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Goals e

m Explore material stability conditions for an anisotropic linear
peridynamic model.

m Develop conditions on the elasticity tensor which guarantee
material stability in the peridynamic model.

m Compare material stability conditions between peridynamics
and the local theory.




Classical Linear Elasticity =
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In linear elasticity stresses and strains are related via a generalized
Hooke’s Law:
ojj = Cijki€kl (1)

o stress tensor, €: strain tensor, C: elasticity tensor.
C has the following symmetries:
Minor Symmetries :  Cjiy = Cjiw = Cjjik
Major Symmetry : Gy = Cyijj
Classical equation of motion:

2

p(X)Ui(x,t) = g —0ojj(x,t) + bi(x,t) = Cjy—=——>— ou (x t) + bi(x, t)

Ox; O0x;Ox

p: mass density, u: displacement, and b: body force density.




Cauchy’s Relations o,
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m Term coined by Love in [1].

m Derived from a molecular description of materials assuming
central forces between pairs of molecules.

m In two dimensions it is single relation between the elasticity
constants in the elasticity tensor which forces C to be
completely symmetric:

Ci212 = Cr122

m Reduces the number of independent constants in C from 6 to 5.

m Determined to be invalid for the majority of materials.

[1] A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity, Volume I. Cambridge

University Press, 1892. 5



Symmetry Classes of C s,

Definition
An orthogonal transformation Q between bases e and €’ is called a
symmetry transformation of the elasticity tensor C if

Cijkl = Qinijerlstqrs- (2)
Proposition
The set of symmetry transformations of C forms a group which we
call a symmetry group of C.
Definition
The symmetry class of C is the set of symmetry groups of C which
are equivalent up to a change in orientation.

Theorem
There are exactly four symmetry classes of the elasticity tensor in two
dimensions: oblique, rectangular, cubic, and isotropic [1].

[1] He, Q.C., Zheng, Q.S.: On the symmetries of 2D elastic and hyperelastic tensors. Journal of

Elasticity 43(3), 203-225(1996). 6
—



The Symmetry Classes of 2D Linear Elasticity e,
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Symmetry Class Elasticity Tensor Elasticity Tensor
(Cauchy’s relation imposed)
Ci1 Ci2 Cgg Ci1 Ci2 Cig
Oblique Cia Gy Cop Cia Cop Cy
| Cie Cos Cos | | Cie G Ciz |
Cii C2 O Cii G2 O
Rectangular Cio Cyo O Cio Cyp O
| 0 0 Ges | | 0 0 G |
Cii C2 O Cii G2 O
Square C12 C11 0 C12 C11 0
| 0 0 GCes | | 0 0 G |
C1 G2 0 Cii 3Ci 0
Isotropic Cia Cn1 0 iC1 Cn 0
0 0 Sagte 0 0 3Cu




Stability in Classical Linear Elasticity e

Strain energy density:

1
W= §C,-j€,-5j. (3)

In the absence of external loads, the condition for material stability is:
W>0, Ve#0.

The quadratic form (3) is positive if and only if the elasticity matrix C
is positive definite.

Theorem (Sylvester’s criterion)
A symmetric matrix is positive definite if and only if its leading
principal minors are positive.




Elastic Stability Criteria in 2D Linear Elasticity e,
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Symmetry Class Elastic Stability Criteria
Oblique Ci1 > 0,C11Coo > C%Q, det(Copi) > 0
Rectangular C11 > 0,Ces > 0,C11Ca > €3y
Square C11 > |Ci2|,Ce6 > 0
Isotropic Ci1 > [Cio|

Table 1: Without Cauchy’s relation imposed.

Symmetry Class Elastic Stability Criteria
Oblique Ci1 > 0,C11Coo > C%2, det(éom) >0
Rectangular C11 > 0,Ci9 > 0,C11Co0 > €3y
Square Ci1 >Ci2>0

Isotropic Ci1>0

Table 2: With Cauchy’s relation imposed




Linear Bond-Based Peridynamic Equation of Motion  (m)igs,_

Given a pairwise equilibrated reference configuration, the linear
bond-based peridynamic equation of motion is:

Pii(x, 1) = /H A(E) (€ ©€) (ux + &, 1) — ulx, )dVe + b(x,1).

p: mass density, u: displacement, £: peridynamic bond,
A: micromodulus, H: peridynamic neighborhood, b : body force.
Relationship between the micromodulus and elasticity tensor:

1
Gu=3 | Mestaade. @
H
Definition
An orthogonal transformation Q is a symmetry transformation of the

micromodulus function A\(&) if

A(Q€) = A(€), V€ e RY. (5)

10




Anisotropic Micromodulus G

We propose a micromodulus of the form

_Tw(lgl) (€A 1 w(l£ll) &gt
m [|€]? €1+ m [€1* [I€l*

where A is a completely symmetric fourth-order tensor.

