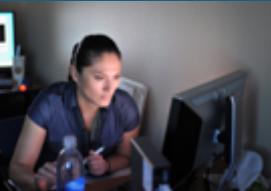
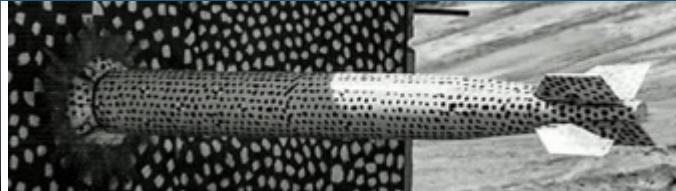




Sandia  
National  
Laboratories

SAND2021-6164C

# Polynomial Preconditioned GMRES for GPU Computing



Jennifer Loe and Erik Boman  
with Siva Rajamanickam, Christian Glusa, and Ichi  
Yamazaki



ECP

EXASCALE COMPUTING PROJECT

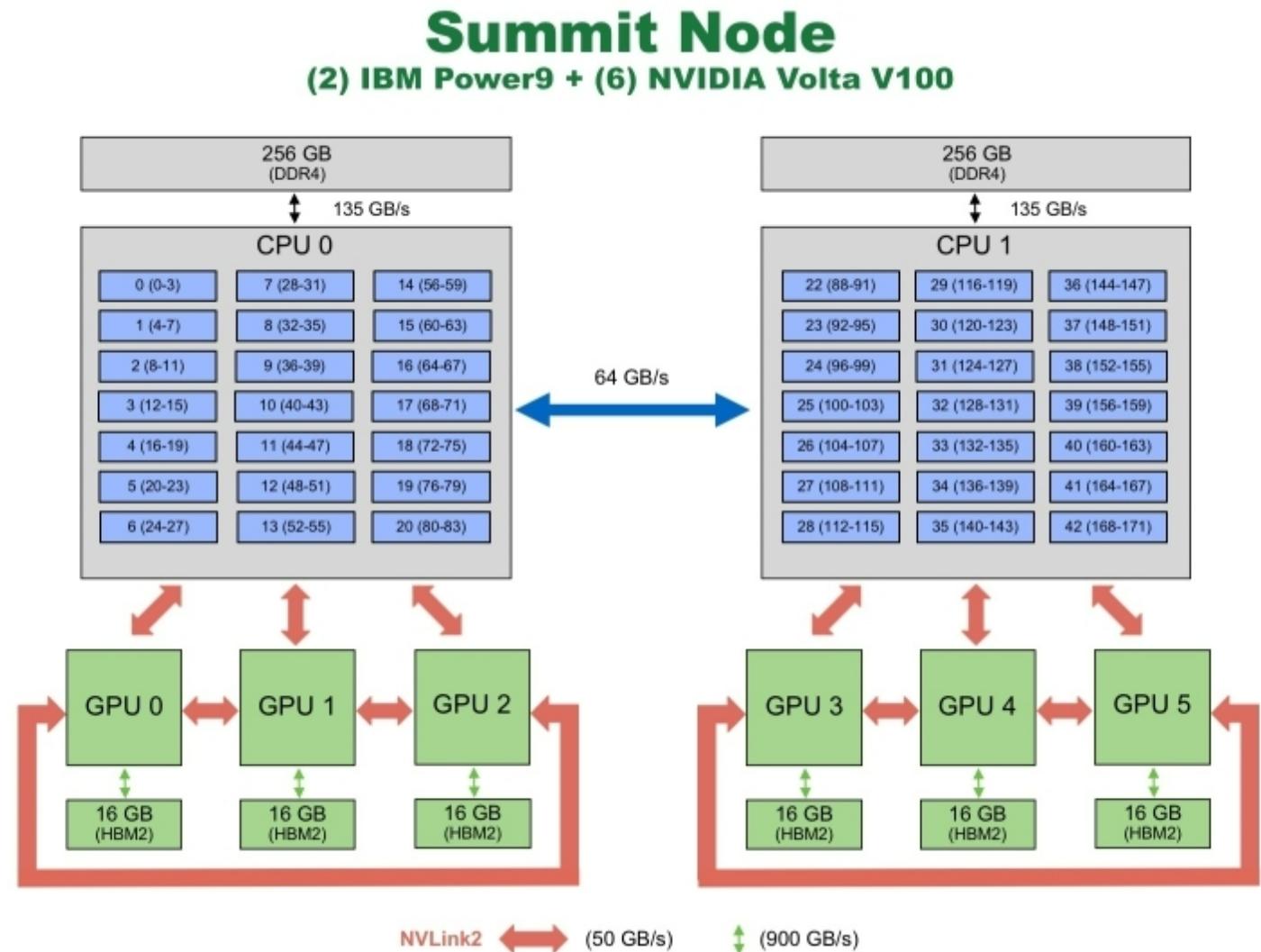


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Why do we care about GPU computing?



- Parallel computing terms:
  - CPU- Heavyweight cores, just a few
  - GPU- Very weak cores, many of them
- Supercomputer Summit has 4608 compute nodes, each with 6 NVIDIA V100 GPUs. Not using GPUs -> not using 97% of Summit's compute power!
- Future exascale computers (Aurora, Frontier, El Capitan) will also be built relying upon GPUs.
- **BIG Question: Can polynomial preconditioning scale to large problems on multiple GPUs?**



So how does polynomial preconditioning perform on Summit?



???

- Tests are just beginning!
- **TODAY: Preliminary results; Algorithmic scaling.**





# What is polynomial preconditioning?

For solving large, sparse linear systems  $Ax = b$ .

Right-preconditioned problem is  $AMM^{-1}x = b$ .

Choose  $M = p(A)$ , where  $M$  approximates  $A^{-1}$ .

We choose  $p(A)$  to be the GMRES polynomial.

$p(A)$  can be constructed with a few initial steps of GMRES.

