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Abstract—A restricted Boltzmann machine (RBM) is a genera-5
tive model that could be used in effectively balancing a cybersecu-6
rity dataset because the synthetic data a RBM generates follows7
the probability distribution of the training data. RBM training8
can be performed using contrastive divergence (CD) and quantum9
annealing (QA). QA-based RBM training is fundamentally differ-10
ent from CD and requires samples from a quantum computer. We11
present a real-world application that uses a quantum computer.12
Specifically, we train a RBM using QA for cybersecurity applica-13
tions. The D-Wave 2000Q has been used to implement QA. RBMs14
are trained on the ISCX data, which is a benchmark dataset for15
cybersecurity. For comparison, RBMs are also trained using CD.16
CD is a commonly used method for RBM training. Our analysis17
of the ISCX data shows that the dataset is imbalanced. We present18
two different schemes to balance the training dataset before feeding19
it to a classifier. The first scheme is based on the undersampling of20
benign instances. The imbalanced training dataset is divided into21
five sub-datasets that are trained separately. A majority voting is22
then performed to get the result. Our results show the majority vote23
increases the classification accuracy up from 90.24% to 95.68%,24
in the case of CD. For the case of QA, the classification accuracy25
increases from 74.14% to 80.04%. In the second scheme, a RBM is26
used to generate synthetic data to balance the training dataset. We27
show that both QA and CD-trained RBM can be used to generate28
useful synthetic data. Balanced training data is used to evaluate29
several classifiers. Among the classifiers investigated, K-Nearest30
Neighbor (KNN) and Neural Network (NN) perform better than31
other classifiers. They both show an accuracy of 93%. Our results32
show a proof-of-concept that a QA-based RBM can be trained on a33
64-bit binary dataset. The illustrative example suggests the possibil-34
ity to migrate many practical classification problems to QA-based35
techniques. Further, we show that synthetic data generated from a36
RBM can be used to balance the original dataset.
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I. INTRODUCTION 41

N ETWORKS have revolutionized our lives through vari- 42

ous purposes including email, file transfer, web search, 43

e-commerce, online banking, monetary transaction, education, 44

collaboration, social networking, etc. The more we depend on it 45

and use it, the more we expose ourselves to serious security risks. 46

The internet is an insecure medium of communication. Any 47

device connected to the internet is vulnerable. Cybersecurity 48

is safety against cyber-attacks. Cyber-attacks are launched by 49

hackers to gain unauthorized access or steal important data. 50

The estimated total damage caused by global cybercrime has 51

increased from $300 billion in 2013 to $945 billion in 2020 [1]. 52

Financial loss from cybercrime is likely to increase in the coming 53

years. Therefore, it is crucial to monitor dataflow in any network, 54

and there is a need for robust software and devices that protect 55

users from online security threats. 56

In this work, we investigate a restricted Boltzmann machine 57

(RBM) coupled with quantum machine learning for a cyber- 58

security application. The application of quantum computing in 59

machine learning is a promising technique, even with quantum 60

computers currently being in an early stage of technological 61

development. This paper is a first approach of implementing for 62

network intrusion detection an analysis engine on a quantum 63

computing device. A RBM is a generative model, which can 64

be used to model the underlying probability distribution of 65

a dataset. In addition to classifying data points, RBMs can 66

also generate a new synthetic dataset. Despite the importance 67

of the RBMs, only a few researchers have used RBMs for 68

cybersecurity applications. Fiore et al. [2] used discriminative 69

RBM for network anomaly detection applications. They showed 70

that the performance of a model suffers when it is tested in a 71

network different from the network that was used to obtain the 72

training data. Aldwairi et al. [3] trained a RBM on the ISCX 73

2012 dataset using contrastive divergence (CD) and persistent 74

contrastive divergence (PCD). Their model showed a percentage 75

classification accuracy of 88.6% using CD and 89% for PCD. 76

Alom et al. [4] applied a deep belief network (DBN) on the 77

NSL-KDD D’99 intrusion detection dataset. They were able to 78

get a classification accuracy of 97.5% just by using 40% of the 79

dataset. A DBN model is composed of multiple layers of trained 80

RBMs, weights are fine-tuned by performing backpropagation 81
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in the final step of the model training. Salama et al. [5] used a82