A(€)

Using the relationship between \(£) and C, we find

Aq111 10 —-20 2 Ci111
Apggo | = | -8 B -1 Co222
Aq122 2 =20 10 Cii22

A2 _ 20 —-12 Ci112
Aoo19 —12 20 Coo12




Material Stability in Peridynamics N
The linear bond-based peridynamic material is stable if speeds are
real for all plane waves [2]. Substituting an arbitrary plane wave

U(X, t) _ aei(kvi—wt)’

into the linear bond-based peridynamic equation of motion with null
body force results in:

pw?a = M(N, k)a, (6)
where

MN.K) = [ MO E(1—cos(an-€) Ve ()

The eigenvalues of M(N, x) are pw? = pc?k2. To ensure propagation
of waves at all wavelengths, it is necessary and sufficient for M(N, )
to be positive definite.

[2] S. Silling. Reformulation of elasticity theory for discontinuities and long-range

forces. Journal of the Mechanics and Physics of Solids, 48, 175-209, 2000. 5




Sufficient Condition for Material Stability i

Proposition

If \(€) > 0is positive on a set of nonzero measure, then M(N, k) is
positive definite.

Proof.

Let K(&) := A(§) (1 — cos(kN - &)) so that My = [5, &K (&)dE.

Sylvester’s criterion:

My = /H E2K(£)dE > 0

and
(M My — M2,) = /H £2K(€)de /H CK(C)dC + /H €2K(€)de /H CK(C)de
-2 d d
/H €162K(€)de /H C1GK(C)dC
= / / (€162 — £202)°K(E)K(C)dEd¢ > 0
HJIH 13




Sufficient Condition for Material Stability i,
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We consider positivity of the oblique micromodulus

1 Anf +4A16676 + 6A126765 + 4M266163 + Moot w([|€]])
m €1+ €112

For this study we focused on the angular portion of the
micromodulus and thus we need to determine the positivity of a
quartic polynomial.

Theorem ([3])
The quartic function f(z) = z* + 2az® + 2bz + c is nonnegative for all
zifand only ifc > 0 and

A(E) =

N|=

Ib| < a2 + 3c)

\/_< (20+\/a2+3c>.

[3] V. Powers and B. Reznick. Notes towards a constructive proof of Hilbert’s
Theorem on ternary quartics. Contemp. Math, 272, 209-227, 1999. 14




Sufficient Condition for Material Stability i

Theorem
The oblique micromodulus function is nonnegative if and only if one

of the following conditions holds:
1. Ap1 = Agp = Ayg = Az = 0, A12 > 0.
2. Ay = A =0,A9 > 0,A120A2 > A%g
3. A11 > O,A22 > , = 0, and
1
|b| < % (—a +Vva?+ 3c) ’ (20 +Vva?+ 3c) where
I Asg? st Az b4 Agg” ApA1e | Ao
' A112 A11 ' A113 A112 A11
At Ai2A 16> AgA A
16 2hie” ) Melas | Az

c:=-3 + 6
App? App? App? A1




Micromodulus Positivity Requirements () i

Corollary (Rectangular)

The rectangular micromodulus is nonnegative if and only if one of the
following conditions holds:

1. Aq1, A9, Ao are all nonnegative.
2. A1 > 0,A12 <0, and 9A12 Aq11A99.

Corollary (Square)

The square micromodulus is nonnegative if and only if one of the
following conditions holds:

1. Aq1 and A1 are nonnegative.
2. A12 < 0and 3A12 A11

Corollary (Isotropic)
The isotropic micromodulus is nonnegative if and only if A1 > 0.

16




Comparison With Classical (Isotropic) o,
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Corollary (Isotropic)
The isotropic micromodulus is nonnegative if and only if C11 > 0.

Stability in classical linear elasticity: (C11 > 0)

A

| e ()
-1 0 1

Region of stability on B (0) for isotropic symmetry.

17
—



Comparison With Classical (Square) o,
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Corollary (Square)
The square micromodulus is nonnegative if and only if:

1C <C <3C
71 12 < g

Stability in classical linear elasticity: (C11 > C12 > 0)

Regions of stability on B1(0) for square symmetry

Ciz
o
=3
S

—0.254

—0.50 1

-0.754

~1.004 e Classic e Peridynamics

-1.0 -0.5 0.0 0.5 1.0
Cn 18
e



Comparison With Local (Rectangular) =
Corollary (Rectangular)
The rectangular micromodulus is nonnegative if and only if:

1. 2(Ci1 + C2) < Cr2 < min{3C11 + G, 15C11 + 3Ca2}
2. C1a < min {3C11 + 15C22, 15C11 + 3C22, 25 (Cr1 + Co2) } and

(84C12 — 10(C11 + C22))* < —5 (CH + C3y) + T4C11Coo.

Stability in classical linear elasticity: Ci1 > 0, Cio > 0, C11Co0 > C%Q

Regions of stability on Bl(o) for rectangular symmetry

0.6

[ Classical
Peridynamics | C,, 10 C, 19




Future work e,
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m Show positivity of the anisotropic kernel is more restrictive than
elastic stability in classical linear elasticity for oblique symmetry.

m Explore the full material stability picture for the anisotropic
kernel.

m Explore material stability dependence on the influence function.

m Explore material stability for a micromodulus which potentially
changes signs angularly and radially.

m Involve external forces in the calculations.



Conclusions and Acknowledgements e,
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m Explored material stability for a two-dimensional anisotropic
peridynamic model.

m Proved that positivity of the rectangular micromodulus is more
restrictive than material stability in classical linear elasticity.

m Numerically explored stability for possibly sign changing
micromodulus.
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