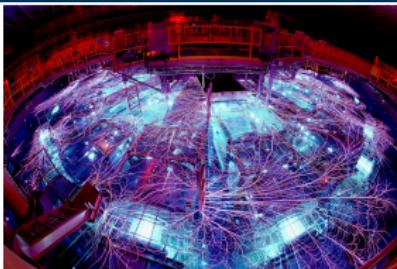


This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in this paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2021-6324C



Constraints imposed by material stability for an anisotropic peridynamic model

SIAM Conference on Mathematical Aspects of Materials Science

Presenter: Jeremy Trageser (SNL)
Collaborator: Pablo Seleson (ORNL)

Outline

1. Goals
2. Classical linear elasticity
 - Symmetry classes
 - Material stability
3. Linear bond-based peridynamics
 - Symmetry classes
 - Material stability
 - Comparison of local and nonlocal
4. Future work
5. Conclusions and acknowledgments

Goals

- Explore material stability conditions for an anisotropic linear peridynamic model.
- Develop conditions on the elasticity tensor which guarantee material stability in the peridynamic model.
- Compare material stability conditions between peridynamics and the local theory.

Classical Linear Elasticity

In linear elasticity stresses and strains are related via a generalized Hooke's Law:

$$\sigma_{ij} = C_{ijkl}\epsilon_{kl} \quad (1)$$

σ : stress tensor, ϵ : strain tensor, C : elasticity tensor.

C has the following symmetries:

Minor Symmetries : $C_{ijkl} = C_{jikl} = C_{ijlk}$

Major Symmetry : $C_{ijkl} = C_{klji}$

Classical equation of motion:

$$\rho(\mathbf{x})\ddot{u}_i(\mathbf{x}, t) = \frac{\partial}{\partial x_j}\sigma_{ij}(\mathbf{x}, t) + b_i(\mathbf{x}, t) = C_{ijkl}\frac{\partial^2 u_k}{\partial x_j \partial x_l}(\mathbf{x}, t) + b_i(\mathbf{x}, t)$$

ρ : mass density, \mathbf{u} : displacement, and \mathbf{b} : body force density.

Cauchy's Relations

- Term coined by Love in [1].
- Derived from a molecular description of materials assuming central forces between pairs of molecules.
- In two dimensions it is single relation between the elasticity constants in the elasticity tensor which forces \mathbb{C} to be completely symmetric:

$$C_{1212} = C_{1122}$$

- Reduces the number of independent constants in \mathbb{C} from 6 to 5.
- Determined to be invalid for the majority of materials.

[1] A. E. H. Love. *A Treatise on the Mathematical Theory of Elasticity, Volume I*. Cambridge University Press, 1892.

Symmetry Classes of \mathbb{C}

Definition

An orthogonal transformation \mathbf{Q} between bases \mathbf{e} and \mathbf{e}' is called a symmetry transformation of the elasticity tensor \mathbb{C} if

$$C_{ijkl} = Q_{ip}Q_{jq}Q_{kr}Q_{ls}C_{pqrs}. \quad (2)$$

Proposition

The set of symmetry transformations of \mathbb{C} forms a group which we call a symmetry group of \mathbb{C} .

Definition

The symmetry class of \mathbb{C} is the set of symmetry groups of \mathbb{C} which are equivalent up to a change in orientation.

Theorem

There are exactly four symmetry classes of the elasticity tensor in two dimensions: oblique, rectangular, cubic, and isotropic [1].

[1] He, Q.C., Zheng, Q.S.: On the symmetries of 2D elastic and hyperelastic tensors. *Journal of Elasticity* 43(3), 203–225(1996).