DBN+SVM hybrid scheme for intrusion detection. They used a83

DBN for dimensionality reduction (from 41 to 5 features) and84

SVM for classification. The model was trained on the NSL-KDD85

dataset. Li et al. [6] trained a hybrid model on 10% KDDCUP’9986

dataset. An autoencoder was used to reduce the dimensionality87

of the dataset and a DBN for classification. Alrawashdeh et al. [7]88

trained a DBN on the KDDCUP’99 dataset. Their model out-89

performed the model by Salama et al. [5] and Li et al. [6] both90

in speed and accuracy.91

We have used a quantum annealer from D-Wave to train RBMs92

for intrusion detection applications and compared the perfor-93

mance to RBMs trained with contrastive divergence. Quantum94

annealers are based on adiabatic quantum annealing (QA), which95

is a powerful technique for optimization and sampling applica-96

tions [8]–[12]. There are two main problems associated with the97

use of machine learning techniques for intrusion detection. The98

first problem is related to transferability and generalizability of99

the model, a model trained on a dataset performs poorly when100

tested on other datasets. The second problem is associated with101

the imbalanced nature of the cybersecurity dataset where the102

attack instances are outnumbered by benign instances, which103

makes detection of an attack like looking for a needle in a104

haystack. Quantum computing holds the promise to address105

these problems. A QA-trained RBM can effectively learn pat-106

terns without overfitting a dataset. Further, synthetic data from107

a RBM can be used to balance the original dataset. Our work is108

a step towards that goal. The D-Wave 2000Q adiabatic quantum109

computer has been used by several researchers for machine110

learning applications such as classification, regression, and clus-111

tering. Date et al. [13] used a quantum annealer for implementing112

linear regression. Willsch et al. [14] introduced a method to113

train support vector machines (SVMs) on a D-Wave 2000Q114

quantum annealer and compared its performance with classically115

trained SVMs. Kumar et al. [15] used quantum annealing to116

carry out the minimization of the clustering objective function.117

They implemented two clustering algorithms and compared their118

results with well-known k-mean clustering. Das et al. [16] used a119

D-Wave to implement a clustering algorithm for the clustering of120

charged particle tracks for a hadron collider experiment. Arthur121

et al. [17] used the D-Wave 2000Q adiabatic quantum computer122

to train the balanced k-means clustering model. They com-123

pared the results with classical k-means and classical balanced124

k-means. Kais et al. have used D-Wave’s quantum annealer125

for prime factorization and electronic structure calculation of126

molecular systems [18], [19]. Adachi et al. [20] trained RBMs127

using a quantum annealer for a deep belief network (DBN)128

on a scaled-down MNIST dataset consisting of 32-bit length129

binary records. They showed that their model required fewer130

iterations than CD-based DBN training. Benedetti et al. [21]131

used quantum annealing to train a RBM on a 16-bit binary bars132

& stripes dataset. Koshka et al. [22], [23] trained a RBM using133

contrastive divergence and compared the samples obtained from134

Markov chain Monte Carlo (MCMC) and QA. For QA, the CD135

trained RBM was embedded onto the D-Wave, and sampling was136

performed. It was found that the QA based sampling revealed137

regions of the configuration space that were regularly missed138

by the MCMC based sampling, especially at medium to high 139

energy (i.e., states of medium to low probability). Recently, 140

Dixit et al. [24] trained a RBM using the D-Wave 2000Q 141

quantum annealer for classification and image reconstruction 142

applications. They used a 64-bit bars & stripes dataset in their 143

work. 144

The D-Wave 2000Q has around 2000 qubits. D-Wave’s re- 145

cently introduced machine ‘Advantage’ comprises 5000 qubits. 146

The number of qubits of a quantum annealer is a major factor 147

that determines the size of a dataset that can be investigated. 148

Sometimes the number of features of a large dataset can be 149

reduced by finding a dense representation. Caldeira et al. [25] 150

used PCA to reduce the number of features in the dataset. They 151

used a QA-trained RBM for galaxy morphology classification. 152

Sleeman et al. [26] used an autoencoder to obtain a dense 153

reperesentation of their dataset. They were able to show nearly 154

a 22-fold compression factor of grayscale 28 x 28 sized images 155

to binary 6 x 6 sized images. They trained a QA-based RBM on 156

the MNIST and the MNIST Fashion datasets. 157

II. CONTRIBUTION 158

Cybersecurity is one of the key areas where the failure of 159

detection systems can result in privacy intrusion, financial losses, 160

and system shutdowns. Our goal is to train the RBM using a 161

quantum annealer, to help explore quantum effects for faster 162

training and to learn patterns efficiently. Given that network data 163

is usually imbalanced, we seek to obtain synthetic samples gen- 164

erated by a RBM to provide rich information into the distribution 165

from which attack samples are generated. This should enable 166

classifiers to better train on and detect intrusions. There are two 167

main objectives of this work. First, train a RBM using quantum 168

annealing on a cybersecurity dataset (ISCX). Second, use a RBM 169

to generate synthetic data to balance the cybersecurity data. 170

First, we show RBMs can be trained using a quantum annealer 171

on a cybersecurity dataset. Conventional methods for RBM 172

training such as CD and PCD are slow. They require many 173

Gibbs cycles to train a RBM. Further, the CD does not estimate 174

the correct gradient of log-likelihood [27]. RBM training using 175

a quantum annealer is fundamentally different than existing 176

methods. A quantum annealer exploits quantum effects like 177

superposition and tunneling to find better low energy solutions. 178

This could be particularly useful for intrusion detection applica- 179

tions where classifiers often show poor precision and accuracy. 180

We believe that this is the first work that uses a QA-trained RBM 181

for intrusion detection applications. 182

The second objective is to show that synthetic data from a 183

RBM can be used to balance a cybersecurity dataset. Cyber- 184

security datasets often have a lower number of attack records. 185

However, most of the machine learning techniques require a 186

balanced dataset. A bias towards the majority class results if the 187

dataset is not balanced. A commonly used method to balance 188

a dataset is SMOTE (Synthetic Minority Over-sampling Tech- 189

nique) [28]. The SMOTE algorithm basically works by finding 190

the k-nearest neighbor of a data point in the feature space of 191

the minority class. Then a synthetic data point is obtained by 192

interpolation between the data point and one of the k-neighbors. 193
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Generally, this interpolation is performed based on a random194

number between 0 and 1. This process is repeated until the195

required number of synthetic data records is obtained. Several196

modifications and extensions of SMOTE have been made since197

its proposal [29]. Several investigators have used SMOTE for198

cybersecurity applications [30]–[34]. A trained RBM can be199

used to generate synthetic data records. An advantage of using200

a RBM is that the synthetic data from it follows the probability201

distribution of the training dataset. However, synthetic data from202

SMOTE might not follow the distribution of the training data.203

In this work, we use QA-trained as well as CD-trained RBMs204

to generate synthetic data. This synthetic dataset is then used to205

balance the original dataset.206

Herein, we propose two schemes to balance the cybersecurity207

dataset. The first scheme is based on the under-sampling of208

benign records. In the second scheme, oversampling of the attack209

class is used. Synthetic data has been generated from a RBM to210

balance the training dataset. RBMs are trained on a benchmark211

intrusion detection dataset known as ISCX [35].212

III. METHODS213

A. Restricted Boltzmann Machine (RBM)214

A RBM is an undirected probabilistic graphical model con-215

sisting of a layer of visible variables and a single layer of latent or216

hidden variables. Each variable is connected to every variable in217

the opposite layer, but connections between the variables in the218

same layer are not allowed. Let the visible and hidden layers be219

composed of N and Mvariables denoted as {v1, v2, . . .., vN}220

and {h1, h2, . . .., hM}, respectively. We collectively refer to221

the visible layer with the vector v and the hidden layer as h.222

The RBM is an energy-based model with the joint probability223

distribution specified by its energy function:224

P (v, h) =
1

Z
e−E(v,h), Z =

∑
v

∑
h

e−E(v,h). (1)

