This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2021-6164C

Polynomial Preconditioned
GMRES for GPU Computing

..-—_;:\
Jennifer Loe and Erik Boman = (E“
with Siva Rajamanickam, Christian Glusa, and Ichi xreceLe Conm G e T
Yamazaki —_— - — — @ENERGY NS4

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 I Why do we care about GPU computing?

= Parallel computing terms:
= CPU- Heavyweight cores, just a few
= GPU- Very weak cores, many of them

=Supercomputer Summit has 4608
compute nodes, each with 6 NVIDIA
V100 GPUs. Not using GPUs -> not
using 97% of Summit’s compute
power!

=Future exascale computers (Aurora,
Frontier, El Capitan) will also be built
relying upon GPUs.

*BIG Question: Can
polynomial preconditioning
scale to large problems on
multiple GPUs?

Summit Node

(2) 1IBM Power9 + (6) NVIDIA Volta V100

256 GB
(DDR4)
3 13scEs

CPU 1
[228891y | [29(116-119) | | 38 (1441a7) |
| z3ppzos) | | 30120123 | | 37 (4eas) |
[2410800 | [31(12402) | [38152185 |
EREEIREESEINERSER

| 26 (104-107) | | 33 (132-135) | | A0 (160-163) |

ECal el

[281112115 | | 35140143 | | 42 (188171} |

7 1 N

GPU 3 || GPU 4 |4up| GPUS

256 GB
(DOR4)
3 135cHS
CPUO
| oo | [reean | | wsess |
(IEEE| (U (RN
[21 | [sweawm | [seeen | 64 GBIs
[30218 | [10@043) || 176871 | | o—
| 4 (1618 || 11 (4447 || 18.(72-75) |
[sz | [12asn | [19gers |
| sazry | | 13gsess | | 20008y |
GPUO (¢mmp| GPU 1 |¢mp| GPU 2
*
¥ ¥ L
16 GB 16 GB 16 GB
(HEM2) {HBhZ) {HEM2)

&

NVLink2 4 (50 GB/s)

L 4 L L
16 GB 16 GB 16 GB
(HEM2) (HEMZ) (HEMZ)

! (900 GBIs)

https://www.olcf.ornl.gov/summit/

3 ‘ So how does polynomial preconditioning perform on
Summit?

2e¢

= Tests are just beginning!

*"TODAY: Preliminary
results; Algorithmic
scaling.

What is polynomial preconditioning?
For solving large, sparse linear systems Ax = b.
Right-preconditioned problem is AMM~*x = b.
Choose M = p(A), where M approximates A~ 1.
We choose p(A) to be the GMRES polynomial.

p(A) can be constructed with a few initial steps of GMRES.

- F (-3 (-3) (-2

Where 6; are Harmonic Ritz values from the initial GMRES run.

*See polynomial details in:
* Loe,]enm'fer and Morgan, Ron. Toward Efficient and Stable Polynomial Preconditioning for GMRES
https://arxivorg/abs/1911.0706

.]enmfer Loe, Erik Boman, and Heidi Thornquist. Polynomial Preconditioned GMRES in Trilinos: Practical
Considerations for High-Performance Computing https://doi.org/10.1137/1.9781611976137.4

Why use polynomial preconditioning?
Why does it have potential for High-Performance

Computing?
=\Works for general non-symmetric matrices.

=Can compute p(A) for entire matrix A; no need to divide
A into subproblems.

=Matrix-free implementation.

=Stable at high degrees via added roots. (See Friday’s
talks!)

=Can be used to accelerate standard preconditioning.

=Use more SpMVs (local communication) rather than
dot products from orthogonalization (global
communication).

