuator points 

(avoid porosity)
◦ Must meet requirements of  background grid for 

integration accuracy

One solution is to use more points
◦ Acceptable for ALM but costly for ADM
◦ 1D vs 2D geometry

Another is to increase epsilon
◦ Changes geometry (makes disk bigger at the edge of  the 

domain)
◦ Diffuses force over larger area
◦ Computational cost increase on a given grid due to larger 

foot print

Goal to remove coupling between actuator geometry 
and integration requirements
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Alternative Functions8

Replace Gaussians with functions that
◦ Have compact support i.e. 𝑥 ∈ [−Δ𝑟, Δ𝑟], 𝜗∗(𝑥) ∈ ℝ,
◦ Are partitions of  unity: ∑'* 𝜉'∗ 𝑥 = 1

Example is a normalized linear basis: 𝜉!∗ 𝑥 =
#$% &,()

|"#"$|
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Note the peak value changes due to compact 
support combined with normalization. Same 
thing occurs with Gaussians as ε is changed.



Accuracy and Performance: Linear Basis Function9

Integration foot print is smaller (restricts support to distance between actuator points)

Accuracy is comparable to the Gaussian for the same foot print with mid-point rule



Comparison on a Fixed Grid10

• Discretize the unit circle with actuator points

• Use a background mesh with uniform grid-spacing of  0.1 from -1.5 to 1.5



Performance and Accuracy: Gaussian

Num Function Calls: 3378
Integration Accuracy: 0.99896587

Num Function Calls: 12443
Integration Accuracy: 0.99896058

Polar Uniform



Performance and Accuracy: Linear Basis

Num Function Calls: 1474
Integration Accuracy: 1.00008085

Num Function Calls: 737
Integration Accuracy: 1.00008085

Polar (5x5)
𝜂&' 𝑟, 𝜃 = 𝜉&∗ 𝑟, Δ𝑟 = Δ𝑅 × 𝜉'∗ 𝑟𝜃, Δ𝑟 = r)Δ𝜃

Polar (5x1)

𝜂& 𝑟 =
𝜉&∗ 𝑟, Δ𝑟 = Δ𝑅

2𝜋𝑟&



Point Sample Invariance13

◦ Geometric representation of  the disk is really only varies at 
the edges
◦ Due to dependence on radial point spacing

◦ Practically invariant when compared to the Gaussian
◦ Significant reduction in points required to capture the disk
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Final Comments and Conclusions14

What about normal direction, disk edge?
◦ Can use a Gaussian, or any other normalized basis function 
◦ Edges of  sub-space can be the same as the standard model by using Gaussians

Conclusions:
◦ Changing the Gaussian kernels to functions with 1) compact support that are 2) partitions of  unity offers several 

advantages
◦ Effectively makes geometric resolution independent from other factors (background mesh integration, 

aerodynamic model, etc.)
◦ Geometric representation of  the actuator disk can be maintained with minimal actuator points
◦ Accuracy of  projection to the fluid domain is not noticeably impacted even at coarser actuator point resolutions

◦ Less diffuse forcing with proportional decrease in computational cost due to reduction in kernel overlap

Next Steps:
◦ Evaluate other basis functions and fine tuning
◦ Extend theory to actuator line applications
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