Z is the normalization constant known as the partition function.225

The energy function is defined as:226

E(v, h) = −bT v − cTh− hTWv, (2)

where b and c are bias vectors at the visible and hidden layer,227

respectively; W is a weight matrix composed of wij elements.228

B. Conditional Distribution229

The probability of getting a vector h at the hidden layer given230

a vector v at the visible layer is:231

P (h|v) = P (v, h)

P (v)
(3)

where P (v) is given by the following expression:232

P (v) =

∑
h e
−E(v,h)

Z
. (4)

Using expression P (v, h) from 1, we get:233

P (h|v) = exp{∑j cjhj +
∑

j(v
TW )jhj}

Z ′
, (5)

where 234

Z ′ =
∑
h

exp(cTh+ hTWv). (6)

P (h|v) = 1

Z ′
∏
j

exp{cjhj + (vTW )jhj}. (7)

Let’s denote 235

P̃ (hj |v) = exp {cjhj + (vTW )jhj} (8)

The probability to find an individual variable in the hidden 236

layer, hj = 1 is: 237

P (hj = 1|v) = P̃ (hj = 1|v)
P̃ (hj = 0|v) + P̃ (hj = 1|v)

=
exp{cj + (vTW )j}

1 + exp{cj + (vTW )j} (9)

Thus, the individual hidden activation probability is given by: 238

P (hj = 1|v) = σ
(
cj + (vTW )j

)
, (10)

where σ is the logistic function. Similarly, the activation prob- 239

ability of a visible variable conditioned on a hidden vector h is 240

given by: 241

P (vi = 1|h) = σ
(
bi + (hTW )i

)
. (11)

C. RBM Training 242

A RBM is trained by maximizing the likelihood of the training 243

data. The log-likelihood is given by: 244

l(W, b, c) =

N∑
t=1

logP
(
v(t)

)

=

N∑
t=1

log
∑
h

P
(
v(t), h

)
, (12)

where N is the number of records in the training dataset and v(t) 245

is a sample from the training dataset. 246

l(W, b, c) =

N∑
t=1

log
∑
h

e−E(v(t),h)

−N · log
∑
v,h

e−E(v,h). (13)

Denote θ = {W, b, c}. The gradient of the log-likelihood is 247

given by: 248

∇θl(θ) =

N∑
t=1

∑
h e
−E(v(t),h)∇θ(−E(v(t), h))∑

h e
−E(v(t),h)

−N ·
∑

v,h e
−E(v,h)∇θ(−E(v, h))∑

v,h e
−E(v,h)

(14)

∇θl(θ) =

N∑
t=1

〈∇θ(−E(v(t), h))〉P (h|v(t))

−N · 〈∇θ(−E(v, h))〉P (v,h), (15)
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where 〈·〉P (v,h) is the expectation value with respect to the249

distribution P (v, h). The gradient with respect to θ can also250

be expressed in terms of its components:251

∇wl =
1

N

N∑
t=1

〈v(t) · h〉P (h|v(t)) − 〈v · h〉P (v,h) (16)

∇bl =
1

N

N∑
t=1

〈v(t)〉P (h|v(t)) − 〈v〉P (v,h) (17)

∇cl =
1

N

N∑
t=1

〈h〉P (h|v(t)) − 〈h〉P (v,h). (18)

The first term in 15 is a data-dependent term. It can be exactly252

calculated using a training vector v(t) and a hidden vector h.253

Given v(t), the vector h can be calculated using 10. The second254

term is a model-dependent term. Getting samples for the second255

term is difficult. The Contrastive Divergence (CD) is the most256

commonly used algorithm to determine the model-dependent257

term. In CD, a training vector is applied to the visible layer.258

Then the binary states of the hidden units are computed in259

parallel using 10. The states of the units on the visible layer260

are reconstructed using h via 11. Finally, the reconstructed v261

is used to find a new h on the hidden layer. During the RBM262

training, the change in model parameters is given as:263

θnewj = θoldj + ε · ∇θj l(θj) (19)

where ε is the learning rate.264

The learning works well even though CD only crudely approx-265

imates the gradient of the log probability of the training data.266

Sutskever et al. [36] have shown that the contrastive divergence267

does not estimate the gradient of the log-likelihood. An effective268

method for RBM training is still not known. It has been shown269

by several researchers that a RBM can be trained using samples270

drawn from the D-Wave quantum annealer [20], [21], [25], [24].271

The first term of the gradient of the log-likelihood is estimated272

using the procedure explained earlier. The second term which is273

the model-dependent term is calculated in the following way.274

First, a RBM is embedded on to a quantum annealer, then275

quantum annealing is performed. The samples obtained from276

quantum annealing are used to compute the second term. The277

samples from a quantum annealer operating at a temperature278

T is qualitatively similar to a probability distribution given by279

exp(−E(v,h)
kT ). However, to compute the model-dependent term280

we need samples from a distribution exp(−E(v, h)) ( 15). To281

address this problem we scale the energy by a hyperparameter282

S, such that for the model-dependent term, we sample from283

the exp(−E(v,h)
SkT ) distribution. Here, S is a hyperparameter,284

which is determined by a manual search. The optimal condition285

corresponds to the case when SkT = 1. We keep S fixed during286

the entire RBM training process. However, the temperature287

T generally changes. This mismatch between S and T might288

result in suboptimal RBM training. An efficient way to compute289

T at each training step is still not discovered. It should be290

noted as the RBM training starts with random weights and291

biases, samples from the D-Wave are not expected to show a292

Boltzmann distribution, however, as the training progresses the293

underlying probability distribution moves toward the Boltzmann294

distribution. RBM training using CD-1 and QA is summarized 295

in Algorithm 1 and Algorithm 2, respectively. The two methods 296

differ only in the manner the model-dependent term is estimated. 297

D. The D-Wave Quantum Annealer 298

To formulate a problem for the D-Wave, one needs to trans- 299

form the problem into Ising form given by: 300

E(s|h, J) =
N∑
i=1

hisi +
N∑
i<j

Jijsisj ; si ∈ {−1,+1}. (20)