$$p(A) = \sum_{k=1}^d \frac{1}{\theta_k} \left( I - \frac{1}{\theta_1} A \right) \left( I - \frac{1}{\theta_2} A \right) \cdots \left( I - \frac{1}{\theta_{k-1}} A \right)$$

Where  $\theta_i$  are Harmonic Ritz values from the initial GMRES run.

■ See polynomial details in:

- Loe, Jennifer and Morgan, Ron. *Toward Efficient and Stable Polynomial Preconditioning for GMRES* <https://arxiv.org/abs/1911.07065>
- Jennifer Loe, Erik Boman, and Heidi Thornquist. *Polynomial Preconditioned GMRES in Trilinos: Practical Considerations for High-Performance Computing* <https://doi.org/10.1137/1.9781611976137.4>

# Why use polynomial preconditioning?

## Why does it have potential for High-Performance Computing?



- Works for general non-symmetric matrices.
- Can compute  $p(A)$  for entire matrix  $A$ ; no need to divide  $A$  into subproblems.
- Matrix-free implementation.
- Stable at high degrees via added roots. (See Friday's talks!)
- Can be used to accelerate standard preconditioning.
- Use more SpMVs (local communication) rather than dot products from orthogonalization (global communication).
- Can reduce solve time, iteration count, and SpMVs:
  - Example: Matrix **ML\_Geer** from Janna collection: nonsymmetric poroelastic structure problem,  $n=1.5$  million
  - Using GMRES(100) run to tolerance of  $10^{-8}$ .

