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SECURE: Science and Engineering of Cybersecurity by '.z
Uncertainty quantification and Rigorous Experimentation ‘aa

« SECURE aims to develop cyber experimentation techniques to
o answer “what if questions” with high-confidence (Emulytics)
o assess confidence in results under uncertainty (Uncertainty Quantification)
o Mmake robust decisions under uncertainty in an adversarial environment (Adversarial
Optimization)
with rigor.

» Lack of rigor limits adoption for high-consequence decisions

« The cyber experimentation process is analogous to the scientific method
Hypothesis — test — analyze results — repeat

« SECURE’s success will advance cyber experimentation to be a pillar of
science of cybersecurity

o similar to computational science and engineering for physics based systems



Cyber experimentation approaches {.!I
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SECURE’s approach:
* Results should be independent of the platform and the tools used for the experiment

« Multi-fidelity techniques enable utilizing advantages of multiple methods




An Overview of the Process (.!‘

Question: Is our power grid resilient against an attack as in Ukraine?
 Ukraine attack was based on Crash Override Malware

« The attacker gains remote access to power grid components to turn them
on and off.

» Cyber Experimentation Process:
1. Model the attack

2. Model the cyber system and its defenses
3. Model the consequences of the attack

4. Find remediations



Attack the Model (.a
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* Need to model the attacker capabilities in a parameterized way

* Attack databases have data
o We transform data into information

Research Challenges:

How do we represent knowledge?

How do we customize a model for specific system?
How do we quantify an attacker’s success probability?




Model the Cyber System (.!‘

 Build a model of the cyber
system and apply the attack
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* Run many scenarios
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* Analyze the data

=

Emulytics: Mean | -
= = Emulytics: 95% CI
#* Glass Box Model

[(¥]

=]

50 100 150 200
Attack Start Time (s)

Expected # compromised components
o
I

Effect of the cyber system

Research Challenges:

Verification and Validation

Model input uncertainties

Scenario orchestration

Models | with varying fidelities

Uncertainty propagation in high dimensions
Scalability




Analyze the Consequences (.!‘
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Research Challenges:

Extreme events

Tail probabilities

Scalability

General purpose adversarial optimization solvers
Model validation




Remediation: Cyber-aware resilience and "z

Consequence-aware cyber defense

 How do we improve cyber-systems for
better resilience?

o Attacks equivalent in cyber metrics lead to
different consequences

o Current work: network segmentation

 How do we operate on physical systems
in a cyber threat-informed way?
o What is a cyber fault line?
o Current work: cyber-aware attack models

California Fault Lines

Research Challenges:
What is a good cyber/physical interface?
How do we design systems that are resilient by design?
How do we deal with increasing uncertainty for full system assessment?
How do we identify sensitive parameters in discrete/high-dimensional systems?
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Genesis of SECURE is to investigate Verification and '.’z
Validation of cyber experiments at scale ‘“

* Build on:
o V&V concepts from the computational science community

A few core ideas:

o Verification: Are equations solved correctly?
- Software quality: unit testing, regression testing, etc.
- Numerical analysis, stability, convergence analysis.

o Validation: Is the model adequate to use for the intended application?
- Quantitative comparison between experiment (physical test) and model.
- Accounts for uncertainties and errors in both experimental data and model.

» Adaptation for Emulation:
o Verification: Do virtual machines operate in environment with proper realism?

o Validation: How do we measure adequateness at scale given randomness in
experiments?



Verification: Effect of adding too many namespaces (.!l
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Research Challenges:

What are the hardware invariants that can indicate system overload?
How do we measure efficiently? How do we analyze (in-situ)?
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Validation: Comparing results (.!‘
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Research Challenges:
How do we model noise? What are proper metrics/ time scales for comparison?
How do we scale algorithms? How do we build representative smaller systems?
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Always/Never Systems (.

* We need to identify events with low-likelihood yet high-consequence
o Solution: Multi-fidelity sampling for tail events; optimization for extreme points

Lesadshed dstribations for a 118-bus electric grid: M-k v Mente-Carlo
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. We neea © 1468 the éparsé heterogenous data problems
o High-fidelity data will be limited; we need to work with multi levels of fidelity.

o Solution: Multi-fidelity methods use a small number of high-fidelity model runs
(emulation) augmented with many lower fidelity runs (simulation or
mathematical models) to reduce the variance in the results. This requires

correlation between the high and low fidelity models.
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Multi-fidelity modeling results — '.’z
variance reduction ‘d

Take a large number of low fidelity runs and a small number of
high fidelity runs to achieve statistics on high fidelity responses
Relies on variance reduction: must have correlation between two models

» The variance reduction we obtain w.r.t. MC is
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Adversarial Optimization (.!‘
Linear Programs

- Easily solved
- Widely used commercial and academic solvers
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Linear Bilevel Programs

- Hard problems (NP-hard)
- No general-purpose commercial solvers for discrete lower level decisions
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Conclusions (.!i

« Cyber experimentation can be a pillar of science of cybersecurity

« Technology for cyber experimentation is advanced,
o But needs to be supported mathematical tools to apply scientific principles

« SECURE is leading the way,

o Made significant progress but still long way ahead
- In depth and in breadth

o Many opportunities for collaboration

* Our success will
o Provide decision support for high-consequence systems
o Design systems of the future that can be resilient to anticipated threats
o Compare solutions in realistic settings
o Quantify security, and thus the return on investment, in a principled way

o Present a capability for
- Prediction and data generation for extreme events
- Inference for model generation when data is sparse
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