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Abstract—This paper explores dynamic load balancing al-
gorithms used by asynchronous many-task (AMT), or ‘task-
based’, programming models to optimize task placement for
scientific applications with dynamic workload imbalances. AMT
programming models use overdecomposition of the computational
domain instead of graph partitioning methods. Overdecompos-
tion provides a natural mechanism for domain developers to
expose concurrency and break their computational domain into
pieces that can be remapped to different hardware. This paper
explores fully distributed load balancing strategies that have
shown great promise for exascale-level computing but are chal-
lenging to theoretically reason about and implement effectively.
We present a novel theoretical analysis of a gossip-based load
balancing protocol and use it to build an efficient implementation
with fast convergence rates and high load balancing quality. We
demonstrate our algorithm in a next-generation plasma physics
application (EMPIRE) that induces time-varying workload im-
balance due to spatial non-uniformity in particle density across
the domain. Our highly scalable, novel load balancing algorithm,
achieves over a 3x speedup (particle work) compared to a bulk-
synchronous MPI implementation without load balancing.

Index Terms—dynamic load balancing, overdecomposition, ex-
ascale computing, asynchronous many-task (AMT), task-based
programming, distributed algorithms

I. INTRODUCTION

As the exascale era emerges, achieving performance-
portable scalability is paramount for developing next-
generation scientific applications. Novel heterogeneous/hybrid
architectures require adaptable and composable programming
models to optimally utilize the diversity of hardware resources.

Many scientific application domains engender workload
imbalances due to spatial, structural, or temporal non-
uniformities in their underlying computational structure. These

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of Energy or
the United States Government. cf. SAND2021-XXXX

2" Nicole Lemaster Slattengren
Sandia National Laboratories
Livermore, CA, U.S.A.
nlslatt@sandia.gov

5™ Francesco Rizzi
NexGen Analytics
Sheridan, WY, U.S.A.
francesco.rizzi@ng-analytics.com

3 Philippe P. Pébay
NexGen Analytics
Sheridan, WY, U.S.A.
philippe.pebay @ng-analytics.com

6™ Matthew T. Bettencourt
NexGen Analytics
Sheridan, WY, U.S.A.
matt.bettencourt@ng-analytics.com

include adaptive mesh refinement, smooth-particle hydrody-
namics, molecular dynamics, and fast multipole methods.
Remediating these imbalances directly in the Message Pass-
ing Interface (MPI), using a bulk-synchronous programming
model, is challenging as it requires reconfiguration of the
domain’s decomposition onto potentially non-uniform (e.g.,
NUMA or heterogeneous) hardware resources. Furthermore,
after changing the domain mapping onto hardware, an ap-
plication must then restructure its communication patterns:
e.g., rebuilding neighborhood ghosting layers or exchanging
messages to coordinate sparse data exchanges.

A potential solution is to use graph partitioning (e.g.,
Zoltan [1]]) to repartition the domain. However, this does
not alleviate the complexity of computation/communication
pattern reconfiguration in MPI after the partitioner changes the
decomposition. Moreover, such schemes cannot be applied in
a highly incremental fashion, thereby limiting their feasibility
for rapidly time-varying workloads.

In contrast to graph partitioning decomposition strategies,
asynchronous many-task (AMT), otherwise known as task-
based, programming models use overdecomposition. For appli-
cations where interactions across the spatial or other domain
remain local, decomposing that domain using a factor much
greater than the number of computational processes yields
domain chunks with dependencies on only a few neighboring
chunks, exposing a great deal of asynchrony that was previ-
ously hidden. These chunks can be distributed across proces-
sors in an arbitrary way because the communication needed
to satisfy their dependencies is not expressed in terms of MPI
rank. Thus, frequent, incremental rebalancing of time-varying
workloads can be performed by the underlying system without
the application’s detailed involvement. Due to its asynchrony
and explicitly-exposed dependencies, AMT engenders a more
composable programming model that is less machine-specific
and more adaptable to novel, heterogeneous architectures.
Further, AMT makes it easier for application developers to
decompose their computational domain into multi-dimensional
structures that enable more natural reasoning and expression of



communication patterns than decomposing the domain directly
to MPI ranks.

Overdecomposition empowers the runtime system to instru-
ment tasks by measuring computational intensity and record-
ing communication patterns. Subsequently, with these mea-
surements, the runtime system can optimize task placement
based on an objective function. For example, the objective of
a strategy might be to minimize total running time or inter-
node communication. The latter could be achieved by the load
balancer instructing the runtime to co-locate tasks that com-
municate heavily. This paper proposes a novel distributed load
balancing algorithm with near-optimal scalability that operates
on collected instrumentation to minimize the imbalance across
ranks in time spent executing tasks.

This paper is organized as follows: in § [l we discuss
existing load balancing strategies; in § [T, we present the novel
tasking runtime used for the results we present; in § [[V] we
describe the Grapevine approach that we extend in this work;
in § [V] we describe our proposed approach and provide the
mathematical foundations for it; in § we present results in
the context of EMPIRE, a plasma physics application. Finally,
we conclude in §

II. RELATED WORK

Load balancing has been extensively studied in the literature,
spanning a wide variety of algorithms. For static, predictable
problems, inspector-executor approaches [2] may be applied
to carefully map work to processors during an initialization
phase. For these problems, and potentially more dynamic
ones, graph partitioning algorithms along with their associated
parallelizations [3]] and sparse graph representation [4] have
been a rich area of research resulting in a set of packages:
Zoltan [1f], Scotch [5]], ParMetis [6]].

Incremental strategies with better efficacy on dynamic prob-
lems, include a suite of load balancers that Charm++ [7] ships
spanning centralized, hierarchical [8]], and distributed schemes.
This paper builds on a gossip-based, distributed computing
protocol [9], implemented in Charm++, that was inspired
from epidemic algorithms [[10]. Gossip-based protocols have
been used in distributed computing [[11] for highly effective
dissemination of information.

