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Nonlocal modeling

I Nonlocal models have become a preferred modeling choice for scientific and
engineering applications featuring global behavior that is affected by small scales.

I In particular, nonlocal models can capture effects that classical partial differential
equations (PDEs) fail to describe.

I These effects include multiscale behavior and anomalous transport such as
superdiffusion and subdiffusion.

I A nonlocal equation is characterized by integral operators acting on a lengthscale or
“horizon”, describing long-range forces and reducing the regularity requirements on
the solutions.

I Engineering applications include surface or subsurface transport, fracture mechanics,
turbulence, image processing, and stochastic processes.
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Model for anisotropic anomalous transport

I We focus mainly on nonlocal operators of fractional type, of the form

Lω;A = Dω (A(x)Gω) , with ω ∝ |x− y|−n−s (1)

I A(x) denotes a diffusion tensor and Dω and Gω denote weighted nonlocal divergence
and gradient operators, respectively, with weight function ω.

I Modeling subsurface transport is challenging due to the heterogeneities of the media
which generate, at the continuum scale, diffusion processes exhibiting transport rates
that may be “faster” or “slower” than those described by the classical integer-order
diffusion equation.

I At the smaller scales a local PDE model can accurately describe diffusion processes
by explicitly embedding the heterogeneities in the model parameters. At the
continuum scale, such models may fail to do so.

I A fractional-order model using an diffusion operator of the form (1) may act as a
homogenized model that encodes the heterogeneities of the medium in the integral
operator itself.
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Summary

I We analyze the well-posedness of an anisotropic, nonlocal diffusion equation involving
the operator Lω;A in the previous slide.

I We establish an equivalence between weighted and unweighted anisotropic nonlocal
diffusion operators in the vein of unified nonlocal vector calculus. This allows us to
utilize well-posedness for unweighted nonlocal diffusion problems, which are much
simpler.

I We apply our analysis to a class of fractional-order operators and present rigorous
estimates for the solution of the corresponding anisotropic anomalous diffusion
equation.

I We extend our analysis to the anisotropic diffusion-advection equation and prove
well-posedness for fractional orders s ∈ [0.5, 1). We also present an application of the
advection-diffusion equation to anomalous transport of solutes.
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Unweighted Nonlocal Vector Calculus Operators

Let α : Rn ×Rn → Rn, for n = 1, 2, 3, be an anti-symmetric two-point vector function. For
v : Rn × Rn → Rn, the nonlocal unweighted divergence Dv : Rn → R is defined as

Dv(x) :=

∫
Rn

(v(x,y) + v(y,x)) ·α(x,y)dy. (2)

For u : Rn → R the nonlocal unweighted gradient, Gu : Rn ×Rn → Rn, the negative adjoint
of (2) is defined as

Gu(x,y) = (u(y)− u(x))α(x,y). (3)

The nonlocal unweighted Laplacian is defined as the composition of unweighted nonlocal
divergence and gradient, i.e.

Lu(x) = DGu(x) = 2

∫
Rn

(u(y)− u(x))γ(x,y)dy, (4)

where the nonnegative kernel γ is given by γ = α·α.
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The diffusion problem

I To define a diffusion problem in a bounded domain Ω ⊂ Rn, by definition of Lu(x), it
is necessary to evaluate u(x) for x ∈ Rn \ Ω. We refer to conditions on u in the
exterior of the domain as exterior conditions or volume constraints.

I With this in mind, the strong form of an unweighted nonlocal diffusion problem is
given by: for f : Ω→ R, u0 : Ω→ R and g : Rn \ Ω→ R, find u such that    

∂tu(x, t) = Lu(x, t) + f(x, t), (x, t) ∈ Ω× (0, T )

u(x, t) = g(x, t), (x, t) ∈ Rn \ Ω

u(x, 0) = u0(x), x ∈ Ω

(5)

where the second condition in (5) is the nonlocal counterpart of a Dirichlet boundary
condition for PDEs and it is referred to as Dirichlet volume constraint , and is
required to guarantee the well-posedness of (5).