=Can reduce solve time, iteration count, and SpMVs:

= Example: Matrix ML_Geer from Janna collection:
nonsymmetric poroelastic structure problem, n=1.5 million

= Using GMRES(100) run to tolerance of 10-8.

e B B B B

Results from ML_Geer:

Polynomial
Degree

Iterations

20 12897
40 1487

60
80

SpMVs

Solve Time
3214
731.5
346.7
197

I I Em B

s I Linear Solvers in Trilinos:

*Trilinos:
= Large numerical software library
= Open-source: www.github.com/trilinos
= Many contributors; primarily developed at Sandia National Labs

= Packages for: linear solvers, nonlinear solvers, eigensolvers, multigrid preconditioning,
mesh partitioning, factorization-based preconditioning, optimization, time integration,
automatic differentiation, and more!

*Belos: Krylov Linear Solvers package in Trilinos:
= All linear algebra kernels are abstracted through “adapter” interface.
=Kokkos and Kokkos Kernels:

= Uses Epetra, Tpetra, or custom linear algebra kernels

= Portable parallel linear algebra. La k o k k o S
= Performant BLAS kernels for GPU (single node).

® kernels

http://www.github.com/trilinos

7

Implementation of Polynomial Preconditioning in Trilinos:

*Implemented in Belos -> Can be used with any linear algebra backend.
=Use as a stand-alone iteration or as a preconditioner.

*Can be cornposed with other preconditioners to accelerate them.

"Experiments to follow:
* Use Kokkos as the linear algebra backend for solvers.
= Using GMRES(50) with xg = 0 and b = (1,1,1 ..., 1)T.
= Stopping criteria: Relative residual tolerance of 1078,
= Tested performance on a single node with V100 GPU.

s I Three questions for today’s talk:

1. Algorithmic scaling 1: How can | use polynomial
preconditioning to get a constant number of iterations as |
refine the mesh for my PDE problem?

2. Algorithmic scaling 2: What happens to GMRES
convergence if | fix the polynomial degree and keep refining
the PDE mesh anyway?

3. Multiprecision Applications: What makes polynomial
preconditioning a good candidate for mixed-precision
computing?

o I How to get a constant number of iterations:

*Say PDE mesh has nx grid points in each direction.

"Finer PDE mesh:

— = More small eigenvalues of A

— = Need higher polynomial degree to

maintain same convergence.

*How much to increase polynomial degree? ¢

*As nx is doubled, double the poly degree.

*Example: 3D Laplacian
"N =NX *NX *NX

*SpMV5s scale lineatly, while n
grows cubically.

8.0 A

7.8 1

7.6 1

7.4 1

7.2

7.0 1

Iters and SpMVs for Poly Deg Scaled with Matrix Dim

Laplace3D
-‘- =S pity's
25 50 75 100 125 150 175 200
nx
20 40 60 80 100

Poly Degree = nx/2.0

0 I Another example of near-constant iterations:

"Matrix = UniFlow2D
*Convection-diffusion, highly nonsymm:c
"Mm =nx *nx

" Again, As nx is doubled, double the

polynomial degree.
=20 to 21 iterations

"As n grows quadratically, SpMV count
grows lineatly.

iters

Ilters and SpMVs for Poly Deg Scaled with Matrix Dim

UniFlow2D
21.0q +—+—+—— — itels
20.8 1
20.6 1
20.4 -~
20.2 1
20.0 - et —t— i —2RM{S
0 500 1000 1500 2000 2500
nx
0 50 100 150 200 250

Poly Degree = nx/10.0

‘ When you fix the polynomial degree:

= For fixed poly degree, iteration count grows roughly linearly as nx grows.

=So iteration count and SpMV count grow roughly like Vn.

Iters to Convergence BentPipe2D Iters to Convergence BentPipe2D
60007 Deg 5 14001 —¢— Deg 20
—¢ Deg 10 = Deg 25
5000 - —— Deg 20 1200 - —— Deg 30
—>— Deg 25 —— Deg 40
—¢— Deg 30 —¢— Deg 50
4000 1 = Deg 40 10007 s peg 60
wn 4]
FL_J: - Deg 50 FL_J:
= —»— Deg 60 — 800 -
© 3000 - 5
a 3
= £ 600 -
3 3
< 2000 - = Y
400 - ;If MM
" "v Q);o ,,02:0
1000 A . MM‘/X ‘,;. 295
OTOX 200 -
se=——
0 0'
0 0 -
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
NX NX

"Rough conjecture: We can find a “high enough” polynomial degree so that the iteration count
needed for GMRES convergence scales (almost) linearly with respect to nx.