Several frameworks and applications use partitions of tasks
to blocked mappings or space-filling curves to assign work to
processes. These kinds of frameworks include tree-structured
AMR [12f], [13]], multi-block CFD [14], tree-structured N-
body codes [15], and dense linear algebra [16]-[19]. These
approaches have the advantage of implicitly maintaining com-
munication locality. It has the disadvantage that the possible
assignments of objects to processes is tightly constrained by
the ordering, and hence may not be able to approach optimal
load balance.

Work stealing is a popular load balancing/scheduling tech-
nique with theoretically proven efficiency in shared-
memory [20]. This approach has the advantage of addressing
highly dynamic imbalances that arise during a phase, rather
than only addressing imbalances across phases, benefiting

classes of applications with highly unpredictable loads. Dis-
tributed work stealing has shown to be viable [21]] including
a novel retentive work stealing algorithm [22] that can be
effective in comparison to persistence-based load balancers in
a distributed-memory context on large systems. In retentive
work stealing, the location where work is actually executed
becomes the starting point for that work on the next iteration.

III. PRoGRAMMING & ExEcUTION MODEL

The load balancing algorithms described in this paper are
developed in the context of the Virtual Transport (vt) tasking
library[T, an AMT programming and execution model built to
interoperate with MPI (refer to [23|] for more detail). This
library is developed by the DARMA project at Sandia National
Laboratories. vt provides a transitional runtime for overde-
composing applications, making them more asynchronous and
providing dynamic load balancing to improve performance on
large distributed-memory systems. Many production scientific
applications are built on top of large MPI libraries, like Trili-
nos [24]] that provides core capabilities such as distributed data
structures, linear and nonlinear solvers, and meshing. These
libraries embed many MPI calls to perform communication
across nodes. Thus, any proposed AMT runtime must be fully
composable and interwoven with MPL.

A. Execution Model

At a low level, control flow and data flow are achieved in vt
by either (1) sending active messages that trigger registered
handlers on a target rank/registered object or (2) directly
transferring data by targeting RDMA handles with get, put,
and accumulate operations. Instead of users explicitly calling
an API to receive a message, the scheduler drives progress by
searching for incoming messages and then reading their con-
tent to determine what to execute when they arrive. vt employs
distributed termination detection algorithms to sequence tasks
and create dependencies for ordering distributed execution.

B. The Principle of Persistence

To enable instrumentation for load balancing, vt provides
a mechanism to demarcate an application phase, such as a
timestep or iteration within an application. Load balancing
depends on the general notion that computation in previous
phases in an application can be used as a predictor of the
computation in future phases. In the literature, this has been
referred to as the principle of persistence [9]. The efficacy
of our load balancing algorithms presented in this paper
relies on this notion—thus, it must be true to some extent
at the phase level for at least part of the time in order to
improve performance. For the scientific applications that we
are studying, we have found that this notion is broadly true.
For applications where it does not hold, load balancing can be
applied within a given phase, instead of across them.

1 Available BSD-licensed at: https://github.com/DARMA-tasking/vt
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C. Measuring Imbalance

In this work, we use the same metric as Menon, et. al [9]
for imbalance:
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where /.« and £,y respectively refer to the maximum per-
rank task load and average per-rank task load over all the
ranks. With this definition, a perfect load distribution occurs
when Z = 0. The key reasoning behind this metric is that
the performance attained is always limited by the maximum
rank load in a phase due to synchronization at the end of each
phase. Thus, throughout this paper we will use this metric for
analyzing the quality of load distributions.

IV. Loap BALANCING SCALABILITY
A. Background

When executing a scientific application that has workload
imbalances, the scalability of the application may be limited
by the scalability of the load balancer itself. The total cost
of performing load balancing is relative to: (a) the timescale
of application workload variation; (b) the scalability of the
load balancer; (c) and, the number of tasks per node (level
of overdecomposition), which is typically a factor in the
computational complexity of the load balancing algorithm.
There is also a tradeoff between these: the more scalable
the load balancer, the more frequently it can be invoked as
workloads dynamically vary over time.

Initial research of load balancing algorithms studied cen-
tralized schemes that are suitable for low levels of concur-
rency. Centralized strategies have the advantage of having
global knowledge of the input data (knowledge of task du-
rations/communications) on the rank where the redistribution
algorithm executes. Thus, these strategies can provide very
good distributions by applying greedy algorithms or other
purely local heuristics. However, as the amount of concurrency
increases, these balancers quickly become an execution time
and memory bottleneck.

To ameliorate scalability limits, hierarchical schemes often
build trees or form groups of ranks that recursively apply redis-
tribution algorithms on subsets of the ranks and trade tasks at
higher levels in the hierarchy. These algorithms nominally are
lower bounded by Q(log(P)), where P is the number of ranks.
However, as scales increase even more (where P is very large),
the cost of running even a hierarchical load balancer might
limit its efficacy when workload imbalances evolve rapidly.

In contrast, fully distributed load balancers avoid tree-like
structures, instead relying on distributed computing protocols
(neighborhoods, gossip, randomization) to discover tasks in
the system and trade them across ranks independently of other
uninvolved ranks. In terms of scalability, distributed algorithms
show the most promise for the exascale era, but are difficult to
implement and research has shown they generally have limited
efficacy due to a lack of information, leading to poor results.

Research by Menon, et al. [9]] has shown one of the first fully
distributed load balancing algorithms that is more scalable

than hierarchical strategies yet achieves nearly comparable (or
better) quality in load distribution. In this paper, we build on
this approach, evince its limitations by means of a theoretical
analysis, and improve it noticeably both in terms of quality of
the load distribution produced.