Results from **ML\_Geer**:

| Polynomial Degree | Iterations | SpMVs  | Solve Time |
|-------------------|------------|--------|------------|
| 20                | 12897      | 260500 | 3214       |
| 40                | 1487       | 61580  | 731.5      |
| 60                | 472        | 29570  | 346.7      |
| 80                | 200        | 16970  | 197        |

# Linear Solvers in Trilinos:



- Trilinos:
  - Large numerical software library
  - Open-source: [www.github.com/trilinos](https://www.github.com/trilinos)
  - Many contributors; primarily developed at Sandia National Labs
  - Packages for: linear solvers, nonlinear solvers, eigensolvers, multigrid preconditioning, mesh partitioning, factorization-based preconditioning, optimization, time integration, automatic differentiation, and more!
- Belos: Krylov Linear Solvers package in Trilinos:
  - All linear algebra kernels are abstracted through “adapter” interface.
  - Uses Epetra, Tpetra, or custom linear algebra kernels
- Kokkos and Kokkos Kernels:
  - Portable parallel linear algebra.
  - Performant BLAS kernels for GPU (single node).
  - Tpetra = Kokkos + MPI



# Implementation of Polynomial Preconditioning in Trilinos:



- Implemented in Belos -> Can be used with any linear algebra backend.
- Use as a stand-alone iteration or as a preconditioner.
- Can be composed with other preconditioners to accelerate them.
- Experiments to follow:
  - Use Kokkos as the linear algebra backend for solvers.
  - Using GMRES(50) with  $x_0 = \mathbf{0}$  and  $b = (1,1,1 \dots, 1)^T$ .
  - Stopping criteria: Relative residual tolerance of  $10^{-8}$ .
  - Tested performance on a single node with V100 GPU.

# Three questions for today's talk:



1. **Algorithmic scaling 1:** How can I use polynomial preconditioning to get a constant number of iterations as I refine the mesh for my PDE problem?
2. **Algorithmic scaling 2:** What happens to GMRES convergence if I fix the polynomial degree and keep refining the PDE mesh anyway?
3. **Multiprecision Applications:** What makes polynomial preconditioning a good candidate for mixed-precision computing?

# How to get a constant number of iterations:



- Say PDE mesh has  $nx$  grid points in each direction.

- Finer PDE mesh:

- ▪ More small eigenvalues of A
- ▪ Need higher polynomial degree to maintain same convergence.