This is an objective function of N variables s = 301

[s1, s2, . . ., sN ] corresponding to physical Ising spins, where hi 302

are the biases and Jij the couplings between spins. 303

The energy of a RBM model given by 2, has a form similar 304

to 20. The weights and biases of a RBM which is trained using 305

a binary dataset, {0, 1} states can be converted to use {−1, 1} 306

states via the mapping [37]: 307

b′i =
bi
2
+

∑
j Wij

4
(21)

c′i =
ci
2
+

∑
j Wij

4
(22)

W ′ =
W

4
. (23)

These weights and biases can be used to embed a RBM 308

onto the D-Wave machine. After executing quantum annealing, 309

solutions can be sampled. We set the anneal time to 20 μs for 310

each anneal. The resulting bipolar samples may be converted to 311

a binary sample simply by replacing all instances of −1 with 0. 312

The D-Wave 2000Q quantum annealer has 2048 qubits ar- 313

ranged in 16× 16 unit cells forming a C16 Chimera graph. Each 314

unit cell is composed of 8 qubits connected in a bipartite graph. 315

Each qubit is connected to four other qubits of the same unit 316

cell and two qubits of two different unit cells. One can embed 317

a fully connected RBM of 64 visible and 64 hidden units on a 318

C16 Chimera graph as shown in Fig. 1. In this embedding, each 319

RBM unit is represented by a chain of 16 physical qubits. If we 320

look at the arrangement of qubits, we note that 16 qubits can 321

be combined by forming a vertical chain. Each vertical chain 322

forms one visible unit. Similarly, 16 horizontal qubits can be 323

linked together to form a hidden unit. In Fig. 1, the vertical 324

chains are shown in red, while the horizontal chains are in black. 325

There are 64 vertical and 64 horizontal chains which represent 326

64 visible units and 64 hidden units of the RBM. If some of the 327

qubits in the D-Wave QPU are missing or not working, then the 328

length of the qubit chain forming a RBM unit will be shorter. 329

In that case, the RBM will be not fully connected, that is some 330

connections between visible and hidden units will be missing. 331

Fortunately, in the D-Wave QPU, only a few qubits are missing 332

which does not seem to affect the performance of the RBMs. 333

This embedding has also been used in our previous work [24]. 334

A similar bipartite embedding has been demonstrated by other 335

researchers [38]–[40]. For the lattice with almost no missing 336

qubits and couplings, this embedding is close to optimal for a 337

Chimera graph. We have maximally made use of the D-Wave 338

2000Q to allow for 64 hidden qubits and visible qubits that 339
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Fig. 1. Minor-Embedding a RBM with 64 visible and 64 hidden units on
the D-Wave 2000Q. Each visible (hidden) unit is made by forming a vertical
(horizontal) chain of 16 physical qubits shown in red (black).

Algorithm 1: Optimization of Learning Parameters Using
CD-1

1: ε← learningrate �ε, is the step size, a small positive
number.

2: b, c, W ← randomnumber �Initialize with small
normally distributed random numbers.

3: while not converged do
4: Sample a minibatch of m examples {x(1), . . ., x(m)}

from the training set
5: V ← {x(1), . . ., x(m)}
6: H ← σ(c+ VW ) �σ is the logistic function
7: V ′ ← σ(b+HWT )
8: H ′ ← σ(c+ V ′W )

9: W ←W + ε (V H−V ′H ′)
m �updates W

10: b← b+ ε (sum(V )−sum(V ′))
m �updates b

11: c← c+ ε (sum(H)−sum(H ′))
m �updates c

12: end

are two way fully connected to each other. Using any other340

embedding would result in a small size of the feature space341

and hence is not preferred. The newer machine (Advantage) has342

over 5000 qubits and additional graph connections, which should343

allow for an extended feature space size where one could do a344

comparison of the performance of different embedding schemes345

for this dataset.346

E. Evaluation Metrics347

To compare and quantify the performance of different meth-348

ods, metrics based on a confusion matrix are used. For a binary349

classification problem that has two classes namely ‘positive’ and350

Algorithm 2: Optimization of Learning Parameters Using
Quantum Annealing.

1: ε← learningrate �ε, is the step size, a small positive
number.

2: b, c, W ← randomnumber �Initialize with small
normally distributed random numbers.

3: while not converged do
4: Sample a minibatch of m examples {x(1), . . ., x(m)}

from the training set
5: V ← {x(1), . . ., x(m)}
6: H ← σ(c+ VW ) �σ is the logistic function
7: {h, J} ← {b, c,W}
8: (V ′, H ′)← quantumannealing(h, J, S)

9: W ←W + ε (V H−V ′H ′)
m �updates W

10: b← b+ ε (sum(V )−sum(V ′))
m �updates b

11: c← c+ ε (sum(H)−sum(H ′))
m �updates c

12: end

‘negative’ important metrics for model evaluation are: 351

Atot =
TP + TN

TP + TN + FP + FN
× 100, (24)

AP =
TP

TP + FP
× 100, (25)