The Symmetry Classes of 2D Linear Elasticity

Symmetry Class	Elasticity Tensor	Elasticity Tensor (Cauchy's relation imposed)
Oblique	$\begin{bmatrix} C_{11} & C_{12} & C_{16} \\ C_{12} & C_{22} & C_{26} \\ C_{16} & C_{26} & C_{66} \end{bmatrix}$	$\begin{bmatrix} C_{11} & C_{12} & C_{16} \\ C_{12} & C_{22} & C_{26} \\ C_{16} & C_{26} & C_{12} \end{bmatrix}$
Rectangular	$\begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{22} & 0 \\ 0 & 0 & C_{66} \end{bmatrix}$	$\begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{22} & 0 \\ 0 & 0 & C_{12} \end{bmatrix}$
Square	$\begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{11} & 0 \\ 0 & 0 & C_{66} \end{bmatrix}$	$\begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{11} & 0 \\ 0 & 0 & C_{12} \end{bmatrix}$
Isotropic	$\begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{11} & 0 \\ 0 & 0 & \frac{C_{11}-C_{12}}{2} \end{bmatrix}$	$\begin{bmatrix} C_{11} & \frac{1}{3}C_{11} & 0 \\ \frac{1}{3}C_{11} & C_{11} & 0 \\ 0 & 0 & \frac{1}{3}C_{11} \end{bmatrix}$

Strain energy density:

$$W = \frac{1}{2} C_{ij} \varepsilon_i \varepsilon_j. \quad (3)$$

In the absence of external loads, the condition for material stability is:

$$W > 0, \quad \forall \varepsilon \neq \mathbf{0}.$$

The quadratic form (3) is positive if and only if the elasticity matrix \mathbf{C} is positive definite.

Theorem (Sylvester's criterion)

A symmetric matrix is positive definite if and only if its leading principal minors are positive.

Elastic Stability Criteria in 2D Linear Elasticity

Symmetry Class	Elastic Stability Criteria
Oblique	$C_{11} > 0, C_{11}C_{22} > C_{12}^2, \det(\mathbf{C}_{\text{obl}}) > 0$
Rectangular	$C_{11} > 0, C_{66} > 0, C_{11}C_{22} > C_{12}^2$
Square	$C_{11} > C_{12} , C_{66} > 0$
Isotropic	$C_{11} > C_{12} $

Table 1: Without Cauchy's relation imposed.

Symmetry Class	Elastic Stability Criteria
Oblique	$C_{11} > 0, C_{11}C_{22} > C_{12}^2, \det(\tilde{\mathbf{C}}_{\text{obl}}) > 0$
Rectangular	$C_{11} > 0, C_{12} > 0, C_{11}C_{22} > C_{12}^2$
Square	$C_{11} > C_{12} > 0$
Isotropic	$C_{11} > 0$

Table 2: With Cauchy's relation imposed

Given a pairwise equilibrated reference configuration, the linear bond-based peridynamic equation of motion is:

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x}, t) = \int_{\mathcal{H}} \lambda(\boldsymbol{\xi}) (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) (\mathbf{u}(\mathbf{x} + \boldsymbol{\xi}, t) - \mathbf{u}(\mathbf{x}, t)) dV_{\boldsymbol{\xi}} + \mathbf{b}(\mathbf{x}, t).$$

ρ : mass density, \mathbf{u} : displacement, $\boldsymbol{\xi}$: peridynamic bond,

λ : micromodulus, \mathcal{H} : peridynamic neighborhood, \mathbf{b} : body force.

Relationship between the micromodulus and elasticity tensor:

$$C_{ijkl} = \frac{1}{2} \int_{\mathcal{H}} \lambda(\boldsymbol{\xi}) \xi_i \xi_j \xi_k \xi_l d\boldsymbol{\xi}. \quad (4)$$

Definition

An orthogonal transformation \mathbf{Q} is a symmetry transformation of the micromodulus function $\lambda(\boldsymbol{\xi})$ if

$$\lambda(\mathbf{Q}\boldsymbol{\xi}) = \lambda(\boldsymbol{\xi}), \quad \forall \boldsymbol{\xi} \in \mathbb{R}^d. \quad (5)$$

Anisotropic Micromodulus

We propose a micromodulus of the form

$$\lambda(\boldsymbol{\xi}) = \frac{1}{m} \frac{\omega(\|\boldsymbol{\xi}\|)}{\|\boldsymbol{\xi}\|^2} \frac{(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \boldsymbol{\Lambda} (\boldsymbol{\xi} \otimes \boldsymbol{\xi})}{\|\boldsymbol{\xi}\|^4} = \frac{1}{m} \frac{\omega(\|\boldsymbol{\xi}\|)}{\|\boldsymbol{\xi}\|^2} \frac{\xi_i \xi_j \xi_k \xi_l \Lambda_{ijkl}}{\|\boldsymbol{\xi}\|^4}$$

where $\boldsymbol{\Lambda}$ is a completely symmetric fourth-order tensor.