B. The GrapevinelLB Algorithm

With the initially described design and implementation,
Menon, et al. demonstrate the efficacy of the original algo-
rithm, referred to as GrapevinelLB, for adaptive mesh refine-
ment and molecular dynamics on up to 131,072 cores of a
BlueGene/Q system. The algorithm is fully distributed, i.e.
with neither centralized nor hierarchical synchronization, using
partial information about the global state of the system in order
to perform the load balancing. It consists of two stages: global
information propagation using a lightweight algorithm inspired
by epidemic algorithms (the gossip phase), and work unit
transfer using a randomized algorithm (the transfer phase).

To start, ranks perform an all-reduce to collect constant-
size statistical data about their load (maximum load, /.y;
average load, /,y.) to determine which ranks are overloaded
or underloaded. Then, in the gossip phase, underloaded ranks
randomly send messages to other ranks in a series of k rounds
with a branching factor f. As each new message is re-
ceived, known underloaded ranks are added to a local list
that accumulates this knowledge, which is then forwarded
when the next round of messages are sent. Theoretical anal-
ysis in the paper demonstrates that log,P rounds produce
global knowledge transfer with high probability during the
gossip phasd? In the asynchronous implementation, rounds
are not synchronized and proceed without barriers, relying on
distributed termination detection to detect when all causally
related gossip messages have been received and processed.
Due to the asynchronous implementation, global knowledge
transfer is not attained, but we achieve good results without it.

In the subsequent fransfer phase, with overloaded ranks
knowing about a subset of underloaded ranks, the potential
re-location of tasks is determined using a probability mass
function. This mass function is calculated based on the load
availability of each rank compared to the mean load. Because
an overloaded rank can transfer tasks without distributed
coordination with the underloaded rank, and an underloaded
rank may be known by multiple overloaded ranks, the mass
function is calculated based on local yet imprecise knowledge
of the underloaded rank’s load.

Algorithm [I] specifies the original algorithm for the infor-
mation propagation stage. The TRANSFER function in Algo-
rithm [2] describes the transfer stage, where tasks are chosen
for migration based on the partial information gathered. Su-
perscripts notate the rank for a given symbol. Capital letters

2This may not be desirable, as it may result in lists of size O(P) being
communicated and stored in memory. In future work, we intend to examine
load balancing efficacy with more limited information to avoid this potential
scalability pitfall. Note that research on random graphs shows that they will
tend toward full connectivity even with relatively modest maximum degrees.



(e.g., X) are sets (unless indexed with a subscript), while
variables/constants and in lowercase letters.

/—> rank /—> rank /—> rank

p p p
g X X 1 — element
(a) Variable [ (b) Set X on (c) nt® element of
on rank p rank p set X on rank p

Algorithm 1 The inform/gossip stage to gather knowledge
about underloaded rank loads.

1: SP <0 > Set of underloaded ranks known by rank p
2: Loan?() + @ > Map of loads in S? known by rank p
3 TP > Set of tasks currently on rank p
4: MP < > Set of tasks to migrate off rank p
5: TARGET?() +— () > Map of target ranks for tasks in M?
6: P+ [0;p—1] > Set of all ranks
7. f < fanout > Constant value
8:

> Constant value
> Constant value

k < number of rounds
9: h < threshold
Require: |S?| = |Loap”()|
10: function INFORM({aye, £P, 1 = 0)

11: if /P < /,,. then > If is underloaded

12: SP « SP U {p}

13: Loap”() < Loap?() U {p — ¢P}

14: for i < 1, f do

15: p, < random sample from P

16: send(p,-, GossiPHANDLER(S?, LoaD? (), r + 1))
17: end for

18: end if

19: end function
20: function GossiPHANDLER(S?, Loap”(), )
21: SP « SPU S” > Add new underloaded ranks

22: Loap?() < Loap”() ULoap®() > Add new loads
23: if » < k then

24: for i < 1, f do

25: R« P\ S? > Avoid known underloaded
26: py < random sample from R

27: send(p,, GossiPHANDLER(S?, LoaD” (), 7 + 1))
28: end for

29: end if

30: end function

V. ANALysIs & Prorosep CHANGES

We propose the following algorithmic changes, discussed
and motivated in the indicated subsections:

1) Iteratively refine the task assignments and the associated
imbalance before performing transfers (§ [V-A).

2) Perform multiple trials of the iteration process to in-
crease the odds of avoiding local minima (§ [V-A).

3) Re-compute the CMF on line [6] of Algorithm [2] taking
advantage of updated rank loads as tasks are considered
for transfer (§ [V-A).

4) Relax the objective function used on line [T0] of Algo-
rithm 2] to avoid getting trapped in local minima (§ [V-C).

Algorithm 2 The transfer stage to choose tasks for migration
based on partial knowledge gathered in the inform stage.

1: function TRANSFER(éaVC, £P)
Require: Zn 1(LOAD(Tp)) = /(P

2: OP <—ORDERTASKS(T?, lave, #P) > Traversal order

3 n+0 > Index of task to try
4 if CMF is original then F' < BUILDCMF({,.)

