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Introduction

Actuator methods (line and disk) have 3 major components

> Interpolate fluid properties

> Aerodynamic model

> Spreading function — typically Gaussians

Focus on spreading function for disk application

o

Two primary purposes:
o Transfer the force from the aerodynamic model

> Create a geometric representation which determines wake
development

Point sampling with Gaussians can get expensive
Dependency on Gaussian width can be confusing
Explore alternative to Gaussian
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3 I Spreading Function:

Actuator forcing term:
F(x) = f¢i(x)

Spreading function defines the geometric representation of the actuator
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Can also be thought of as a projection onto a sub-space where the actuator geometry is defined (1.e.

sub-space of R)

$i(x) =

N
5(x) = ) &)

j
x € (—,0),9(x) € R3



Foundations for Looking Beyond the Gaussian

Gaussian 1s not the only option for spanning the actuator sub-space

Requirements for the projection function:
> Normalized so point force is conserved i.e. [ &(x)dx=1
° Ideally it will be smooth and strictly positive as well

Metrics for comparing Gaussian with alternative projection functions

° Accuracy:
> Measure the value of the normalized projection function on the background mesh

Ax?
R = 1.0 _TZ £ (%)
J

° Performance:
> Count the number of projection function calls required to compute the actuator sub-space
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5 ‘ Traditional Method

Fixed € = 0.3 variable number of points
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Forcing must become diffuse to get a smooth sub-space (geometry)
> Lots of overlap between forcing from each actuator point



6 | Accuracy and Performance: Gaussian

Integration range clipped to 99.9% of the Gaussian

Numerical integration of kernel is 0.99997
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Accuracy is quite good, even with mid-point integration
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Requires large foot print on the background mesh (10 cells > in each direction) based on common
metric (Sorensen and Shen, 2002; Martinez-Tossas, Churchfield and Leonardi, 2014)



Another Word on Epsilon

Forcing sub-space geometty is dependent on
combination of number of actuator points and epsilon

> Must adequately span the distance between actuator points
(avoid porosity)

> Must meet requirements of background grid for
integration accuracy

One solution is to use more points
> Acceptable for ALM but costly for ADM

° 1D vs 2D geometry

Sub-space

Another is to increase epsilon

> Changes geometry (makes disk bigger at the edge of the
domain)

o Diffuses force over larger area

Forcing fluid

Computational cost increase on a given grid due to larger actually sees

tfoot print

Goal to remove coupling between actuator geometry

and integration requirements




Ar =1.000000

support combined with normalization. Same
thing occurs with Gaussians as ¢ 1s changed.

Note the peak value changes due to compact
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> Have compact support i.e. x € [—Ar, Ar], 9*(x) € R?

Replace Gaussians with functions that
o Are partitions of unity: ),

Example 1s a normalized linear basis:

8 ‘ Alternative Functions
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9 I Accuracy and Performance: Linear Basis Function

Numerical integration of kernel is 0.96000
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Integration foot print is smaller (restricts support to distance between actuator points)

Accuracy 1s comparable to the Gaussian for the same foot print with mid-point rule
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10

Comparison on a Fixed Grid

* Discretize the unit circle with actuator points

* Use a background mesh with uniform grid-spacing of 0.1 from -1.5 to 1.5
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Performance and Accuracy: Gaussian

Polar Uniform

15

Num Function Calls: 3378 Num Function Calls: 12443
Integration Accuracy: 0.99896587 Integration Accuracy: 0.99896058



Performance and Accuracy: Linear Basis

Polar (5x5) Polar (5x1)

nij(r,0) = & (r,Ar = AR)X &; (r0, Ar = 1;A0) & (r,Ar = AR)
ni(r) = o
l

Num Function Calls: 1474 Num Function Calls: 737
Integration Accuracy: 1.00008085 Integration Accuracy: 1.00008085




13 | Point Sample Invariance

Number of Actuator Points

-1

g/Bx = 1.500 €/Bx = 3.000 £/Ax = 4.500
<€
AX
> Geometric representation of the disk is really only varies at o Practically invariant when compared to the Gaussian
the edges .

Significant reduction in points required to capture the disk
> Due to dependence on radial point spacing
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Final Comments and Conclusions

What about normal direction, disk edge?
> Can use a Gaussian, or any other normalized basis function
> Edges of sub-space can be the same as the standard model by using Gaussians

Conclusions:

° leanging the Gaussian kernels to functions with 1) compact support that are 2) partitions of unity offers several
advantages

° Effectively makes geometric resolution independent from other factors (background mesh integration,
aerodynamic model, etc.)

> Geometric representation of the actuator disk can be maintained with minimal actuator points
> Accuracy of projection to the fluid domain is not noticeably impacted even at coarser actuator point resolutions

° Less diffuse forcing with proportional decrease in computational cost due to reduction in kernel overlap

Next Steps:
° BEvaluate other basis functions and fine tuning

> Extend theory to actuator line applications
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