12 I Multi-precision GMRES:

1: rg = b— Axg |double]
2: for ¢+ =1,2,... until convergence: do

3: Use GMRES(m)_to solve Au; = r; for correction u, [single
4: xii1 = x; + u; |[double]

B GEMV (Trans)
@ Norm

B Gemv (No Trans)
B A*x

EE Other

Time [s]

5 rir1 = b — Ax;., |double
6: end for

Algorithm 1 Iterative Refinement with GMRES Error Correction gy S°Lver ’ll‘imings BentPipel2D1500 |
i

*GMRES-IR is the preferred GMRES solver for
multi-precision computing. (See Carson, Higham,

. . Doubl IR
Anzt, Linquist and many others.) T ver
=Our experiments showed 2.5x speedup in SpMV GMRES double GMRES IR Speedup
kernel from double to single precision. Total time: 50.26 38.03 1322
=Speedup for A*x comes from better use of the L2 Ortho: GEMV Trans 20.20 15.78 1.280
cache in the GPU- “perfect caching” for vector x in ~ Ortho: GEMV No
Sing|e precision_ Trans 19.01 12.10 1.571
: : e Ortho (norm) 1.71 1.49 1.152

=Qpportunity for polynomial preconditioning!

PP y Tor poly P J A*x 7.33 2.95 2.484

13 I Polynomial Preconditioning in multiple precisions:

Test Problem:

Solver Timings Stretched2D1500 Poly Prec 2D_Laplac1z.an., Stretched Grid
70 | . : | n = 2.25 million

B Orthogonalization * GMRES(50) to stopping tolerance of 10-10
O A*x i
EE Other

60
Three solves compared:

50 1. GMRES double w/ double precision polynomial.
= 40 (left)
> 2. GMRES double w/ single precision polynomial.
£ 30 (middle)
3. GMRES-IR (GMRES with Iterative Refinement)
20 w/ single precision polynomial. (right)
* (Solve times do not include preconditioner creation.)
10
Takeaways:
0 10 20 40 60 + Single precision preconditioning improves solve time

up to 30% over double precision preconditioning.
* Polynomial preconditioning shifts main expense to
SpMV rather than dense orthogonalization kernels.

Polynomial Degree

14 I Future Questions to Answer:

*BIG Question: Can polynomial preconditioning scale to large problems on
multiple GPUs?

*How does polynomial preconditioning perform in true weak and strong scaling
experiments?

*Does reducing orthogonalization in favor of more SpMVs really pay off on an HPC
machine like Summit?

*How does polynomial preconditioning compare to other preconditioners (e.g. Jacobi,
ILU, AMG) at large-scale?

=Can we create high enough degree polynomials for life-size physics problems? Is it best
to divide problem into subdomains and/or combine with other preconditioners?

Thanks to Christian Glusa, Ichi Yamazaki, and Siva Rajamanickam for their help in this
work!

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Enerqy Office of Science and the National Nuclear Security Administration.

s I More Polynomial Preconditioning Answers coming up
Friday!
*How to make the GMRES polynomial stable by adding extra roots?

*How to give your preconditioner a new speedup: Compose it with a polynomial!

*Ritz values, eigenvectors, and the Arnoldi iteration: Polynomial preconditioning is for
eigenvalue problems, too!

All this and more!
Friday 11:00am CST

MS 80 — Recent Advances in Polynomial Preconditioning for Linear Algebra Problems

Thanks to co-authors Ron Morgan and Mark Embree for their help in work leading up to
this project.