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

F1score = 2× Precision × Recall

Precision + Recall
(28)

where TP (true positive) and FP (false positive) are the number 352

of correctly and incorrectly predicted observations of class ‘pos- 353

itive,’ respectively. Similarly, TN (true negative) and FN (false 354

negative) are the number of correctly and incorrectly predicted 355

observations of class ‘negative,’ respectively. Atot is the total 356

percentage of classification accuracy; AP is the percentage of 357

classification accuracy of the class ‘positive’. Precision is the 358

ability of the model not to predict the label of a sample of a class 359

incorrectly, while recall is the ability of the model to correctly 360

predict all the samples of a class correctly. The F1 score is the 361

harmonic mean of precision and recall. A robust classifier will 362

have a high value of the F1 score. Precision, recall, F1 score, 363

and percentage accuracy are used as metrics to evaluate models. 364

F. Material Setup 365

The D-Wave 2000Q quantum annealer has been used to obtain 366

samples of training QA-based RBM. The D-Wave operates at 367

a temperature that is fixed based on the training results. The 368

temperature corresponds to an effective scaling of parameters 369

that are supplied as coupling weights and biases to the machine. 370

For training CD-based RBM, a personal computer has been 371

used. In-house codes were developed to implement RBM train- 372

ing using CD and to obtain samples from the quantum annealer. 373
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MATLAB programming language is used. MATLAB codes are374