Using the relationship between $\lambda(\boldsymbol{\xi})$ and \mathbb{C} , we find

$$\begin{bmatrix} \Lambda_{1111} \\ \Lambda_{2222} \\ \Lambda_{1122} \end{bmatrix} = \begin{bmatrix} 10 & -20 & 2 \\ -\frac{10}{3} & \frac{76}{3} & -\frac{10}{3} \\ 2 & -20 & 10 \end{bmatrix} \begin{bmatrix} C_{1111} \\ C_{2222} \\ C_{1122} \end{bmatrix}$$

$$\begin{bmatrix} \Lambda_{1112} \\ \Lambda_{2212} \end{bmatrix} = \begin{bmatrix} 20 & -12 \\ -12 & 20 \end{bmatrix} \begin{bmatrix} C_{1112} \\ C_{2212} \end{bmatrix}$$

Material Stability in Peridynamics

The linear bond-based peridynamic material is stable if speeds are real for all plane waves [2]. Substituting an arbitrary plane wave

$$\mathbf{u}(\mathbf{x}, t) = \mathbf{a} e^{i(k\mathbf{N} \cdot \mathbf{x} - \omega t)},$$

into the linear bond-based peridynamic equation of motion with null body force results in:

$$\rho\omega^2 \mathbf{a} = \mathbf{M}(\mathbf{N}, \kappa) \mathbf{a}, \quad (6)$$

where

$$\mathbf{M}(\mathbf{N}, \kappa) := \int_{\mathcal{H}} \lambda(\xi) \xi \otimes \xi (1 - \cos(\kappa \mathbf{N} \cdot \xi)) dV_{\xi}. \quad (7)$$

The eigenvalues of $\mathbf{M}(\mathbf{N}, \kappa)$ are $\rho\omega^2 = \rho c^2 \kappa^2$. To ensure propagation of waves at all wavelengths, it is necessary and sufficient for $\mathbf{M}(\mathbf{N}, \kappa)$ to be positive definite.

[2] S. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. *Journal of the Mechanics and Physics of Solids*, 48, 175-209, 2000.

Proposition

If $\lambda(\xi) \geq 0$ is positive on a set of nonzero measure, then $\mathbf{M}(\mathbf{N}, \kappa)$ is positive definite.

Proof.

Let $K(\xi) := \lambda(\xi) (1 - \cos(\kappa \mathbf{N} \cdot \xi))$ so that $M_{ij} = \int_{\mathcal{H}} \xi_i \xi_j K(\xi) d\xi$.

Sylvester's criterion:

$$M_{11} = \int_{\mathcal{H}} \xi_1^2 K(\xi) d\xi > 0$$

and

$$\begin{aligned} 2(M_{11}M_{22} - M_{12}^2) &= \int_{\mathcal{H}} \xi_1^2 K(\xi) d\xi \int_{\mathcal{H}} \zeta_2^2 K(\zeta) d\zeta + \int_{\mathcal{H}} \xi_2^2 K(\xi) d\xi \int_{\mathcal{H}} \zeta_1^2 K(\zeta) d\zeta \\ &\quad - 2 \int_{\mathcal{H}} \xi_1 \xi_2 K(\xi) d\xi \int_{\mathcal{H}} \zeta_1 \zeta_2 K(\zeta) d\zeta \\ &= \int_{\mathcal{H}} \int_{\mathcal{H}} (\xi_1 \zeta_2 - \xi_2 \zeta_1)^2 K(\xi) K(\zeta) d\xi d\zeta > 0 \end{aligned}$$