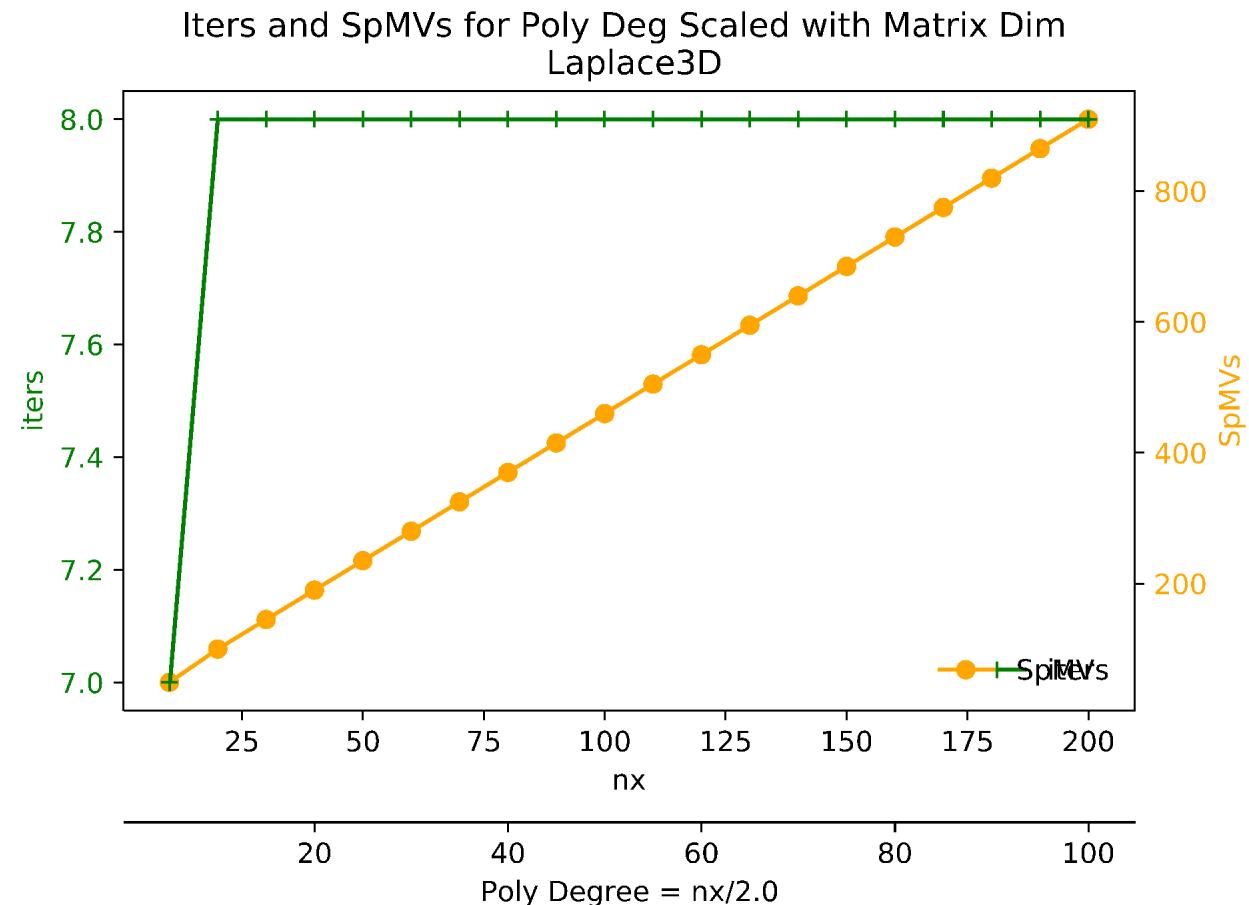
- How much to increase polynomial degree?

- As  $nx$  is doubled, double the poly degree.

