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2 I Why do we care about GPU computing?

= Parallel computing terms:
= CPU- Heavyweight cores, just a few
= GPU- Very weak cores, many of them

=Supercomputer Summit has 4608
compute nodes, each with 6 NVIDIA
V100 GPUs. Not using GPUs -> not
using 97% of Summit’s compute
power!

=Future exascale computers (Aurora,
Frontier, El Capitan) will also be built
relying upon GPUs.

*BIG Question: Can
polynomial preconditioning
scale to large problems on
multiple GPUs?
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3 ‘ So how does polynomial preconditioning perform on
Summit?

2e¢

= Tests are just beginning!

*"TODAY: Preliminary
results; Algorithmic
scaling.




What is polynomial preconditioning?
For solving large, sparse linear systems Ax = b.
Right-preconditioned problem is AMM~*x = b.
Choose M = p(A), where M approximates A~ 1.
We choose p(A) to be the GMRES polynomial.

p(A) can be constructed with a few initial steps of GMRES.

- F (-3 (-3) (-2

Where 6; are Harmonic Ritz values from the initial GMRES run.

*See polynomial details in:
* Loe, ]enm'fer and Morgan, Ron. Toward Efficient and Stable Polynomial Preconditioning for GMRES
https://arxivorg/abs/1911.0706

. ]enmfer Loe, Erik Boman, and Heidi Thornquist. Polynomial Preconditioned GMRES in Trilinos: Practical
Considerations for High-Performance Computing https://doi.org/10.1137/1.9781611976137.4



Why use polynomial preconditioning?
Why does it have potential for High-Performance

Computing?
=\Works for general non-symmetric matrices.

=Can compute p(A) for entire matrix A; no need to divide
A into subproblems.

=Matrix-free implementation.

=Stable at high degrees via added roots. (See Friday’s
talks!)

=Can be used to accelerate standard preconditioning.

=Use more SpMVs (local communication) rather than
dot products from orthogonalization (global
communication).

=Can reduce solve time, iteration count, and SpMVs:

= Example: Matrix ML_Geer from Janna collection:
nonsymmetric poroelastic structure problem, n=1.5 million

= Using GMRES(100) run to tolerance of 10-8.

e B B B B

Results from ML_Geer:

Polynomial
Degree

Iterations

20 12897
40 1487

60
80

SpMVs

Solve Time
3214
731.5
346.7
197
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s I Linear Solvers in Trilinos:

*Trilinos:
= Large numerical software library
= Open-source: www.github.com/trilinos
= Many contributors; primarily developed at Sandia National Labs

= Packages for: linear solvers, nonlinear solvers, eigensolvers, multigrid preconditioning,
mesh partitioning, factorization-based preconditioning, optimization, time integration,
automatic differentiation, and more!

*Belos: Krylov Linear Solvers package in Trilinos:
= All linear algebra kernels are abstracted through “adapter” interface.
=Kokkos and Kokkos Kernels:

= Uses Epetra, Tpetra, or custom linear algebra kernels

= Portable parallel linear algebra. La k o k k o S
= Performant BLAS kernels for GPU (single node).

® kernels



http://www.github.com/trilinos
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Implementation of Polynomial Preconditioning in Trilinos:

*Implemented in Belos -> Can be used with any linear algebra backend.
=Use as a stand-alone iteration or as a preconditioner.

*Can be cornposed with other preconditioners to accelerate them.

"Experiments to follow:
* Use Kokkos as the linear algebra backend for solvers.
= Using GMRES(50) with xg = 0 and b = (1,1,1 ..., 1)T.
= Stopping criteria: Relative residual tolerance of 1078,
= Tested performance on a single node with V100 GPU.




s I Three questions for today’s talk:

1. Algorithmic scaling 1: How can | use polynomial
preconditioning to get a constant number of iterations as |
refine the mesh for my PDE problem?

2. Algorithmic scaling 2: What happens to GMRES
convergence if | fix the polynomial degree and keep refining
the PDE mesh anyway?

3. Multiprecision Applications: What makes polynomial
preconditioning a good candidate for mixed-precision
computing?



o I How to get a constant number of iterations:

*Say PDE mesh has nx grid points in each direction.

"Finer PDE mesh:

— = More small eigenvalues of A

— = Need higher polynomial degree to

maintain same convergence.

*How much to increase polynomial degree? ¢

*As nx is doubled, double the poly degree.

*Example: 3D Laplacian
"N =NX *NX *NX

*SpMV5s scale lineatly, while n
grows cubically.
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0 I Another example of near-constant iterations:

"Matrix = UniFlow2D
*Convection-diffusion, highly nonsymm:c
"Mm =nx *nx

" Again, As nx is doubled, double the

polynomial degree.
=20 to 21 iterations

"As n grows quadratically, SpMV count
grows lineatly.

iters
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‘ When you fix the polynomial degree:

= For fixed poly degree, iteration count grows roughly linearly as nx grows.