Sufficient Condition for Material Stability

We consider positivity of the oblique micromodulus

$$\lambda(\xi) = \frac{1}{m} \frac{\Lambda_{11}\xi_1^4 + 4\Lambda_{16}\xi_1^3\xi_2 + 6\Lambda_{12}\xi_1^2\xi_2^2 + 4\Lambda_{26}\xi_1\xi_2^3 + \Lambda_{22}\xi_2^4}{\|\xi\|^4} \omega(\|\xi\|).$$

For this study we focused on the angular portion of the micromodulus and thus we need to determine the positivity of a quartic polynomial.

Theorem ([3])

The quartic function $f(z) = z^4 + 2az^2 + 2bz + c$ is nonnegative for all z if and only if $c \geq 0$ and

$$|b| \leq \frac{2}{3\sqrt{3}} \left(-a + \sqrt{a^2 + 3c} \right)^{\frac{1}{2}} \left(2a + \sqrt{a^2 + 3c} \right).$$

[3] V. Powers and B. Reznick. Notes towards a constructive proof of Hilbert's Theorem on ternary quartics. *Contemp. Math.*, 272, 209-227, 1999.

Theorem

The oblique micromodulus function is nonnegative if and only if one of the following conditions holds:

1. $\Lambda_{11} = \Lambda_{22} = \Lambda_{16} = \Lambda_{26} = 0, \Lambda_{12} > 0.$
2. $\Lambda_{11} = \Lambda_{16} = 0, \Lambda_{22} > 0, \Lambda_{12}\Lambda_{22} \geq \frac{2}{3}\Lambda_{26}^2.$
3. $\Lambda_{11} > 0, \Lambda_{22} \geq 0, c \geq 0, \text{ and}$

$$|b| \leq \frac{2}{3\sqrt{3}} \left(-a + \sqrt{a^2 + 3c} \right)^{\frac{1}{2}} \left(2a + \sqrt{a^2 + 3c} \right) \text{ where}$$

$$a := -3 \frac{\Lambda_{16}^2}{\Lambda_{11}^2} + 3 \frac{\Lambda_{12}}{\Lambda_{11}}, \quad b := 4 \frac{\Lambda_{16}^3}{\Lambda_{11}^3} - 6 \frac{\Lambda_{12}\Lambda_{16}}{\Lambda_{11}^2} + 2 \frac{\Lambda_{26}}{\Lambda_{11}}$$

$$c := -3 \frac{\Lambda_{16}^4}{\Lambda_{11}^4} + 6 \frac{\Lambda_{12}\Lambda_{16}^2}{\Lambda_{11}^3} - 4 \frac{\Lambda_{16}\Lambda_{26}}{\Lambda_{11}^2} + \frac{\Lambda_{22}}{\Lambda_{11}}$$

Corollary (Rectangular)

The rectangular micromodulus is nonnegative if and only if one of the following conditions holds:

1. $\Lambda_{11}, \Lambda_{22}, \Lambda_{12}$ are all nonnegative.
2. $\Lambda_{11} > 0, \Lambda_{12} < 0$, and $9\Lambda_{12}^2 \leq \Lambda_{11}\Lambda_{22}$.

Corollary (Square)

The square micromodulus is nonnegative if and only if one of the following conditions holds:

1. Λ_{11} and Λ_{12} are nonnegative.
2. $\Lambda_{12} < 0$ and $-3\Lambda_{12} \leq \Lambda_{11}$.

Corollary (Isotropic)

The isotropic micromodulus is nonnegative if and only if $\Lambda_{11} > 0$.

Comparison With Classical (Isotropic)

Corollary (Isotropic)

The isotropic micromodulus is nonnegative if and only if $C_{11} > 0$.

Stability in classical linear elasticity: ($C_{11} > 0$)

Region of stability on $B_1(0)$ for isotropic symmetry.