- Example: 3D Laplacian

- $n = nx * nx * nx$

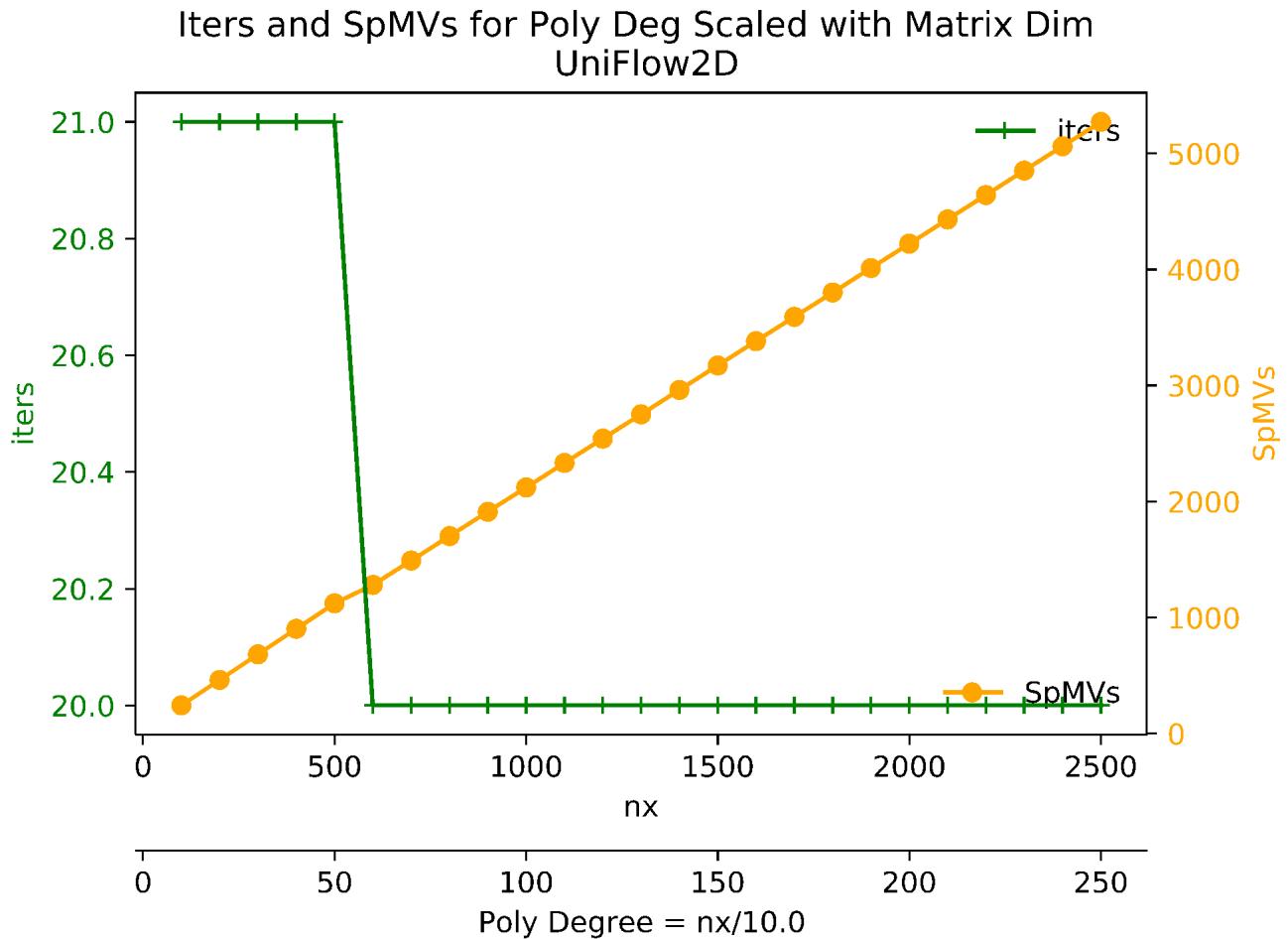
- SpMVs scale linearly, while  $n$  grows cubically.