I For simplicity and without loss of generality we analyze the homogeneous case g = 0;
all the results below can be extended to the non-homogeneous case using “lifting”
arguments.
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Nonlocal Green’s identity

To obtain the variational form of equation (5), we apply the following nonlocal form of the
first Green’s identity, introduced in Du et al. (2013):∫

Ω

−Lu(x) v(x) dx =

∫
Rn

∫
Rn

Gu(x,y) · Gv(x,y) dy dx+

∫
Rn\Ω

D(Gu)(x) v(y) dx. (6)

Multiplying (5) by a test function v such that v = 0 on Rn \ Ω and integrating over the
domain Ω yields, for all t ≥ 0,

0 =

∫
Ω

(∂tu(x, t)− Lu(x, t)− f(x, t)) v(x) dx (7)

=

∫
Ω

∂tu(x, t) v(x) dx+

∫
Rn

∫
Rn

Gu(x,y, t) · Gv(x,y) dy dx

+

∫
Rn\Ω

D(Gu)(x, t) v(x) dx−
∫
Ω

f(x, t) v(x) dx,

(8)

where the integral over Rn \ Ω on the right-hand side is zero due to the properties of v.
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Weak/variational formulation

I Given a function space S with norm ‖ · ‖, we define the space L2(0, T ;S) as follows

L2(0, T ;S) = {w : Rn × R→ R such that w(·, t) ∈ S ∀ t ≥ 0, and ‖w(·, t)‖S ∈ L2(0, T )}.

I Then, the weak form of the nonlocal diffusion problem reads as follows. For
f ∈ L2(0, T ;V ′Ω(Rn)), find u ∈ L2(0, T ;VΩ(Rn)) such that

(∂tu, v) + B(u, v) = F(v), ∀ v ∈ VΩ(Rn), (9)

where (·, ·) indicates the L2 inner product over Ω, and

B(u, v) =

∫
Rn

∫
Rn

Gu(x,y) · Gv(x,y) dy dx,F(v) =

∫
Ω

f(x) v(x) dx,

VΩ(Rn) = {v ∈ L2(Rn) : |||v||| <∞ and v|Rn\Ω = 0}.
(10)

Here, |||v|||2 =
∫
Rn

∫
Rn |Gv(x,y)|2 dy dx, and the space V ′Ω is the dual space of VΩ.
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Well-posedness of the unweighted/standard diffusion problem

I Note that the bilinear form B(·, ·) defines an inner product on VΩ(Rn) and that

|||u|||2 = B(u, u).

I This fact implies that the bilinear form is coercive and, hence, weakly coercive.

I Together with the continuity of B and F , this yields the well-posedness of the weak
form (9).
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Weighted operators and corresponding volume-constrained problems

I We let ω : Rn × Rn → R be a nonnegative, symmetric scalar function known as the
weight function.

I For v : Rn → Rn, the nonlocal ω-weighted divergence Dωv : Rn → R is defined as

Dωv(x) := D(ω(x,y)v(x))

=

∫
Rn

(ω(x,y)v(x) + ω(y,x)v(y)) ·α(x,y)dy.
(11)

I For u : Rn → R, the nonlocal ω-weighted gradient Gωu : Rn → Rn is defined as

Gωu(x) :=

∫
Rn

ω(x,y)Gu(x,y)dy

=

∫
Rn

ω(x,y)(u(y)− u(x))α(x,y)dy.

(12)

I Gω is the negative adjoint of the divergence Dω.
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Weighted nonlocal diffusion operator

As in the unweighted case, we define the nonlocal ω-weighted Laplacian as the composition
of (11) and (12), i.e.,

Lωu(x) = DωGωu(x)

=

∫
Rn

[
ω(x,y)

∫
Rn

ω(x, z)(u(z)− u(x))α(x, z)dz

+ ω(y,x)

∫
Rn

ω(y, z)(u(z)− u(y))α(y, z)dz

]
·α(x,y)dy.

(13)

Using the symmetry of ω, we can further write

Lωu(x) =

∫
Rn

ω(x,y)

[∫
Rn

ω(x, z)(u(z)− u(x))α(x, z)dz

+

∫
Rn

ω(y, z)(u(z)− u(y))α(y, z)dz

]
·α(x,y)dy. (14)
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Tensor valued weight functions

I We have reviewed the definitions (11), (12), and (13) assuming that ω is a
symmetric, scalar valued function.

I Later on, in the main sections, we will consider the case when ω is a
nonsymmetric tensor.

I Definitions (11), (12), and (13), but not the simplification (14), may be
utilized for this case with products of ω and vectors being interpreted as
matrix-vector multiplication.