5: while /7 > h X £, An < |OP| do > Overloaded
6: if CMF is modified then F' < BUILDCMF (/)
7: 0y < OF

8 Dy € SP using F > Pick rank sampling CMF
9: {4s | ¢, €Loap] Aj=p, } v Load for rank
10: if EVALUATECRITERION(Y;, 04, Yave, £P) then

11: L, < £, + Loap(o,)

12: 0P + (P — Loap(o,)

13: TP + TP\ {o,}

14: MP « MPU{o,} > Record proposed transfer
15: TARGET? () < TarGer”() U {0, — ps}

16: end if

17: n<—n+1

18: end while

19: end function
20: function BUILDCMF (Y 4¢)
21: if CMF is original then

22: ls < Lave

23: else if CMF is modified then > Described in § [V-C|
24: Ly + max(Laye, max(Loap?()))

25: end if

o TS (e

v e (1)

28: 0 Zl 1 p7

29: F+ {p 1}L 1

30: return F

31: end function

32: function EVALUATECRITERION(Y;, 04, Lave, £F)

33: if Criterion is original then

34: return ¢, + Loap(0;) < lave

35: else if Criterion is relaxed then > Described in § [V-C|
36: return Loap(o,) < P — ¢,

37: end if

38: end function

39: function ORDERTASKS(TP, £aye, £P)

40: return 77 > Alternatives are discussed in §
41: end function

5) Modify the CMF built on line [6] of Algorithm [2] to be
compatible with above-average rank loads that can result
from the relaxed objective function (§ [V-C).

6) Modify the task transfer traversal order to increase the
odds of the necessary transfers being accepted (§ [V-E).

A. Iteratively Refining Task Assignments

While the original algorithm has the potential to improve
imbalance, it is unlikely to result in an optimal task assign-
ment. Factors contributing to that limitation include:



1) missed opportunities for transfer due to making a poor
random choice for the potential recipient rank; and,

2) each overloaded rank working in isolation allowing an
underloaded rank to become overloaded by transfers
from multiple ranks.

We explore iteratively refining task assignments to further
reduce the imbalance, as shown on lines [(H8] of Algorithm [3]
Furthermore, we employ multiple trials of this iterative pro-
cess, as shown on lines E]—El, starting each trial from the state
used for the previous timestep to ensure that we do not get
trapped in a local minimum. We defer actual task transfers until
line [T3] when we have exhausted our trials and the iterations
within, accepting the set of transfers from lines that
resulted in the best imbalance.

Algorithm 3 Iterative refinement of task-rank mapping.
1: TP, <« TP

orig

2: for t + 1, ngyias do
3: TP « TP

> Reset for each trial

orig
4: MP ()
5: TARGET?() + ()
6: for i < 1, Njters do
7: INFORM({ ye, £2, 0)
8: TRANSFER({ave, £P)
9: Evaluate Z,,;oposed Using Eqn.
10: Save TP ., MY ., TarGET] , for lowest Zp,oposed
11: end for
12: end for

13: Execute transfers defined by T} ., M. ., TarGery ()

We do not employ the negative acknowledgements proposed
by Menon, et al. [9] to prevent transfers originating on
multiple overloaded ranks from making an underloaded rank
become overloaded. However, we still want to use all available
information, including transfers scheduled from the overloaded
rank running Algorithm |2} when choosing a potential recipient
for the next transfer. For this reason, we choose to recompute
the CMF on line [6] of Algorithm [2] In contrast, in the original
work, it was computed only once, on line E}

B. Analysis of Objective Function under Iteration

We now present the results of iteration for one representa-
tive test case with our Load Balancing Analysis Framework
(LBAF)}] a Python tool for exploring, testing, and comparing
load balancing strategies. We apply niters = 10 iterations
of the original GrapevineLB algorithm, each having k£ = 10
gossiping rounds with an overload threshold of 4 = 1.0 and a
fanout factor of f = 6, to an initial distribution of 10* tasks
across only 2% out of 2'? total ranks, leaving the other ones
without tasks. We observe in the following table the rejection
rates caused by the criterion in Algorithm 2] on line [34}

3Available BSD-licensed at:
LB-analysis- framework

https://github.com/DARMA-tasking/

Iteration  Transfers Rejected  Rejection Rate  Imbalance
(index) (count) (count) (%) @
0 - - - 280
1 9084 154931 94.46 187
2 4 1654 99.76 187
3 1 1130 99.91 187
4 7 2682 99.74 185
5 6 2396 99.75 183
6 2 1143 99.83 183
7 1 1041 99.90 183
8 0 882 100.0 183
9 0 882 100.0 182
10 3 1405 99.79 182

These immediately hint at the fact that the decision criterion is
too tight. We argue that the main weakness of the GrapevinelLB
algorithm is this high rejection rate. In fact, we believe this
can be explained by observing the condition set forth in the
algorithm for each overloaded rank in Algorithm 2] on line [3}

Bl: while (7 > h X lyye A < |OP])

Indeed, this condition enforces strict monotonicity for each of
the underloaded ranks; in other words, it uses the “taxicab”
norm (|| - ||1) to minimize in the || - ||« sense: this criterion is
therefore not adapted to the considered minimization problem.
Another way to look at the problem is as an attempt to decrease
the load of overloaded ranks while never allowing a single
underloaded one to become overloaded—even when this may
improve the global imbalance.

As a result, these almost-full rejection rates limit load-
balancing to a noticeable decrease of Z during the first itera-
tion of the algorithm. Subsequent iterations of the algorithm
provide little benefit because Z remains trapped in a local
minimum. Furthermore, increasing & and allowing for higher
values of h do not substantially affect the outcome on average
(with the exception of the occasional convergence due to a
nice original layout).

The condition on line [5] mandates that, after a variable
number of iterations, each overloaded rank no longer is, up to
a certain relative threshold h. This implies that, in the worst
case, after completion of this loop,

lpax ShXlyye <= Ip<h-1
where Zp is the load imbalance of the distribution D of tasks
across the entire set of ranks. This amounts to saying that
the objective function that the algorithm aims to minimize is
F(D) =ZIp — h+ 1, and that a sufficient stopping criterion
is FI(D) > 0 (we observe that £, is by definition a constant
as no loss or gain of load may occur globally).