# Another example of near-constant iterations:

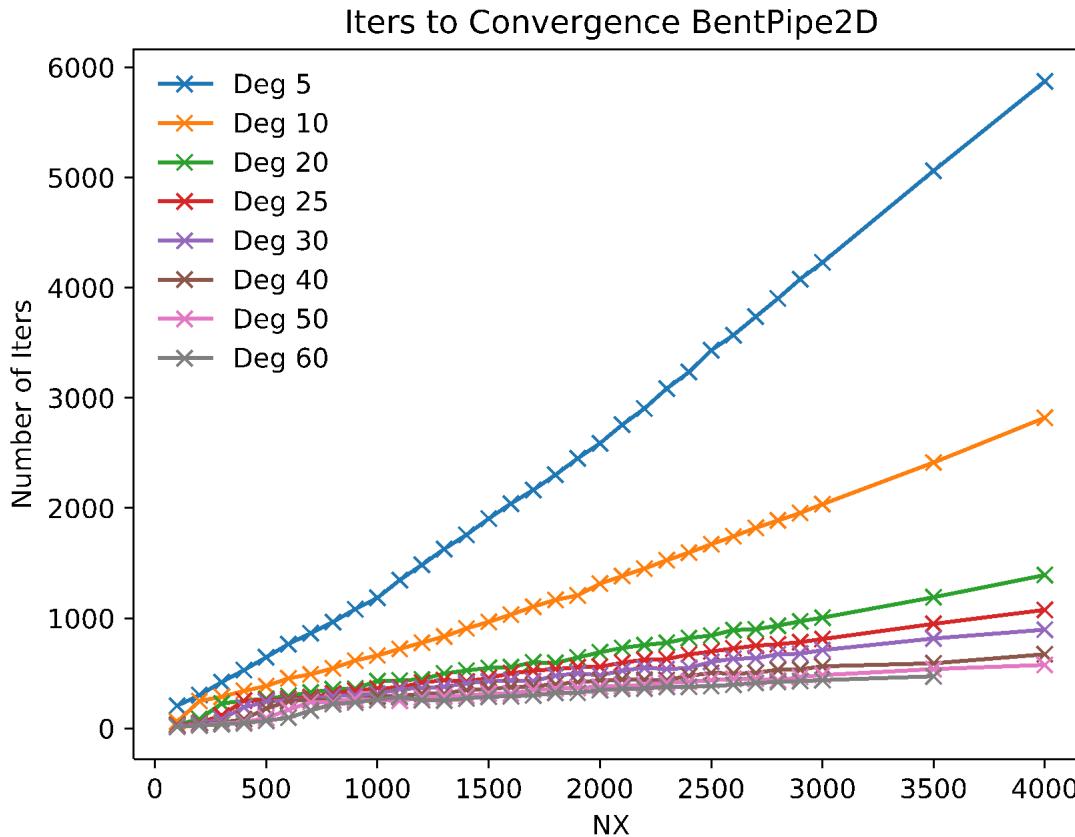
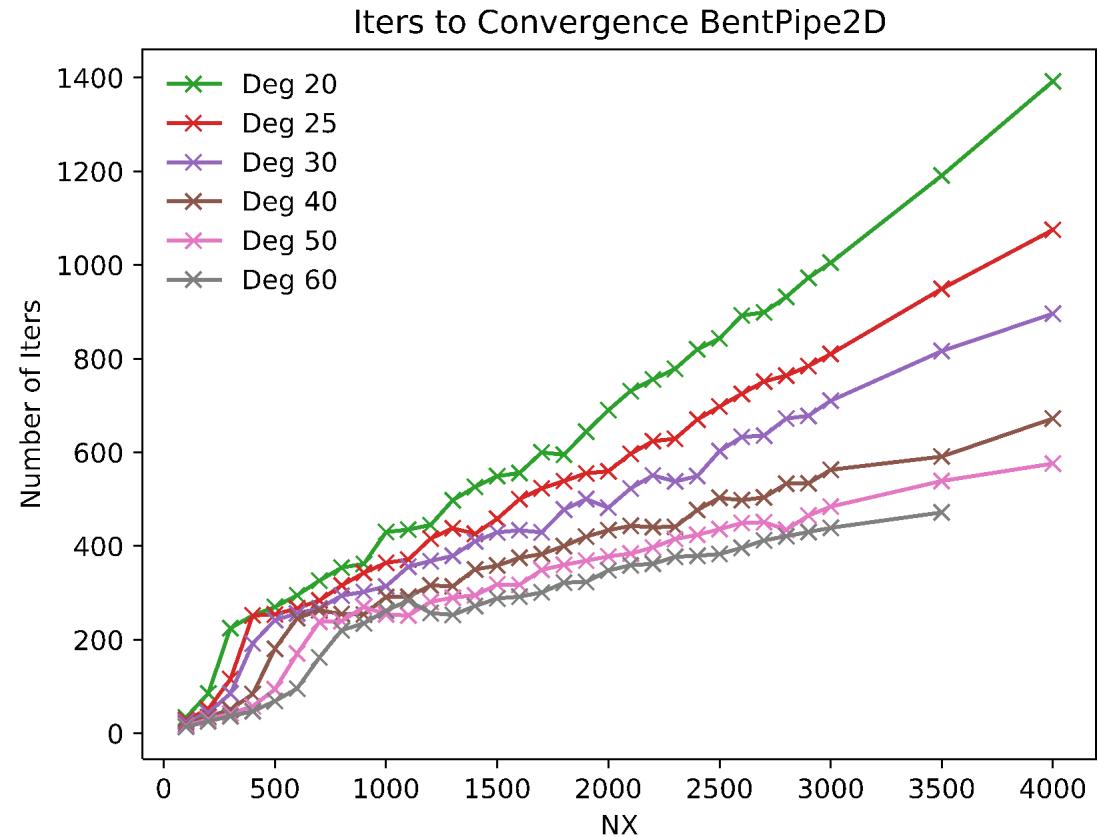