12



Weighted nonlocal diffusion problems

As for the unweighted case, problems defined on bounded domains involving these
operators require a volume constraint on the exterior of Ω. We introduce the strong form
of a weighted, nonlocal diffusion problem with homogeneous volume constraints. For
f : Ω→ R and u0 : Ω→ R, find u such that

∂tu(x, t) = Lωu(x, t) + f(x, t), (x, t) ∈ Ω× (0, T ]

u(x, t) = 0, (x, t) ∈ Rn \ Ω× (0, T ]

u(x, 0) = u0(x), x ∈ Ω

(15)

where the second condition in (15) is still referred to as Dirichlet volume constraint. Next,
by multiplying (15) by a test function v : Rn → R such that

v = 0 in Rn \ Ω, (16)

and integrating over the domain Ω, we have the following weak form:∫
Ω

(∂tu(x, t)− Lωu(x, t)− f(x, t)) v(x) dx = 0, for all t > 0. (17)
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Weighted nonlocal Green’s identity

We introduce the following weighted nonlocal Green’s first identity∫
Ω

−Lωu(x)v(x) dx =

∫
Rn

Gωu(x)·Gωu(x)dx+

∫
Rn\Ω

DωGωu(x)v(x) dx. (18)

By substituting the latter in (17), we obtain∫
Ω

∂tu(x, t) v(x) dx+

∫
Rn

Gωu(x, t)·Gωu(x, t)dx

+

∫
Rn\Ω

DωGωu(x, t)v(x) dx−
∫

Ω

f(x, t) v(x) dx = 0. (19)

By (16), the integral over Rn \ Ω on the left-hand side is zero.
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Weak form of weighted nonlocal diffusion problems

Thus, the weak form of the nonlocal diffusion problem reads as follows. For
f ∈ L2(0, T ; (V ω

Ω )′(Rn)), and u0 ∈ V ω
Ω (Rn), find u ∈ L2(0, T ;V ω

Ω (Rn) such that

(∂tu, v) + Bω(u, v) = F(v), ∀ v ∈ V ω
Ω (Rn), (20)

where

Bω(u, v) =

∫
Rn

Gωu(x)·Gωv(x)dx,

V ω
Ω (Rn) = {v ∈ L2(Rn) : |||v|||ω <∞ and v|Rn\Ω = 0},

(21)

and where the weighted energy is defined as

|||v|||2ω =

∫
Rn

|Gωv(x)|2 dx. (22)

The well-posedness of problem (20) follows when an equivalence relationship can be
established between weighted and unweighted operators, as we summarize in the next
section.
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The equivalence kernel

The equivalence theorem between weighted and unweighted operators provides an
equivalence kernel γeq that, for given α and ω, guarantees that L = Lω. In what follows,
we summarize the main result and its consequences.

Theorem
Let Dω and Gω be the operators associated with the symmetric scalar weight function ω and
the anti-symmetric function α. For the equivalence kernel γeq defined by

2γeq(x,y;ω,α) =

∫
Rn

[ω(x,y)α(x,y) · ω(x, z)α(x, z)

+ ω(z,y)α(z,y) · ω(x,y)α(x,y)

+ ω(z,y)α(z,y) · ω(x, z)α(x, z)]dz,

(23)

the weighted operator Lω = DωGω and the unweighted Laplacian operator L with kernel γeq

are equivalent, i.e. L = Lω.
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Variational equivalence between weighted and unweighted problems

This result, and the weighted nonlocal Green’s first identity, imply the following important
variational equivalence.

Theorem
For γeq(x,y;ω,α) defined as in (23), the variational forms associated with weighted and
unweighted nonlocal operators are equivalent. That is, for all v = 0 in Rn \ Ω,

B(u, v) =

∫
Rn

∫
Rn

Gu(x,y)·Gv(x,y) dy dx =

∫
Rn

Gωu(x)·Gωv(x) dx = Bω(u, v). (24)

An immediate consequence of this theorem is the equivalence of weighted and unweighted
energies, i.e.

|||v|||2 = B(v, v) = Bω(v, v) = |||v|||2ω. (25)

More importantly, the variational equivalence allows us to extend the unweighted
well-posedness results to the weighted case, anytime the equivalence kernel γeq induces an
unweighted coercive bilinear form A(·, ·).
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The special case of fractional-order operators

I We specify the choices of α and ω for which the weighted fractional Laplacian is
equivalent to the standard fractional Laplacian.