However, F/(D) > 0 is by no means necessary; in fact, if
it were, there would be no guarantee that the algorithm would
terminate in finite time. This is, however, ensured by the fact
that, given an overloaded rank, the criterion of line [BE] is tested
for all of its tasks, of which there are only a finite number.
While this ensures termination of the while-loop in finite time,

this does not guarantee that any transfer will have occurred at
all.
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C. GrapevinelLB with Relaxed Objective Function

To ensure a faster convergence of the algorithm, we propose
to change the criterion (the original in Algorithm [2]on line
as follows:

Lemma 1:

The following alternate criterion:

361 : if Loap(o;) < % — {4, then

ensures that the objective function F' monotonically decreases.
The proof can be found in the Appendix [A]

We remark that the new, modified criterion can be equiva-
lently written as:

if ¢, + Loap(o,) < P then

which is indeed less strict than the the original one, for
it allows, in particular, one underloaded rank to land in
overloaded territory after a transfer. However, what is ensured
is the maximum norm will not increase. In addition, Lemma 1
ensures that, as long as there is at least one object satisfying
this criterion on at least one overloaded rank, then the opti-
mization can continue. However, once it is no longer possible
to find such a combination, then F' may no longer decrease:
this new criterion thus also provides a stopping criterion.
While this criterion will provide more opportunities for
overload transfers than the original one, one may wonder
whether it could not be further relaxed, hereby allowing for
even lower rejection rates. This question is quickly answered
by the following, with the same notations as in Lemma 1:
Lemma 2:
If p; is a rank with maximum load in D, and

(3o, € p;) (3pr € D) ¢ =Loap(o,) > — L,

then if o, is transferred from p, to p;, the objective function
F' does not decrease (and possibly increases). The proof can
be found in the Appendix [B]

As a result of Lemma 1 and Lemma 2, we can now assert
the following:

Proposition [Optimal Load-Transfer Criterion]:
The following alternate criterion:

361 : if Loap(o,) < fF — ¢, then

is optimal for the load transfer strategy of Algorithm 2.

Proof:

From Lemma 1 we know that this alternate criterion ensures
that monotonicity is sufficient to ensure that /' monotonically
decreases.

Furthermore, from Lemma 2 we know that if this criterion
is not met for at least one particular case, then F' will no
longer monotonically decrease (and will possibly increase if
(0z,pe) is such that £/, is not maximal in D’. Therefore, the
alternate criterion, being necessary and sufficient, is optimal
for the considered optimization strategy. 0.

With this relaxed criterion, it is possible for a prospective
transfer to cause an underloaded rank to become overloaded.

To accommodate this, we need to update the probability mass
function used for selecting the recipient of a transfer. To keep it
from becoming negative in such cases, we change the formula
as shown on line 24| of Algorithm[2] Allowing ranks that are no
longer underloaded to remain candidates for receiving transfers
is natural with our relaxed criterion, which allows transfers as
long as the recipient would become less overloaded (based
on the limited knowledge of the transferring rank) than the
transferring rank was just prior to the the transfer.

D. Results with Relaxed Objective Function

We now compare the above results to those obtained when
applying the alternate criterion in the LBAF simulator, for
the same case as above. The new acceptance verses rejection
results are shown in the following table:

Iteration  Transfers  Rejected  Rejection Imbalance
(index) (number)  (number)  rate (%) (@8]
0 - - - 280
1 11292 648 5.43 3.34
2 4044 3603 47.12 1.60
3 2201 3412 60.79 0.873
4 1324 3586 73.03 0.632
5 765 3171 80.56 0.632
6 410 2969 87.87 0.626
7 247 2794 91.88 0.626
8 159 2749 94.53 0.626
9 120 2682 95.72 0.626
10 72 2643 97.35 0.623

In contrast with what was happening with the original criterion
on line 34] we see now that the rejection rate is negligible
initially, then slowly increases as the global imbalance rapidly
decreases. In fact, with already more than acceptable values
of Z, additional iterations continue to improve the outcome,
hereby experimentally validating the preceding theoretical
results. This is examplified by comparing the values of Z in
both cases, shown in the following table:

Iteration  Criterion Criterion
(index) @) @)
0 280 280
1 187 3.34
2 187 1.60
3 187 0.873
4 185 0.632
5 183 0.632
6 183 0.626
7 183 0.626
8 183 0.626
9 182 0.626
10 182 0.623

We note that the modified algorithm has not fully run its course
after iteration 10, and continues to improve Z, albeit modestly.
In contrast, the original algorithm has essentially converged to
a very sub-optimal local minimum and is no longer able to
improve the overall imbalance after a few steps.

E. Ordering Candidate Objects

The overall gossip-based distributed load balancing algo-
rithm described above efficiently determines which ranks are
able to send or receive tasks, and rapidly shifts load to
produce an improved distribution. However, these results are
based on considering tasks as candidates for migration in an



essentially arbitrary order, by their identifying index or hash
table iteration order. Hypothetically, considering them in some
order determined by their loads could improve the process
further. In this section, we discuss and analyze three different
orderings: Migrate Load-Intensive Tasks, Fewest Migrations,
and Migrate Most Lightweight Tasks.

1) Migrate Load-Intensive Tasks: One simple ordering
would be to try to migrate the most load-intensive possible
tasks from overloaded ranks (Algorithm Eﬂ) When it succeeds,
the algorithm minimizes the number of transfers necessary in
a given round to achieve its results. However, this comes at the
expense of worst-case acceptance rates, worst-case margins for
the transfer criterion in Section excessive migration size
if size correlates with load, and potentially increased round
counts. Thus, we consider this primarily as a straw-man.

Algorithm 4 The algorithm for ordering tasks for selection
that picks the most load-intensive tasks first during the transfer
phase (see line 2] in Algorithm [2)).