also developed for classification and to generate synthetic data.375

To implement popular classification methods namely: Neural376

Networks, K-nearest neighbor, Support Vector Machine, Deci-377

sion tree, and Naive Bayes, machine learning library for python378

programming language ‘scikit-learn’ [41] has been used. All379

the classifiers are trained on 62-bit binary input and 2-bit output380

data. A neural network with five layers has been used. Layer 1381

has 62 nodes. There are three hidden layers, each with 8 nodes.382

The output layer has 2 nodes. The ‘relu’ activation function and383

‘adam’ solver have been used for training. To implement the384

K-nearest neighbor classifier neighbors is set 3, other parameters385

are set to their default values. The decision tree classifier has386

a max depth set to 5, other values are set to the default. To387

implement support vector machine and Naive Bayes classifiers,388

SVC and GaussianNB classifiers of ‘scikit-learn’ have been389

used. For these two classifiers, all the parameters are set to their390

default values.391

G. Dataset392

This study investigates a cybersecurity benchmark dataset393

known as ‘ISCX IDS dataset 2012’. We will call it ISCX,394

for brevity. The ISCX is one of the publicly available datasets395

on the website of the Canadian Institute of Cybersecurity at396

https://www.unb.ca/cic/datasets/index.html. The ISCX consists397

of seven days of network activity. There are two main classes398

namely ‘benign’ and ‘attack’. For more details and the underly-399

ing approach that is used to generate this dataset, see [35]. The400

preprocessing of the data consists of the conversion of variables401

from categorical to numerical, dimensionality reduction, and402

binarization of numerical data. All these steps are necessary403

to build a classifier based on a QA trained RBM. Finally, the404

dataset is binarized by using a supervised discretization filter405

implemented in Weka [42]. As we discussed earlier, one can406

embed a RBM onto the D-Wave 2000Q with 64 visible and 64407

hidden units. Therefore, we set the total number of columns in408

the binarized dataset to be 64. There are 62 binary features in409

the dataset and the last two columns are the target variables.410

When the last two bits are 01, it indicates a benign instance;411

while 10 indicates an attack. If the last two bits are either a 00 or412

11, it indicate an indeterminate case. Thus, the possibility that413

a random guess could be correct is 25%, and keeping two bits414

for the target variable helps to prepare a more robust machine415

learning model as compared to the case where one bit is used as416

a target variable.417

IV. RESULTS418

The dataset that was obtained after binarization of the original419

dataset had 137 584 instances. However, it was found that most420

of the records were repeated. The dataset was further modified,421

and only unique records were retained. There were 25 230 unique422

benign and 4917 unique attack records. Training and test datasets423

are formed with these records. The test dataset comprises 500424

attack and 500 benign records. The remaining 29 147 unique425

records are used in the training dataset. We trained a RBM on the426

training dataset. The classification accuracies for the attack and427

benign classes are found to be 42% and 97%, respectively. These 428

accuracies are estimated on the test dataset. The lower accuracy 429

for the attack class could be attributed to the fact that there are 430

a significantly higher number of benign instances in the dataset 431

compared to the number of attack instances. The attack records 432

constitute only 14.1% of the total dataset, however, ideally, 433

there should be 50% records of each class. The problem of an 434

imbalanced dataset is commonly seen in cybersecurity datasets; 435

attack records form a rarer class. Machine learning algorithms 436

show the best results when the number of observations in each 437

class is almost similar. Thus, an imbalanced dataset leads to a 438

poor classification performance of the model. This imbalanced 439

dataset is also investigated using other classification methods, 440

and the results are presented in Table III. To tackle the problem 441

of an imbalanced dataset we propose two schemes. In the first 442

scheme, we use undersampling of the benign class, while in 443

the second scheme a RBM has been used to generate instances 444

in order to balance the training dataset. These schemes are 445

discussed in detail in the following sections. 446

A. Scheme 1: Balancing Training Data by Undersampling of 447

Benign Records 448

Scheme 1 is illustrated in Fig. 2. In this approach, the binarized 449

dataset is divided into training and testing datasets. The train- 450

ing dataset is composed of 21 450 records (Benign=18 000, 451

Attack=3450), while the test data contains 8697 records 452

(Benign=7230, Attack=1467). Thus, the original binarized 453

dataset is divided into training and testing datasets in a ratio 454

of ≈70% : 30%. The training dataset is further divided into 455

five smaller datasets namely A, B, C, D, and E. The total 456

number of benign records in the training dataset is divided into 457

five datasets as 18000 = 3450 + 3450 + 3450 + 3450 + 4200. 458

Thus, each sub-dataset has unique benign records. There are 459

3450 attack records in the training dataset, we add the same 460

3450 attack records to each sub-datasets. Sub-dataset E has 4200 461

(=3450 + 750) attack records, 750 of which are repeated. Thus, 462

each sub-dataset contains an equal number of instances of both 463

classes. Five RBM models are trained on these five datasets. 464

These trained RBMs models are used to make predictions on 465

the testing dataset. Predictions from the five RBM models are 466

collected and a majority vote rule has been performed to obtain 467

a final result. Two different methods, contrastive divergence 468

(CD-1) and quantum annealing (QA), are employed to train 469

the RBMs. In Table I we show the average classification ac- 470

curacy of the benign class is 90.51% and that of the attack 471

class is 88.94%. The total accuracy is 90.24%. On using the 472

majority vote on the results obtained from five different RBMs, 473

the classification accuracies with which the benign and attack 474

classes can be predicted, and total accuracy have been found 475

to be 96.17%, 93.25%, and 95.68%, respectively. In the case 476

where RBMs are trained with quantum annealing, the average 477

classification accuracy of the benign and attack classes, and total 478

accuracy are 73.62% and 71.18%, and 74.14%, respectively. 479

On applying the majority vote on the results from five trained 480

RBMs, the average classification accuracy for the benign, attack 481

classes, and total accuracy are found to be 74.46%, 85.62%, and 482

https://www.unb.ca/cic/datasets/index.html
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TABLE I
THE ORIGINAL TRAINING DATASET IS DIVIDED INTO FIVE SMALL DATASETS (A, B, C, D, AND E). THESE DATASETS ARE USED TO TRAIN FIVE RBMS USING

CONTRASTIVE DIVERGENCE (CD-1) AND QUANTUM ANNEALING (QA). CLASSIFICATION ACCURACIES FOR BENIGN AND ATTACK CLASSES, AS WELL AS TOTAL

ACCURACY, ARE PRESENTED FOR EACH DATASET. VALUES ARE EVALUATED ON THE TESTING DATA. A MAJORITY VOTE IS PERFORMED ON THE RESULTS

OBTAINED FROM FIVE RBMS

TABLE II
SYNTHETIC DATASETS ARE GENERATED FROM RBMS TRAINED USING CONTRASTIVE DIVERGENCE (CD) AND QUANTUM ANNEALING (QA). THESE SYNTHETIC

DATASETS ARE THEN USED TO TRAIN RBMS USING CD. THE CLASSIFICATION ACCURACIES OF THESE RBMS FOR BENIGN AND ATTACK RECORDS, AS WELL AS

TOTAL ACCURACIES, ARE PRESENTED. THESE ACCURACIES ARE CALCULATED ON THE TEST DATASET. THE LABEL ‘MODEL’ INDICATES THE RBM MODEL THAT

WAS USED TO GENERATE THE SYNTHETIC DATASET

TABLE III
BALANCED TRAINING DATA IS USED TO TRAIN SIX CLASSIFIERS. PERFORMANCE METRICSES: PRECISION, RECALL, F1 SCORE, AND ACCURACY ARE USED TO

COMPARE MODELS. THE LABEL ‘CD-BAL’ (‘QA-BAL’) INDICATES THAT THE SYNTHETIC DATA THAT IS USED TO BALANCE THE TRAINING DATASET IS OBTAINED

FROM A RBM TRAINED WITH CONTRASTIVE DIVERGENCE (QUANTUM ANNEALING). THE LABEL ‘IMBAL’ INDICATES THE ORIGINAL IMBALANCED DATASET.
VALUES ARE EVALUATED ON THE TESTING DATA

80.04%, respectively. Thus, in the case of CD-1 as well as QA,483

we note an improvement in accuracy when the majority vote484

is applied. Table I also compares the performances of RBMs485

trained using CD-1 and QA methods. Using the majority vote486

the total accuracy with CD-1 and QA methods are found to be487

95.68% and 80.04%, respectively. If we consider the results from488

the individual models, for example, the RBM model trained on 489

sub-dataset A. Dataset A is comprises of just 3450 attack and 490

3450 benign records, but the classification accuracy of the RBM 491

is better than the case when the training dataset was imbalanced 492

(Table III). The contrastive divergence being a state-of-the-art 493

method for RBM training, a better performance of a CD trained 494
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Fig. 2. Scheme 1: Flowchart for intrusion detection using an imbalanced dataset. The training dataset is divided into five balanced datasets which are subsequently
used to train five classifiers. The final classification result is obtained by a majority voting.