I The (Riesz) fractional Laplacian is defined as

(−∆)su = Cn,s

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, (26)

where

Cn,s =
4sΓ

(
s+ n

2

)
πn/2|Γ(−s)|

. (27)

I The weighted fractional gradient and divergence operators are defined as

gradsu(x) =

∫
Rn

[u(x)− u(y)]
x− y
|x− y|

1

|x− y|n+s
dy,

divsv(x) =

∫
Rn

[v(x)− v(y)] · x− y
|x− y|

1

|x− y|n+s
dy.

(28)
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Theorem
Let v ∈ Hs(Rd) and u ∈ Hs(Rd). For the weight function and kernel

ω = Cω |x− y|−(n+s), α(x,y) =
y − x
|y − x|

, (29)

the fractional divergence and gradient operators can be identified with the weighted nonlocal operators,

divsv(x) = Dωv(x), gradsu(x) = Gωu(x). (30)

Furthermore, α(x,y)ω(x,y) = (y − x)|y − x|−(n+s+1), implies that

γeq(x,y) = γFL(x,y) = −
Cn,s

2

1

|x− y|n+2s
, (31)

where FL stands for “fractional Laplacian” and Cn,s is the defined as in (27). Then, for u ∈ H2s(Rn),

Lu = Lωu = −(−∆)su. (32)

In words, the fractional gradient and divergence are special instances of weighted gradient and divergence
operators, for special choices of α and ω, and their composition is equivalent to the standard fractional
Laplacian operator.

19



Well-posedness for fractional problems

I The corresponding weighted and unweighted diffusion problems are both well-posed
in L2(0, T ;Hs

Ω(Rn)) where Hs
Ω(Rn) = {v ∈ Hs(Rn) : v|Rn\Ω = 0}.

I This follows from the coercivity of B(·, ·) for γ = γFL and from the variational
equivalence in Theorem 2.

I More precisely, on one hand, the fact that the bilinear form B(·, ·) associated with
γFL defines an inner product on Hs

Ω(Rn) guarantees the well-posedness of the
unweighted parabolic problem.

I On the other hand, the variational equivalence guarantees that the weighted bilinear
form Bω(·, ·) associated with ω and α defined as in (29) is equivalent to B(·, ·).

I This fact implies that the weighted parabolic problem is also well-posed in
L2(0, T ;Hs

Ω(Rn)).
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Anisotropic diffusion tensor can be exchanged for anisotropic weight

I We first introduce the anisotropic diffusion tensor and operator: let

A : Rn → Rn × Rn be bounded, measurable, symmetric and elliptic, (33)

i.e. there exist 0 < λmin ≤ λmax <∞ such that for all v ∈ Rn and x ∈ Rn,

λmin|v|2 ≤ v·A(x)v ≤ λmax|v|2. (34)

I This implies the existence of a tensor-valued function A
1
2 (x) such that

A
1
2 (x)A

1
2 (x) = A(x).

I We define the anisotropic nonlocal weighted Laplacian as

Lω;Au(x) = Dω(A(x)Gωu(x)). (35)

Lemma
Let A satisfy (33) and α and ω be an anti-symmetric vector function and a symmetric

scalar function respectively. Then, for ω̃ = A
1
2ω,

Lω;Au(x) := Dω(A(x)Gωu(x)) = Lω̃u(x). (36)

21



Equivalence kernel for nonsymmetric weight functions

I Having established that the use of a space-dependent diffusion tensor corresponds to
having a nonsymmetric weight function in the nonlocal Laplacian operator (13), we
show that the corresponding weighted Laplacian still admits a symmetric equivalence
kernel.

I Note that the arguments below hold also when ω is a tensor.

Lemma
Let the weight function ω be two-point function, not necessarily symmetric, i.e.
ω(x,y) 6= ω(y,x). Then, there exists a symmetric equivalence kernel γeq such that

Dω(Gωu(x)) = 2

∫
Rn

(u(y)− u(x))γeq(x,y;ω) dx, (37)

where γeq(x,y;ω,α) is a symmetric function of x and y.
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Nonlocal anisotropic Poisson problem and Green’s identity

I We now introduce the anisotropic nonlocal Poisson equation. For f : Ω→ R, we seek
u : Rn → R such that {

−Lω;Au(x, t) = f(x, t), x ∈ Ω

u(x) = 0, x ∈ Rn \ Ω.
(38)

I As usual, a form of Green’s first identity is required to introduce a weak form for the
equation above.