1: function ORDERTASKS_DESCENDING(T?, {yye, £F)

2 ¢ + lambda (a,b) — > Sort comparator
3: { return Loap(a) > Loap(b) } > Descending load
4 return Sort(7T? c)

5: end function

2) Fewest Migrations: If we assume that task migrations
are an undesirable necessity in order to achieve load balance,
we would want to minimize their number. This may be a
consideration due to migrations themselves being expensive, or
secondary effects such as lost communication locality leading
to increased data movement.

To achieve balance using the fewest possible migrations,
we must consider task loads in comparison to the degree
of overload on their current rank, as calculated on line [2] of
Algorithm 5] Any task with load greater than that excess rank
load is a potential candidate to resolve the overload on that
rank with a single migration. To minimize the chance of a
transfer being rejected, and to minimize potential overload
on the recipient rank resulting from the relaxed criterion of
Section §V-C| each overloaded rank considers the smallest
such task as its first candidate for transfer. We identify this
task, if one with a large enough load exists, on line [6] Because
we expect it to be easier to place tasks with smaller loads, we
then want to consider lighter-weight tasks by descending load,
followed by more load-intensive tasks by ascending load. The
comparator ¢ for this sort order is implemented on lines [7HTT]
This order increases the likelihood of transferring the fewest
number of tasks to reduce the overload.

3) Migrate Most Lightweight Tasks: If we wish to maximize
the odds that tasks proposed for transfer are accepted, then we
should select the tasks with the smallest loads as candidates.
However, to ensure overall success of the LB process, we
want to consider the most load-intensive of such tasks first
so that recipients still have the largest possible underload
in which to accomodate them. Thus, we need to determine
the marginal task—that is, the most load-intensive of the

Algorithm 5 The algorithm for ordering tasks for selection
that minimizes the number of migrations during the transfer
phase (see line ] in Algorithm [2)).

1: function ORDERTASKS_FEWESTMIGRATIONS(T?, {oye, £F)

2: loxe < 0P — love > Excess load on this rank
3: if max; Tip < lox then

4 return OrRDERTASKS_DESCENDING(T?, laye, £F)

5: end if

6: lowt < min; {TP|TP > lex } > Cutoff load
7: ¢ < lambda (a,b) — { > Load sort comparator
8: if Loap(a) < Leys A LoaD(b) < Leys

9: then return Loap(a) > Loap(b)

10: else return Loap(a) < Loap(b)

11: }

12: return Sort(77,c)

13: end function

lightweight tasks that must be migrated for the rank to stop
being overloaded. After sorting the tasks by ascending load
on line [ of Algorithm [6] this task can be identified in a
single partial sum over the task loads, stopping when the sum
first exceeds the overload, as shown on line [6] For the same
reason that we choose this task as the first candidate to consider
for transfer, we then want to consider lighter-weight tasks by
descending load, followed by more load-intensive tasks by
ascending load, as implemented in the comparator cy on line

Algorithm 6 The algorithm for ordering tasks for selection
that picks the most lightweight tasks first during the transfer
phase (see line 2] in Algorithm [2).

1: function ORDERTASKS_LIGHTEST(T?, £ oy, £7)

2 Loy P — Voo > Excess load on this rank
3 ¢1 < lambda (a,b) — > Sort ascending to start
4: { return Loap(a) < Loap(b) } = > Ascending load
5: SP + Sort(T?,c1) ,

6 linarg < min; S’f Z?_OSf > lox } > Partial sum
7 co + lambda (a,b) — {li > Final sort comparator
8 return if Loap(a) < {yarg A LOAD(D) < £iarg

9: then Loap(a) > Loap(b)

10: else Loap(a) < Loap(b)

11: }

12: return Sort(S?,c3)

13: end function

VI. EmPIRICAL RESULTS
A. Example Application

EMPIRE is an electromagnetic plasma modeling tool in de-
velopment at Sandia National Laboratories. EMPIRE utilizes a
Finite Element Method (FEM) on unstructured meshes for the
elecromagnetic fields and a Lagrangian/particle formulation
for the plasma utilizing the Particle-In-Cell (PIC) formula-
tion [25]]. EMPIRE was designed to be performance-portable
through use of the Kokkos programming model. Solving for
the electromagnetic fields can be easily balanced by a static
SPMD decomposition, as illustrated in Figure @



(a) SPMD mesh decomposition

(b) Overdecomposition (4 chunks/rank)

] rank0

J | | ‘ (striped)
chunk 5 . L ran!< !
chunk 6 (solid)

N | chunk 7

(c) Overdecomposition with LB

Fig. 1: Example SPMD decomposition and overdecomposition for a simple mesh with particles.

For some target problems, however, the particle operations
in EMPIRE’s PIC capability present large, highly-variable,
dynamic load imbalances. It is this nature that motivated
use of the dynamic, fine-grained load balancing capability
provided by vt. To avoid the overheads of overdecomposition
and the AMT runtime in cases where there is not a substantial
load imbalance, dual implementations of PIC as SPMD and
with vt have been developed. As a result, EMPIRE’s vt-
based PIC implementation and vt itself have been partially co-
developed in order to ensure that as much code as possible be
shared between the two implementations. Furthermore, we also
sought to minimize the burden on physics developers when
expanding and improving EMPIRE’s capabilities.

The conventional approach to load balancing in EMPIRE
would be to infrequently re-partition the mesh in order to offset
the evolving particle imbalance. The main issues posed by this
approach are the following:

o this is an intrinsically synchronous process; and
e large volumes of data must be migrated to new ranks or
recomputed from the new mesh.

With the conventional methodology, the value proposition of
re-partitioning at a given timestep must consider the costs of
both executing the load-balancing algorithm and, more impor-
tant, re-configuring the problem in order to proceed with the
next timestep (data transposition and meta-data exchange for
the new partition). By making the LB step more incremental,
its frequency can be adjusted to match the imbalance rate
arising from migrating particles and thereby greatly reduce
the re-configuration costs by amortizing it and reaping benefits
earlier along the way.