=So iteration count and SpMV count grow roughly like Vn.

Iters to Convergence BentPipe2D Iters to Convergence BentPipe2D
60007 Deg 5 14001 —¢— Deg 20
—¢ Deg 10 = Deg 25
5000 - —— Deg 20 1200 - —— Deg 30
—>— Deg 25 —— Deg 40
—¢— Deg 30 —¢— Deg 50
4000 1 = Deg 40 10007 s peg 60
wn 4]
FL_J: - Deg 50 FL_J:
= —»— Deg 60 — 800 -
© 3000 - 5
a 3
= £ 600 -
3 3
< 2000 - = Y
400 - ;If MM
" "v Q);o ,,02:0
1000 A . MM‘/X ‘,;. 295
OTOX 200 -
se=——
0 0'
0 0 -
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
NX NX

"Rough conjecture: We can find a “high enough” polynomial degree so that the iteration count
needed for GMRES convergence scales (almost) linearly with respect to nx.



12 I Multi-precision GMRES:

1: rg = b— Axg |double]
2: for ¢+ =1,2,... until convergence: do

3: Use GMRES(m)_to solve Au; = r; for correction u, [single
4: xii1 = x; + u; |[double]

B GEMV (Trans)
@ Norm

B Gemv (No Trans)
B A*x

EE Other

Time [s]

5 rir1 = b — Ax;., |double
6: end for

Algorithm 1 Iterative Refinement with GMRES Error Correction gy S°Lver ’ll‘imings BentPipel2D1500 |
i

*GMRES-IR is the preferred GMRES solver for
multi-precision computing. (See Carson, Higham,

. . Doubl IR
Anzt, Linquist and many others.) T ver
=Our experiments showed 2.5x speedup in SpMV GMRES double GMRES IR Speedup
kernel from double to single precision. Total time: 50.26 38.03 1322
=Speedup for A*x comes from better use of the L2  Ortho: GEMV Trans 20.20 15.78 1.280
cache in the GPU- “perfect caching” for vector x in ~ Ortho: GEMV No
Sing|e precision_ Trans 19.01 12.10 1.571
: : e Ortho (norm) 1.71 1.49 1.152

=Qpportunity for polynomial preconditioning!

PP y Tor poly P J A*x 7.33 2.95 2.484



13 I Polynomial Preconditioning in multiple precisions:

Test Problem:

Solver Timings Stretched2D1500 Poly Prec 2D_Laplac1z.an., Stretched Grid
70 | . : | n = 2.25 million

B Orthogonalization * GMRES(50) to stopping tolerance of 10-10
O A*x i
EE Other

60
Three solves compared:

50 1. GMRES double w/ double precision polynomial.
= 40 (left)
> 2. GMRES double w/ single precision polynomial.
£ 30 (middle)
3. GMRES-IR (GMRES with Iterative Refinement)
20 w/ single precision polynomial. (right)
* (Solve times do not include preconditioner creation.)
10
Takeaways:
0 10 20 40 60 + Single precision preconditioning improves solve time

up to 30% over double precision preconditioning.
* Polynomial preconditioning shifts main expense to
SpMV rather than dense orthogonalization kernels.

Polynomial Degree



14 I Future Questions to Answer:

*BIG Question: Can polynomial preconditioning scale to large problems on
multiple GPUs?

*How does polynomial preconditioning perform in true weak and strong scaling
experiments?

*Does reducing orthogonalization in favor of more SpMVs really pay off on an HPC
machine like Summit?

*How does polynomial preconditioning compare to other preconditioners (e.g. Jacobi,
ILU, AMG) at large-scale?

=Can we create high enough degree polynomials for life-size physics problems? Is it best
to divide problem into subdomains and/or combine with other preconditioners?

Thanks to Christian Glusa, Ichi Yamazaki, and Siva Rajamanickam for their help in this
work!

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Enerqy Office of Science and the National Nuclear Security Administration.



s I More Polynomial Preconditioning Answers coming up
Friday!
*How to make the GMRES polynomial stable by adding extra roots?

*How to give your preconditioner a new speedup: Compose it with a polynomial!

*Ritz values, eigenvectors, and the Arnoldi iteration: Polynomial preconditioning is for
eigenvalue problems, too!

All this and more!
Friday 11:00am CST

MS 80 — Recent Advances in Polynomial Preconditioning for Linear Algebra Problems

Thanks to co-authors Ron Morgan and Mark Embree for their help in work leading up to
this project.