RBM is expected. While CD-1 is a popular and effective method495

for RBM training, QA for RBM training has not been substan-496

tially explored. Considering the prevailing noise and error-prone497

nature of the existing quantum machine a classification accuracy498

of 80.04% seems to be satisfactory. Our goal here is to show499

a proof-of-concept that RBM can be trained using quantum500

annealing on a 64-bit binary dataset. RBM training using QA501

can be improved by optimizing D-Wave annealing parameters502

like anneal time, chain length, etc. Further, an efficient way to503

calculate the quantum annealer’s effective temperature can also504

improve QA-based RBM training.505

B. Scheme 2: Balancing Training Dataset With Synthetic Data506

A dataset is said to be imbalanced if the number of observa-507

tions in each class is not proportionate. Generally, when we deal508

with a cybersecurity dataset, we face the problem of a lower509

number of attack instances compare to the benign instances.510

Previously, we showed this problem could be solved by creating511

several small sub-datasets and subsequently using those to train512

individual models, and finally reaching a result by performing513

a majority vote. Another way to deal with this problem is to514

generate synthetic data using a RBM and then using the synthetic515

data to balance the training dataset.516

In this section, we will discuss how synthetic data generated517

from a trained RBM has been used to balance the training dataset.518

A synthetic data sample can be generated from a RBM trained519

using CD-1 in the following way. We input a 64-bit vector520

formed using random 0 s and 1 s to a trained RBM. After 50521

Gibbs cycles, we sample a 64-bit binary vector from the visible522

layer of the RBM. This sampled binary vector forms an instance523

of the synthetic dataset. Generating a synthetic dataset using524

QA is straightforward. One needs to embed a trained RBM onto525

the D-Wave quantum annealer and perform a quantum annealing526

step. For quantum annealing the anneal time was set to 20 μs for527

each anneal and the number of samples that were requested was528

10 000. Thus, 10 000 samples can be obtained from the quantum529

annealer very quickly (1000 results within tens of milliseconds). 530

From each sample, the states of the visible units are determined. 531

Each sample corresponds to a record in the synthetic dataset. In 532

this way, synthetic data composed of 10 000 records is obtained 533

using QA. 534

To ensure that the synthetic dataset generated from a trained 535

RBM is useful, we perform the following experiment. We use 536

trained RBM models (A, B, C, D, and E) from the previous 537

experiment to generate synthetic datasets; one from each model. 538

Thus, ten datasets are generated; five from the CD-based RBMs 539

and the other five from the QA-based RBMs. Now, ten RBM 540

models are trained on these ten synthetic datasets using CD-1. 541

The performance of these ten RBM models is compared by 542

estimating classification accuracies on the test dataset composed 543

of 8697 records (Benign=7230, Attack=1467). The results from 544

these RBM models as well as estimated average and standard 545

deviation are presented in Table II. RBMs trained using syn- 546

thetic dataset generated from ‘CD-1 trained RBM’ shows total 547

classification accuracy varying between 64.63% to 79.31%. The 548

RBM trained with synthetic dataset obtained from ‘QA trained 549

RBM’ shows classification accuracy varying between 64.32% 550

to 79.42%. The average classification accuracy for benign and 551

attack classes are 68.28% and 85.66% with dataset obtained 552

from CD-1 based RBM, and 67.47% and 72.90% with dataset 553

obtained from QA based RBM. The results from Table II indi- 554

cate that useful synthetic data can be generated from a trained 555

RBM. This synthetic data can be used to augment the original 556

imbalanced training dataset in order to balance it. Also, on the 557

basis of the classification accuracies, one can conclude that the 558

samples obtained from a RBM trained using QA are as good as 559

from a RBM trained with CD-1. 560

Now we know that a RBM can be used to generate useful syn- 561

thetic data. We can use this procedure to generate synthetic data 562

to balance the training data and hence improve the performance 563

of a classifier. Scheme 2, which uses a RBM to generate new data, 564

is illustrated in Fig. 3. The original dataset is first binarized and 565

divided into testing and training data. The training data is used to 566
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Fig. 3. Scheme 2: Flowchart for intrusion detection using an imbalanced dataset. A RBM is first trained using the training dataset and then it is used to generate
synthetic data. Training data and synthetic data are used to create a balanced dataset which is further used to train a classifier.