In contrast with the conventional approach, we retain the ini-
tial SPMD static mesh decomposition and further decompose it
by coloring the mesh of each MPI rank as shown in Figure [Tb}
We create a data strucure corresponding to each chunk, called
a color in the context of EMPIRE, that contains that sub-mesh
and its particles. As a simulation runs, the runtime system
instrumentation captures observations of each color’s evolving
workload, and uses those measurements to reassign colors
to different ranks, as shown in Figure in order to keep
the particle workload as evenly-balanced as possible. Because
EMPIRE relies on MPI-based SPMD solvers from the Trilinos
suite for finite element work, execution transitions between
SPMD and vt’s AMT runtime are required multiple times per
simulation timestep.

©

AMT

without LB B Particle update

s Non-particle update

6
AMT w/
GrapevinelLB
1.3x AMT w/ AMT w/ AMT w/
GreedyLB  HierLB TemperedLB

1.9x 1.9x 1.9x

N

Execution time (103 seconds)
N

0
Fig. 2: Overall performance of the EMPIRE application com-
paring LB strategies. The multipliers are speedups compared
to the SPMD baseline. The Particle update is the portion
of the application implemented with tasks using our AMT
programming model. The AMT w/TemperedLB bar shows the
performance of TemperedLB with the Fewest Migrations or-
dering algorithm, which is used for all plots unless otherwise
noted.

This novel, fined-grained, dynamic approach to the LB
of particles, enabled by vt, decreases data migration cost,
facilitates the overlapping of communication and computation,
and avoids the cost of recalculating connectivity that would
have been required for dynamically repartitioning the SPMD
mesh. In § [VI-B] we present the impact that load balancing
has on EMPIRE’s B-Dot problem, in which the particle load
varies dramatically over the course of the run, but at a rate that
allows us to successfully apply the principle of persistence.

B. Performance Results

All the empirical results presented for EMPIRE were run on
100 nodes (4 ranks per node, or 400 ranks) of an ARM cluster,
equipped with 2.0 GHz Arm Cavium Thunder-X2 processors
and 128 GB of RAM per node. The cluster is outfitted with a
Mellanox EDR Infiniband interconnect.

In Figure 2] we present a summary of the performance of
EMPIRE in five different configurations. The total application
time is broken down into two parts: Particle update and Non-
particle update. The Particle update is the part of EMPIRE
that we implemented in vt with tasking. The SPMD (no AMT)
configuration provides the pure MPI baseline performance of
EMPIRE without tasks. The other configurations all use vt,
with an AMT overdecompostion factor of 24, whereby every
SPMD rank mesh is split into 24 migratable chunks.

The configuration labeled AMT w/GreedyLB uses a non-
scalable, centralized, greedy algorithm as a baseline to com-



Type ‘ tn tp tip tiotal
SPMD (no AMT) 1284s 3478s  0Os 4762s
AMT without LB 1374s 4501s  0Os 5875s
AMT w/GrapevineLB | 1388s 2363s  5s 3756s
AMT w/GreedyLB 1419s  1063s  5s 2488s
AMT w/HierLB 1416s 1117s  8s 2541s
AMT w/TemperedLB | 1416s 1118s 1l1s 2546s

Fig. 3: Execution time breakdown: non-particle execution time
(tn), particle execution time (¢,), LB + migration execution
time (¢,), and total execution time (fiotq))-

pare quality of the other strategies. AMT w/HierLB is a hierar-
chical, tree-based load balancing strategy (described in [22])
that is less scalable at very large scales compared to distributed
algorithms. AMT w/TemperedLB is the novel distributed load
balancing algorithm that we present in this paper. Finally,
AMT w/GrapevinelLB is a configuration of our TemperedLB that
matches the original algorithm described in §

For Figure [2] the configuration labeled AMT w/TemperedLB
uses the Fewest Migrations approach from § [V-E2] the ordering
which provided the best overall result. The configuration
labeled AMT (without LB) includes all the overhead of tasks
without actually enabling the load balancer. In Figure [2] we
observe that this configuration adds about a 23% overhead.
This is due to the cost of creating tasks, extra communication
overhead (smaller messages), and smaller kernel invocations.
We found that although 24 chunks adds significant overhead,
it performs the best with load balancing because it gives the
runtime more flexibility in migrating tasks. When AMT is
enabled with load balancing, we observe a 1.9x speedup over
the whole application and ~3x speedup over the part of the
application where we added tasks, except for GrapevinelB,
which only achieved a speedup of 1.3x and 1.5x, respectively,
for the whole application and the part where we added tasks.

In Figure [3] we present a table breaking down the execution
time graphed in Figure [2] We find for all three load balancing
configurations the cost of running the load balancer is small
compared to the application time. Our novel load balancing
implementation, called TemperedLB, takes slightly longer than
the others due to the number of trials (10) and iterations (8)
we utilize and the cost of migrations (which dominates ;)
proposed by the load balancer, although fewer trials would
have sufficed.

In Figure @, we plot the total execution time per timestep
for each configuration. For all the empirical results with
load balancing enabled, except for AMT w/HierLB, we run the
load balancer on the second timestep and then every 100"
timestep. In contrast, we run HierLB differently, preferentially
migrating the most load-intensive tasks on the second timestep,
then preferentially migrating the most lightweight tasks on
the fourth timestep and then every 100" as we do in the
other configurations. The spikes observed are the extra cost
of running the load balancer, resizing RDMA buffers post-
LB, and computing application-specific (physics) diagnostics

on the same interval.