Theorem
Let Lω;A be defined as in (35). Then,

−
∫
Ω

Lω;Au(x)v(x) dx =

∫
Rn

Gωv(x)·A(x)Gωu(x)dx+

∫
Rn\Ω

Dω(A(x)Gωu(x))v(x) dx (39)

23



Weak form of anisotropic Poisson problem

I Utilizing the results of the previous subsection, we can formulate the weak form of
equation (38) and show that the corresponding energy is equivalent to an unweighted
nonlocal energy.

I We multiply (38) by a test function v = 0 in Rn \ Ω and integrate over the domain Ω;
we have ∫

Ω

(−Lω;Au(x)− f(x)) v(x) dx = 0. (40)

I The anisotropic weighted nonlocal Green’s first identity (39) then implies∫
Rn

Gωu(x)·A(x)Gωu(x)dx+

∫
Rn\Ω

Dω(A(x)Gωu(x))v(x) dx−
∫

Ω

f(x) v(x) dx = 0.
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Weak form of anisotropic Poisson problem

I Thus, the weak form of the nonlocal Poisson problem reads as follows. For
f ∈ V ′A(Rn), find u ∈ V A

Ω (Rn) such that

Bω;A(u, v) = F(v), ∀ v ∈ VA(Ω ∪ ΩI), (41)

where

Bω;A(u, v) =

∫
Rn

Gωu(x) ·A(x)Gωu(x)dx,

V A
Ω (Rn) = {v ∈ L2(Rn) : |||v|||A <∞ and v|Rn\Ω = 0},

(42)

and where the anisotropic energy is defined as

|||v|||2A =

∫
Rn

Gωv(x) ·A(x)Gωv(x) dx. (43)

I The existence of the equivalence kernel guaranteed by Lemma 5, allows us to
establish an equivalence relationship between the anisotropic weighted bilinear
form Bω;A defined above and the unweighted bilinear form B given in (9),

where the latter is associated to the equivalence kernel γeq(x,y;A
1
2ω,α), as

shown in the following lemma. 25



Well-posedness: reducing to unweighted variational problem

Lemma
Let A be a bounded, measurable and elliptic tensor, ω be a symmetric scalar function and
α an anti-symmetric vector function. Then, the following identity holds:

Bω;A(u, v) =

∫
Rn

Gωv(x)·A(x)Gωu(x) dx = B(u, v), ∀u, v ∈ V A
Ω (Rn), (44)

where B(·, ·) is the unweighted bilinear form defined in (10) associated to the symmetric

equivalence kernel γeq(x,y;A
1
2ω,α).

The proof follows from Lemmas 5 and 6. We have∫
Rn

Gωv(x)·A(x)Gωu(x) dx = −
∫

Ω

Dω(A(x)Gωu)(x)v(x) dx (weighted Green’s identity)

= −
∫

Ω

DGu(x)v(x) dx (Equivalence kernel)

=

∫
Rn

∫
Rn

Gu(x,y) ·Gv(x,y) dy dx. (unweighted Green’s identity)
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Conditions for well-posedness

I The theorem above is not enough to guarantee the well-posedness of problem (41).

I One approach to obtaining the existence and uniqueness of solutions involves
establishing certain properties of γeq.

I However, thanks to the ellipticity property of A, the well-posedness of the anisotropic
problem follows from the well-posedness of the weighted problem associated with the
corresponding isotropic weighted bilinear form Bω.

I In fact, Bω;A is coercive and continuous with respect to the energy induced by of Bω,
as we show in the following lemma.

Lemma
The bilinear form Bω;A(u, v) defined as in (42) is continuous and coercive in V ω

Ω (Rn), i.e.

|Bω;A(u, v)| ≤ λmax |||u|||ω|||v|||ω
Bω;A(u, u) ≥ λmin|||u|||2ω,

(45)

where λmin and λmax are the smallest and largest eigenvalues of A over Rn, respectively.
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The anisotropic fractional problem

I We apply the analysis of the nonlocal anisotropic problem to the case of fractional
operators.

I That is, we consider ω and α defined as in (29) and s show that the corresponding
anisotropic problem is well-posed in the usual fractional Sobolev space.