train a RBM, which is subsequently used to generate a synthetic567

dataset. Depending on the number of instances needed to balance568

the training data, one can use a subset of a synthetic dataset to569

balance the training dataset. There were 18 000 benign and 3450570

attack records in the training dataset, so 14 550 synthetic attack571

records are added to balance the training dataset. A classifier572

is then trained on the balanced dataset and a prediction on the573

original testing data is performed.574

Considering the fact that RBMs are mostly used as a gen-575

erative model and there are other classification methods that576

perform better than a RBM classifier, we train several classifiers577

on the balanced training dataset. The results are presented in578

Table III. For comparison, model performance with the original579

imbalanced dataset is also included. We notice in the table that K580

Nearest Neighbor (KNN) and Neural Network (NN) performed581

better than other models. They both showed a classification582

accuracy of 93%. Their values for precision, recall, andF1 scores583

are also better than other methods. The lowest value of classifi-584

cation accuracy, as well as other metrics, are found in the case585

of Naive Bayes. The classification accuracy for this classifier586

is 65%. This exercise shows that it is important to investigate587

different classifiers to achieve better performance and different588

methods may give widely differing results. Table III shows that589

all classification methods show improved performance when590

the dataset is balanced. Thus, the RBM-based technique that is591

used to balance the dataset using synthetic data is effective. This592

demonstrates the ability of the RBM to fill gaps in an imbalanced593

dataset by creating synthetic data that falls within the probability594

range of existing data.595

V. DISCUSSION596

Quantum computers are still in a formative stage of their597

technology. Consequently, comparing the RBM approach using598

QA to the mature classical CD or other approaches is uneven.599

The QA approach is expected to progress as quantum computing600

technology advances. In scheme 1, we note that the total classi-601

fication accuracies using QA-trained and CD-trained RBM are602

80.04% and 95.68%, respectively. The performance gap that603

arises between CD-trained and QA-trained could be attributed604

to the following reasons. First, it has been observed by Koshka605

et al. [22], [23] that RBM sampling using QA misses many of606

the higher-energy regions of the configuration space, while also607

finding many new regions consistently missed by CD. Perhaps608

in the present case of the ISCX dataset, high energy samples 609

missed by QA are also important. The overall effect is the 610

RBM learns, but not as well as we expect. Another reason 611

could be an instance-dependent effective temperature of the 612

D-Wave annealer. We would like the D-Wave to sample with 613

kT = 1, where T refers to the temperature at which the D-Wave 614

operates. However, this is hardly the case and hence we introduce 615

an effective scaling parameter S, for the Hamiltonian being 616

embedded that allows us to ensure SkT approximates unity. 617

The effective scaling is treated as a hyperparameter and is fixed 618

throughout the training of the RBM. Ideally one should calculate 619

an effective temperature during each training epoch. This mis- 620

match might degrade RBM’s learning during the training. An 621

accurate way to estimate the temperature at which the D-Wave 622

samples for ground-state configuration is an open challenge. 623

Efforts have been made towards identifying instance-dependent 624

temperature for smaller models, none of which have proven 625

to scale efficiently towards larger feature spaces [21], [25]. 626

Finally, hardware limitations like limited connectivity (which 627

forces one to form long chains), quantum noise, low coherence 628

time, etc could be some other reasons for the lower classification 629

performance of the QA-based approach. 630

When we compare synthetic data obtained from QA-trained 631

RBM and CD-trained RBM (Table II), we do not see much 632

difference in classification performances. Accuracies of RBMs 633

trained on both datasets are similar. These results indicate that 634

our simplified approach of using a hyperparameter instead of 635

an exact instance-dependent temperature is useful. There is 636

another advantage of using QA for RBM training. Depending 637

on the complexity of a dataset, the CD might need hundreds 638

of Gibbs cycles to reach the equilibrium to finally give one 639

sample, while using a QA-based approach one can obtain 10 000 640

samples almost instantaneously. Further, with the availability of 641

quantum annealers with higher qubits and better connectivity, 642

lower noise, the QA-based RBM training is likely to be improved 643

and it would be possible to deal with larger datasets. Several 644

investigators have shown that by employing machine learning 645

techniques like principal component analysis and autoencoders 646

to compress data, one can investigate a moderate size dataset 647

with currently available quantum annealers [25], [26]. CD-based 648

and QA-based approaches are fundamentally different ways of 649

training RBMs. It would be an interesting exercise to train a 650

RBM using samples obtained from both methods together. After 651

training one should compare the results with RBMs trained 652
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separately using QA and CD approaches. Our results indicate tha653

a RBM could be an effective tool to generate synthetic data that654

can be used to balance a dataset. One could also try training the655

RBM exclusively on the minority class to balance the original656

dataset. The QA-based approach can be used for faster sampling657

as sampling from a quantum annealer is almost instantaneous.658

We see that it is much easier to compute the model term using659

a D-Wave to sample low energy eigenstates of the Hamilto-660

nians. This shows how a D-Wave machine can be utilized in661

problems beyond optimization and into the machine learning662

world. However, there are some limitations of the quantum663

annealer that we use. The D-Wave 2000Q allows for a fully664

connected bilayer network of only 64 qubits at maximum. This665

limits the size of feature space of the data to be used for doing666

a study on large datasets without using another layer of feature667

extraction to downsize the data set used for the study. The qubits668

are noisy and less coherent compared to the upcoming new669

D-Wave machine which supports 5000 qubits and additional670

qubit interconnectivity and this provides opportunities for doing671

better analysis of the proposed schemes. A larger feature space672

would also allow for more confident claims to be made about673

the role that these machines might play in the machine learning674

world.675

There are several advantages of using the D-Wave quantum676

annealer for RBM training. It offers a fundamentally different677

way to compute the model dependent term of the gradient of678

log-likelihood. Computation of this term using conventional679

methods like CD and PCD is intractable. Further, QA based680

sampling is faster than MCMC used in CD or PCD. So, we681

expect that with improvement in hardware such as more qubits,682

lower noise, better coherence time as well as robust algorithm683

for effective temperature, the QA-based RBM training is likely684

to perfom better than the CD-based approach.685

The dataset that we use in this study is imbalanced. It com-686

prises 30 147 unique records. The number of records that belong687

to the attack class is 4917. It looks like the amount of data of the688

attack class is not enough for RBM training. However, when we689

balance the dataset and train classifiers on it, the results indicate690

that the data amount is sufficient. For example, in the case of691

RBM trained on the “CD-bal” dataset, the precision, recall, and692

F1 score for the attack class are 0.87, 0.95, and 0.91, respectively693

(Table III). It seems like though the number of attack records and694

features is small, the chosen records/features are representative695

of the model. Aldwairi et al. [43] established that when certain696

features that are representative of the model are to be selected, the697

change in the accuracy is minimal across all tested algorithms.698

Our first approach which uses under-sampling of benign records699

as well as the second approach where oversampling of attack700

records is used, seem to be effective for balancing the ISCX701

dataset.702

VI. CONCLUSION703

Restricted Boltzmann machine (RBM) methodology has been704

investigated for classification and synthetic data generation us-705

ing the cybersecurity ISCX dataset. RBMs are trained through706

a quantum annealing approach performed using the D-Wave707

2000Q quantum annealer. For comparison, a state-of-the-art 708

method for RBM training, contrastive divergence, is also in- 709

vestigated. The ISCX dataset is preprocessed and binarized to 710

transform it into a form that can be used with a RBM. When a 711

classifier is trained on the original data, it is found that attack 712

records can be correctly predicted with an accuracy of 42%, 713

while benign records are predicted with an accuracy of 97%. 714

This disproportionate result is attributed to the fact that the 715

dataset is imbalanced. The attack records in the dataset only 716

account for 14.1% of the total number of records. To deal 717

with the imbalanced dataset, we propose two schemes. The first 718

scheme is based on the undersampling of benign records. In this 719

scheme, the training dataset is divided into five sub-datasets. 720

Five classifiers are trained separately on these datasets. The final 721

result has been obtained by performing a majority voting on the 722

results from the individual classifiers. Our results show that by 723

using a majority vote the classification accuracy increased up to 724

95.68% from 90.24% in the case of CD-1. In the case of QA, 725

the classification accuracy increased to 80.04% from 74.14%. 726

The second scheme that we use to balance the training dataset 727

is based on the generation of synthetic data using a trained 728

RBM. The balanced dataset obtained from this scheme is used 729

to train six different classifiers. Neural network and K-nearest 730

neighbor models perform the better than other classifiers. The 731

results indicate that for the sampling applications, a RBM trained 732

with QA is as good as a RBM trained with CD. Based on 733

the classification accuracy results, we infer that both scheme 1 734

and scheme 2 significantly improved the classification accuracy 735

compared to the case when the dataset was imbalanced. The 736

learning of QA-based RBM can be improved with the avail- 737

ability of improved quantum annealers with a large number of 738

qubits as well as by using an efficient procedure to determine 739

the effective temperature of the QPU instead of treating it as a 740

hyperparameter S. 741
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