Figure @b graphs the maximum and minimum per-rank task
load for each configuration with load balancing. In contrast
to execution time, task load excludes idle time. The Lower
bound (max) curve plots the maximum of the average per-rank
task load and the load of the largest task in the system, which
provides a lower bound for the best performance achievable.
Our TemperedLB performs well compared to HierLB between
timesteps 800 and 1100, when the task loads are rapidly evolv-
ing. In Figure @k, we plot the imbalance metric Z computed
from the per-rank task loads. We observe that, without LB,
T starts around 7 and then decreases to ~3.3 by the end of
the execution. This change is due to the average rank load
increasing as the amount of particle work increases.

Figure [4d compares particle update time for the various
traversal orders presented in § The best performing
overall was Fewest Migrations (§V-E2)), motivating our use of
it as our representative TemperedLB run in previous plots.

VII. CoNncLUDING REMARKS

The main contribution in this paper is a set of major
improvements to seminal work on fully distributed load bal-
ancing by Menon et al., following a thorough study of the
hypotheses underpinning the original algorithm. Specifically,
we have identified weaknesses in several aspects of its load
transfer phase, which we have addressed by establishing new
theoretical results to justify the optimality of our relaxed
transfer criterion, proposing new object selection strategies
heuristics, and studying these with a LB simulator developed
in the context of this work. Furthermore, we have presented
our implementation of this vastly improved load balancer
(TemperedLB) in the context of vt, our open-source asyn-
chronous tasking library. This implementation has allowed us
to empirically demonstrate the performance of our approach
by applying it to a plasma physics application, at scale, with
large workloads with time-varying imbalance.

We acknowledge that one of our proposed improvements
to the ordering of candidates for task migration, the Migrate
Most Lightweight Tasks has not demonstrated superior perfor-
mance to the other proposed methods including the straw-man
used for baseline comparison. While this might be merely a
reflection of properties specific to the task distribution patterns
typical to the target application, the fact that this methodol-
ogy did not deliver superior results warrants further study,
which may give us additional insight into distributed load
transfer dynamics. Moreover, we want to apply our improved
algorithm, TemperedLB, to other full-scale applications than
the one we considered in this work. This will allow us to
confirm the empirical performance findings with a broader set
of task distribution patterns that we can use to further study the
respective performance of the task migration strategies in the
simulator. Finally, because the overarching goal of this work
is not to reduce or even eliminate load imbalance for its own
sake—but rather to make simulations run faster—our future
work will consider inter-task communication costs in addition
to task load.
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APPENDIX
A. Proof of Lemma 1

Consider a strictly overloaded (resp. underloaded) rank p;
(resp. p,) in an processor/object distribution D, with loads
£; (resp. £,). Consider also an object o € p; such that ¢ =
Loap(o) < ¢; — ¢, (both sides being necessarily positive by
hypothesis on loads); we can thus distinguish the two following
disjoint cases:

b — 4,
1) If ¢ < ,then ¢; — ¢ > /¥, + /¢ and thus ¢, + ¢ <
b — 0 < ¥,
2) If 0> "% then ¢; — £ < £, + £ and thus ¢; — { <

£z+€<g<:>€<€i—€x.
Therefore, we can assert that, overall, max (¢; — ¢, £, + £) <
l; < 0 < l; — {,. Now, recall that

F(D) _ Emax _T> Ei

Eave - gave

with equality if and only if p; is such that ¢; = ¢, in D (i.e.,
it has maximum load in the original distribution). Therefore,
{ < {; — ¥, ensures that

max(f,—Z,EtJrE) T < gz

-T<FD) @3

fave '€ ave

Assume now that o is transferred from p; to p,, and denote
l; = ¢; — ¢ and ¢}, = {, + { the respective new loads of
these ranks, the new load/rank distribution D’ is in at least
one of the following cases (the two first ones are not mutually
exclusive):

1) If p; is such that ¢, = ¢, . in D' (ie., p; has
maximum load in the new distribution D’), then
max (¢; — 0,0, +0) = ¢; — ¢ = {} and (3) yields:

/ Ellmax fi t;
FDy=tmx _p_ Y4 _po b _7opp
gave éave Eave
4
2) If p, is such that ¢, = /(. in D' (e, p,

has maximum load in the new distribution D’), then
max ({; — 0,0, + ) =L, + €=/, and (3) yields:

i _ lnax e 4
F(D')= 2 ~T=* —T <~ ~T<F(D)
ave ave ave ( 5 )

3) If a rank py & {p;,ps} is such that ¢y = ¢, . in D’
(i.e., neither p; nor p, have maximum load in the new
distribution D’), then necessarily 4, = fy because the
transfer did not affect py, and thus necessarily £3 < ¢;

and (3) yields:

' E;nax EIY l;
F(Dh)=-22_T= -T< —T < F(D).
gave éave gave
' (6)
Furthermore, in this case, — — 1T = LIRS

if and only if Py was maxfr\ﬁally—overloadeza’ein D;
because there is only a finite number of such ranks, it is
guaranteed that the inequality becomes strict in a finite
number of iterations.

We can therefore conclude that, overall,

(< tl;—tl, = F(D') < F(D). @)

B. Proof of Lemma 2

Proof:
If p; has maximum load in the object/load distribution D, and
one can find o € p; and p, € D, then by definition of F' one
has, on one hand:

bl s b ol g, ®)

- eave

'€ ave

On the other hand, in the new distribution D’ obtained by
transferring o from p; to p,, one has:

by + 70 v max ¢’
: —T=-2< - —T=FD". 9
Eave gave - eave ( ) ( )
Combining the two above inequalities thus yields

F(D") > F(D). Furthermore, if (o,p,) is such that ¢,
is not a maximally-overloaded rank in the new distribution,
then the latter inequality is strict, in which case F' increases.
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