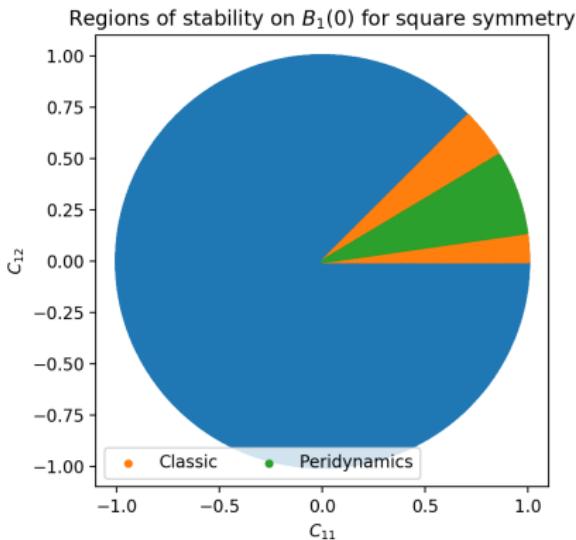
Comparison With Classical (Square)

Corollary (Square)

The square micromodulus is nonnegative if and only if:

$$\frac{1}{7}C_{11} < C_{12} < \frac{3}{5}C_{11}.$$

Stability in classical linear elasticity: ($C_{11} > C_{12} > 0$)

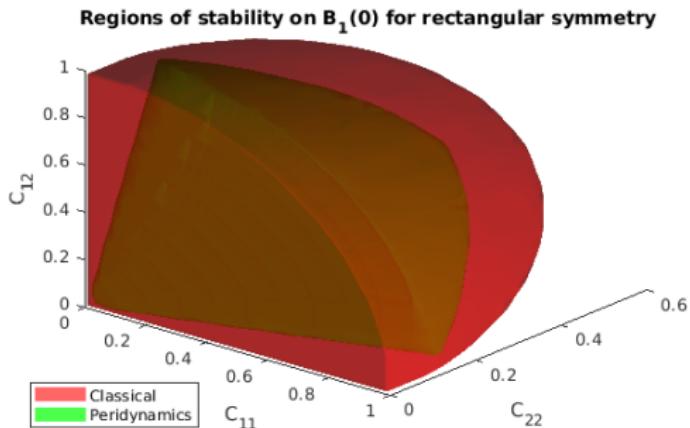


Comparison With Local (Rectangular) Corollary (Rectangular)

The rectangular micromodulus is nonnegative if and only if:

1. $\frac{5}{38}(C_{11} + C_{22}) \leq C_{12} \leq \min\left\{\frac{1}{2}C_{11} + \frac{1}{10}C_{22}, \frac{1}{10}C_{11} + \frac{1}{2}C_{22}\right\}$
2. $C_{12} < \min\left\{\frac{1}{2}C_{11} + \frac{1}{10}C_{22}, \frac{1}{10}C_{11} + \frac{1}{2}C_{22}, \frac{5}{38}(C_{11} + C_{22})\right\}$ and
 $(84C_{12} - 10(C_{11} + C_{22}))^2 \leq -5(C_{11}^2 + C_{22}^2) + 74C_{11}C_{22}.$

Stability in classical linear elasticity: $C_{11} > 0, C_{12} > 0, C_{11}C_{22} > C_{12}^2$



Future work

- Show positivity of the anisotropic kernel is more restrictive than elastic stability in classical linear elasticity for oblique symmetry.
- Explore the full material stability picture for the anisotropic kernel.
- Explore material stability dependence on the influence function.
- Explore material stability for a micromodulus which potentially changes signs angularly and radially.
- Involve external forces in the calculations.

- Explored material stability for a two-dimensional anisotropic peridynamic model.
- Proved that positivity of the rectangular micromodulus is more restrictive than material stability in classical linear elasticity.
- Numerically explored stability for possibly sign changing micromodulus.

Acknowledgments

- Laboratory Directed Research and Development program at the Oak Ridge National Laboratory.
- U.S. Defense Advanced Research Projects Agency (DARPA) (contract HR0011619523 and award 1868-A017-15)