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Overview
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Process changes

Measuring methods

Mechanical properties

Machine learning prediction of performance
Size dependence

Lattice of interest;
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Properties we care about
Geometry (As designed and as printed)
Number of unit cells / Strut thickness

Sources of variation:

o)

Geometry trying to obtain
(printability/angles/sizes)

Plate location (e.g. focusing, flow, powder
spreading)

Input settings

Feedstock

Thermal history (Surrounded by walls?)
Powder spreader (scraper/roller)

Build orientation

Features affected by variation:
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Dimensions

Missing/broken struts (pending the size of
lattices, the number and location)

Geometry deformation (e.g. sagging struts,
non-cylindrical struts)

Surface quality/undercuts (e.g. average
properties or )

Microstructure



Process Parameter Study

Lattices:
> 48 octets and 43 gyroids

o 3x3x3 unit cell

° 10.5 mm side (3.5 mm unit cell)
o Strut/wall thickness of 0.5 mm

> 4 plates, 2 of each type

Compression Tests

Build parameters
o Laser diameter: (1/e2) of 50 ym

o Layer thickness: 30 ym
o Hatch Spacing 50 pm
> Varied laser power and scan speed




Top View Center Unit Cell On Face (Top/Side) (Scott Jensen)
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Calipers Top
Measuring in horizontal plane -
ignores downskin
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Caliper Measurements

» 2 Perpendicular struts were
measured with calipers on every
side

* 4 Sides were averaged

Scale difference in figures
* Top versus side

Keyence used a ratio of area
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Size Measurements
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.| Strut Type Definitions

Each strut type includes all struts
parallel to a particular direction

Printing direction: [0,1,0]

Note: Rotation about Y-axis could
not be determined, as no features
were available to register. This
means that strut types 1 and 2 may
be mixed up with 3 and 4 for some
lattices.

Strut Type STL Coord. System. Plane
Normal Vector

1 [-1, 1, O]
2 [1, 1, 0]
3 [0, 1, 1]
4 [0, 1, -1]
5 [1, 0, 1]
6 [1, 0, -1]

Build
Direction

Horizontal

Struts

(Josh Elliott)




Major and Minor Axis Information

100 W 2800 mm/s

175 W 1300 mm/s

(Josh Elliott)

Sample 4: Strut Major & Minor Axis
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Sample 19: Stut Major & Minor Axis
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(Scott Jensen)

Compression Tests

Yield Stress (MPa)
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10 Machine Learning

48 octets and 43 gyroids

1) Image segmentation

) Normalize distribution to gaussian (quantile normalization) -

3)Trained the ML - Resnet16 (Fastai)
o Changed kernel convolution weights

4) Reverse Normalization and Average output
o 45 windowed images

s -
Original Image - w

(Anthony Garland)
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Effective Stress (MPa)

Size Dependence

b) I w

Surface/voids are responsible for the drop in properties

(Brad Boyce)
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Microstructure (Tim Ruggles)

Investigate the microstructure of several samples created with a range of processing
parameters (laser speed and power).

Characterize the microstructure with EBSD.

Use machine learning to relate this mlcrostructure to processmg parameters and/or material
properties - ,
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Microstructure at
nominal parameters
(113 W, 1400 mms)

Microstructure was found to be
relatively consistent between
nodes.

Material preparation is not
trivial (the goal being to slice o
through the mic
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Conclusions

Surface/geometry metrics are not well defined and are convoluted in off-nominal cases

Measuring metrics

o Calipers capture same trends/changes in strut size as high magnification optical images across
process space

o Hard to capture defects without CT
o High asymmetry exist in all struts especially at larger power density

Machine learning has been demonstrated to capture lattice performance (compression
energy) from 2d images and may be applied to obtain other properties as well

o Some features may not correlate with outside surface images (internal features)
> Need to consider if there are bad struts and if they are in the images

Defects are going to be driving tensile properties unless struts are much larger
o For lattices with more unit cells the variability of single struts likely averages out

o It's unclear what is better, more or thicker struts given a specific density

Microstructure is highly variable across the process space
> Process dependent grain size

> Nodes have large grain growth vs struts whose thinner members limit seeding/growth
o Quter surface appears to have smaller grains
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Scott Jensen
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Questions?