I We only need to show that the bilinear form Bω;A is coercive and continuous with
respect to the fractional Sobolev norm.

I In fact, Theorem (3) states that the equivalence kernel associated with the weight and
kernel functions in (29) is the fractional Laplacian kernel γFL.

I Variational equivalence implies that the corresponding weighted energy space V ω
Ω is

equivalent to Hs
Ω and that the weighted energy |||·|||ω is equivalent to the Hs norm.
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The anisotropic fractional problem

I Thus, Lemma 8 implies the continuity and coercivity of Bω;A in Hs
Ω and the

well-posedness of problem (41) is immediate, as stated in the folling lemma.

Lemma
Let A satisfy (33), and let ω and α be defined as in (29). Then, the corresponding bilinear
form Bω;A defined as in (42) is coercive and continuous in Hs

Ω(Rn) with coercivity and
continuity constants

Ccoer =
Cn,s

2
λmin and Ccont =

Cn,s

2
λmax, (46)

where λmin and λmax are the smallest and largest eigenvalues of A in Rn, respectively.
Furthermore, problem (41) is well-posed.
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The anisotropic fractional problem

I Note that for the fractional case and for a class of tensors satisfying (33) that we
specify below, we can characterize the equivalence kernel.

I In particular, the equivalence kernel is such that the corresponding unweighted
bilinear form is a Dirichlet form, as we show in the following lemma.

Lemma
Let I be the identity tensor in Rn and let A(x) = a(x)I satisfy (33) for a : Rn → R, i.e.
there exist two positive constants such that 0 < a ≤ a(x) ≤ a <∞. Then, the equivalence

kernel γeq(x,y; a
1
2ω,α) is such that

aCn,s

2
|x− y|−n−2s ≤ γeq(x,y; a

1
2ω,α) ≤ aCn,s

2
|x− y|−n−2s.

I Lemma 10 implies that the equivalence kernel is positive; in addition to symmetry,
this property guarantees that the corresponding unweighted bilinear form B is a
Dirichlet form

I We point out that the class of tensors in Lemma 10 corresponds to a space dependent
isotropic diffusion as the intensity of the diffusion is the same in all directions.
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Well-posedness of a parabolic equation with anisotropic nonlocal diffusion

The above results allow us to analyze the anisotropic parabolic problem. In fact, the
coercivity of the bilinear form Bω;A implies the well-posedness of the corresponding
parabolic problem, for which weak coercivity would be sufficient. We introduce the strong
form of the anisotropic parabolic equation and, by using the Green’s identity (39), we
formulate the corresponding weak problem and state a well-posedness result.
For f : Ω→ R and u0 : Ω→ R, we seek u such that

∂tu(x, t) = Dω(A(x)Gωu(x, t)) + f(x, t), (x, t) ∈ Ω× (0, T ]

u(x, t) = 0, (x, t) ∈ Rn \ Ω× (0, T ]

u(x, 0) = u0(x), x ∈ Ω

(47)

By multiplying (47) by a test function v = 0 in Rn \Ω, integrating over the domain Ω, and
using the anisotropic Green’s identity (39), we have

0 =

∫
Ω

(∂tu(x, t)− Lωu(x, t)− f(x, t)) v(x) dx

=

∫
Ω

∂tu(x, t) v(x) dx+

∫
Rn

Gωu(x)·A(x)Gωu(x)dx−
∫

Ω

f(x, t) v(x) dx.

(48)
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Weak form

For f ∈ L2(0, T ; (V A
Ω )′(Rn)), and uo ∈ V A

Ω (Rn), find u ∈ L2(0, T ;V A
Ω (Rn) such that

(∂tu, v) + Bω;A(u, v) = F(v), ∀ v ∈ VΩ(Rn). (49)

When the equivalence kernel γeq(x,y;A
1
2ω) associated with A is such that the unweighted

bilinear form B is coercive, problem (49) is well-posed, as we state in the following theorem.

