
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of 
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security 
Administration under contract DE-NA0003525. 

Rigorous  Cyber Experimentation 
for Science of Security

Ali Pinar

Sandia National Laboratories

apinar@sandia.gov

UNCLASSIFIED UNLIMITED 
RELEASE

SAND2021-6332PE



SECURE: Science and Engineering of Cybersecurity by 
Uncertainty quantification and Rigorous Experimentation

• SECURE aims to develop cyber experimentation techniques to 
o answer “what if questions” with high-confidence (Emulytics)
o assess confidence in results under uncertainty (Uncertainty Quantification) 
o make robust decisions under uncertainty in an adversarial environment (Adversarial 

Optimization)

 with rigor.
• Lack of rigor limits adoption for high-consequence decisions 

• The cyber experimentation process is analogous to the scientific method
Hypothesis → test → analyze results → repeat

• SECURE’s success will advance cyber experimentation to be a pillar of 
science of cybersecurity 
o similar to computational science and engineering for physics based systems   
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Cyber experimentation approaches

L I V E S I M U L A T E DIncrease Realism Decrease Cost, Decrease 
Time

ACTUAL SYSTEM VIRTUALIZED TESTBED

Interoperability in a single experiment  

SIMULATION
TESTBED

R E A L  H A R D W A R E
R E A L  S O F T W A R E

A B S T R A C T  H A R D W A R E
R E A L  S O F T W A R E

A B S T R A C T  H A R D W A R E
A B S T R A C T  S O F T W A R E

SECURE’s approach:
• Results should be independent of the platform and the tools used for the experiment
• Multi-fidelity techniques enable utilizing advantages of multiple methods



An Overview of the Process

• Cyber Experimentation Process: 
1. Model the attack 

2. Model the cyber system and its defenses

3. Model the consequences of the attack

4. Find remediations    
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Question: Is our power grid resilient against an attack as in Ukraine?
• Ukraine attack was  based on Crash Override Malware

• The attacker  gains remote access to power grid components to turn them 
on and off. 



Attack the Model 

• Need to model the attacker capabilities in a parameterized way

• Attack databases have data 
o We transform data into information
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Research Challenges: 
How do we represent knowledge?
How do we customize a model for specific system? 
How do we quantify an attacker’s success probability? 



Model the Cyber System

• Build a model of the cyber 
system and apply the attack

• Run many scenarios

• Analyze the data 
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Effect of the cyber system 

Research Challenges: 
Verification and Validation
Model input uncertainties
Scenario orchestration
Models I with varying fidelities
Uncertainty propagation in high dimensions
Scalability 
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Analyze the Consequences

• The main goal is resilience of the 
system  being supported

• Having understood  the effect on 
the cyber system, we investigate 
effect on the physical system
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Loss of load on the power system

Research Challenges:
Extreme events
Tail probabilities
Scalability
General purpose adversarial optimization solvers
Model validation



Remediation: Cyber-aware resilience and 
Consequence-aware cyber defense 

• How do we  improve cyber-systems for 
better resilience?
o Attacks equivalent in cyber metrics lead to 

different consequences 
o Current work: network segmentation

• How do we operate on physical systems
in a cyber threat-informed way?   
o What is a cyber fault line? 
o Current work:  cyber-aware attack models
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Research Challenges: 
What is a good cyber/physical interface? 
How do we design  systems that are resilient by design?
How do we deal with increasing uncertainty for full system assessment?
How do we identify sensitive parameters in  discrete/high-dimensional systems? 

California Fault Lines 



Genesis of SECURE is to investigate Verification and 
Validation of cyber experiments at scale

• Build on:
o V&V concepts from the computational science community

• A few core ideas: 
o Verification: Are equations solved correctly?

• Software quality:  unit testing, regression testing, etc. 
• Numerical analysis, stability, convergence analysis. 

o Validation:  Is the model adequate to use for the intended application?  
• Quantitative comparison between experiment (physical test) and model.
• Accounts for uncertainties and errors in both experimental data and model.

• Adaptation for Emulation:
o Verification: Do virtual machines operate in environment with proper realism?
o Validation: How do we measure adequateness at scale given randomness in 

experiments? 
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Verification: Effect of adding too many namespaces
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Research Challenges: 
What are the hardware invariants  that can indicate  system overload?  
How do we measure efficiently? How do we analyze (in-situ)?  



Validation: Comparing results 
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• Area Metric
o Sum of the differences 

in area between the  
CDFs of two samples 
[1]

o This is not a p-value, 
small values imply 
similarity

KS 
Statistic

Area 
Metric

[1] K.A. Maupin, L.P. Swiler, N.W. Porter, “Validation Metrics for Deterministic and Probabilistic Data,” 
Journal of Verification, Validation and Uncertainty Quantification, Vol. 3, September 2018.

[2] O. Simpson, C. Seshadhri, and A. McGregor, Catching the head, tail, and everything in between: A 
streaming algorithm for the degree distribution, in 2015 IEEE International Conference on Data Mining, 
IEEE, nov 2015.

Research Challenges: 
How do we model noise? What are proper metrics/ time scales for comparison? 
How do we scale algorithms? How do we build representative smaller systems? 



Always/Never Systems

• We need to identify events with low-likelihood yet high-consequence
o Solution: Multi-fidelity sampling for tail events; optimization for extreme points

• We need to face the sparse heterogenous data problems
o High-fidelity data will be limited;  we need to work with multi levels of fidelity. 
o Solution:  Multi-fidelity methods use a small number of high-fidelity model runs 

(emulation) augmented with many lower fidelity runs (simulation or 
mathematical models) to reduce the variance in the results.  This requires 
correlation between the high and low fidelity models.
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Response Value

Prob(Response Value > 
T) = Tail Probability

T



Multi-fidelity modeling results – 
variance reduction
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More than 70% variance reduction is 
obtained by adding only an equivalent 

cost of 11 HF runs.

• Take a large number of low fidelity runs and a small number of 
high fidelity runs to achieve statistics on high fidelity responses

• Relies on variance reduction: must have correlation between  two models



Adversarial Optimization
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Linear Programs
• Easily solved
• Widely used commercial and academic solvers

Linear Bilevel Programs
• Hard problems (NP-hard)
• No general-purpose commercial solvers for discrete lower level decisions

Upper Level Problem

Lower Level Problem

NOTE: These 
methods are 
not cyber or 
grid specific



Conclusions

• Cyber experimentation can be a pillar of science of cybersecurity
• Technology for cyber experimentation is advanced, 

o But needs to be supported  mathematical tools to apply scientific principles

• SECURE is leading the way, 
o Made significant progress but still long way ahead 

• In depth and in breadth
o Many opportunities for collaboration 

• Our success will
o Provide decision support for high-consequence systems 
o Design systems of the future that can be resilient to anticipated threats
o Compare solutions in realistic settings
o Quantify security, and thus the return on investment, in a principled way
o Present a capability for  

• Prediction and data  generation for extreme events
• Inference for model generation when data is sparse  
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