Theorem
For f ∈ L2(0, T ;V ′Ω(Rn)), u0 ∈ V A

Ω and Bω;A(·, ·) such that the corresponding

γeq(x,y;A
1
2ω,α) induces a weakly coercive and continuous unweighted for B(·, ·), the

problem (49) has a unique solution u∗ ∈ L2(0, T ;VΩ(Rn)), where VΩ(Rn) is the energy
space associated with the bilinear form B(·, ·). Furthermore, if B(·, ·) is coercive and the
associated energy norms satisfies a Poincaré inequality with constant Cp, that solution
satisfies the a priori estimate

‖u∗(·, t)‖2L2(Ω) + Ccoer

∫ t

0

|||u∗(·, s)|||2 ds ≤ ‖u0‖2L2(Ω) +
C2

p

2Ccoer

∫ t

0

‖f(·, s)‖2V ′
Ω
ds ∀ t > 0,

(50)
where ‖ · ‖V ′

Ω
indicates the standard operator norm in the dual space of VΩ(Rn) and Ccoer is

the coercivity constant of the bilinear form B(·, ·).
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Well-posedness

I We have shown that for a tensor A satisfying (33), and for ω and α as in (29), the
equivalence kernel associated with Dω(A(x)Gω) induces an unweighted bilinear form
B(·, ·), whose energy norm is equivalent to the Hs-norm. This implies that B(·, ·) is
coercive and continuous on Hs

Ω(Rn).

I Thus, Theorem 11 can be immediately applied to the special case of fractional
operators, as we show in the following corollary. Note that, in this case, the
unweighted energy norm corresponds to the Hs norm for which the Poincaré
inequality is satisfied for all u ∈ Hs

Ω(Rn).

Corollary
Let A be a tensor satisfying (33), and let ω and α be defined as in (29). For
f ∈ L2(0, T ; (Hs

Ω(Rn))′) and u0 ∈ Hs
Ω(Rn), the problem

(∂tu, v) + Bω;A(u, v) = F(v), ∀ v ∈ Hs
Ω(Rn), (51)

has a unique solution u∗ ∈ L2(0, T ;Hs
Ω(Rn)) that satisfies the estimate (50) for

|||·||| = ‖ · ‖Hs
Ω

and Ccoer as in (46).
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The anisotropic anomalous transport equation and its well-posedness

I We extend the anisotropic fractional diffusion model to an advection-diffusion model
that takes into account the presence of drift.

I We assume the advection field to be a given solenoidal field v; in general, such a field
is the solution of Darcy’s equation.

I Let A be a bounded, measurable and elliptic tensor and v be a bounded, solenoidal
vector, i.e. ‖v‖L∞(Ω) ≤ Cv <∞ and ∇ · v = 0. For ω and α defined as in (29),
f : Ω→ R, g : Rn \ Ω→ R and u0 : Ω→ Rn, the strong form of the anomalous
transport problem is defined as follows

∂tu(x, t) = Dω(A(x)Gωu(x, t))− v(x)·∇u(x, t) + f(x, t), (x, t) ∈ Ω× (0, T ]

u(x, t) = g, (x, t) ∈ Rn \ Ω× (0, T ]

u(x, 0) = u0(x), x ∈ Ω
(52)

I The anisotropic Green’s first identity allows us to write the weak formulation of (52).
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Weak formulation

I For the sake of simplicity, we analyze the weak form for homogeneous
volume-constraints, i.e., g ≡ 0.

I We restrict the fractional order to s ∈ [0.5, 1), in order to guarantee the coercivity of
the problem in presence of advection.

I For s ∈ [0.5, 1), f ∈ L2(0, T ;H−s(Rn)), and u0 ∈ Hs
Ω(Rn), we seek

u ∈ L2(0, T ;Hs(Rn)) such that

(∂tu, v) + Bω;A(u, v) + (v · ∇u, v) = F(v), ∀ v ∈ Hs
Ω(Rn), (53)

where Bω;A is the bilinear form defined in (42).

I The following lemma shows that the bilinear form Bω;A(u, v) + (v · ∇u, v) is coercive.
Its proof is a combination of equation (45) and Proposition 3 in Bonito et al. (2020).
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Coercivity of bilinear form with advection

Lemma
Let the fractional order s ∈ [0.5, 1) and λmin be the smallest eigenvalue of the tensor A
over Rn. If the advection field v is bounded and solenoidal, then the bilinear form
B′(u, v) = Bω;A(u, v) + (v · ∇u, v) is coercive. In particular,

B′(u, u) = Bω;A(u, u) ≥ Cn,s

2
λmin‖u‖2Hs

Ω
.

I Arguments similar to Corollary 12 imply the well-posedness of problem (53).
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