- Matrix = UniFlow2D
- Convection-diffusion, highly nonsymmetric
- $n = nx * nx$
- Again, As  $nx$  is doubled, double the polynomial degree.
- 20 to 21 iterations
- As  $n$  grows quadratically, SpMV count grows linearly.



# When you fix the polynomial degree:

- For fixed poly degree, iteration count grows roughly linearly as  $nx$  grows.
- So iteration count and SpMV count grow roughly like  $\sqrt{n}$ .



- Rough conjecture:** We can find a “high enough” polynomial degree so that the iteration count needed for GMRES convergence scales (almost) linearly with respect to  $nx$ .

# Multi-precision GMRES:



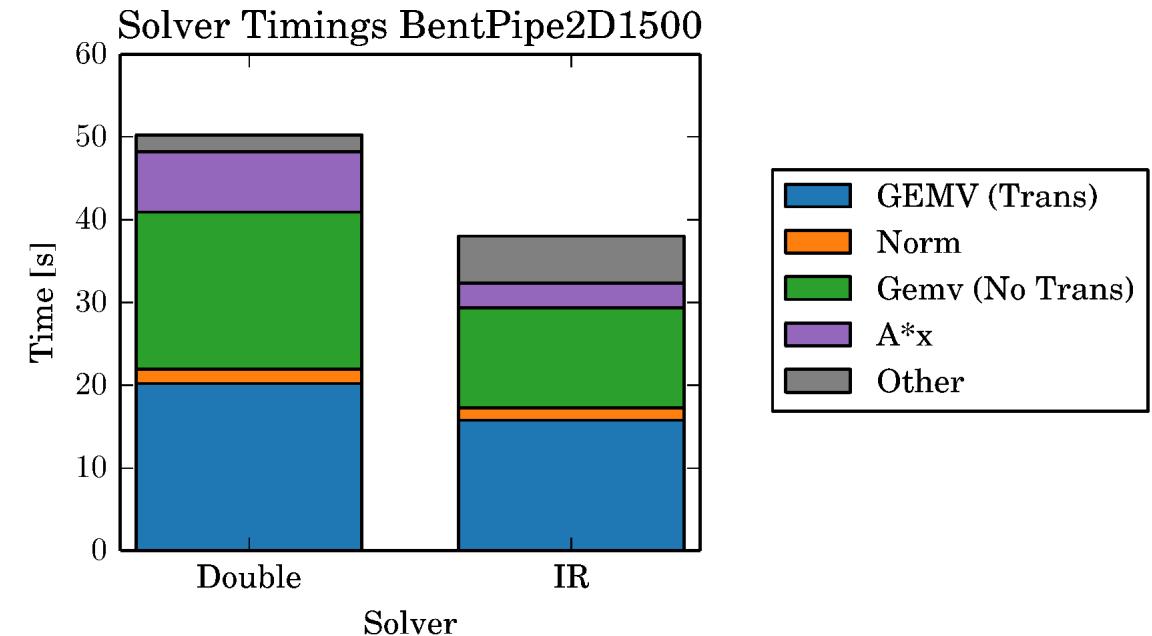
## Algorithm 1 Iterative Refinement with GMRES Error Correction

```

1:  $r_0 = b - Ax_0$  [double]
2: for  $i = 1, 2, \dots$  until convergence: do
3:   Use GMRES( $m$ ) to solve  $Au_i = r_i$  for correction  $u_i$  [single]
4:    $x_{i+1} = x_i + u_i$  [double]
5:    $r_{i+1} = b - Ax_{i+1}$  [double]
6: end for

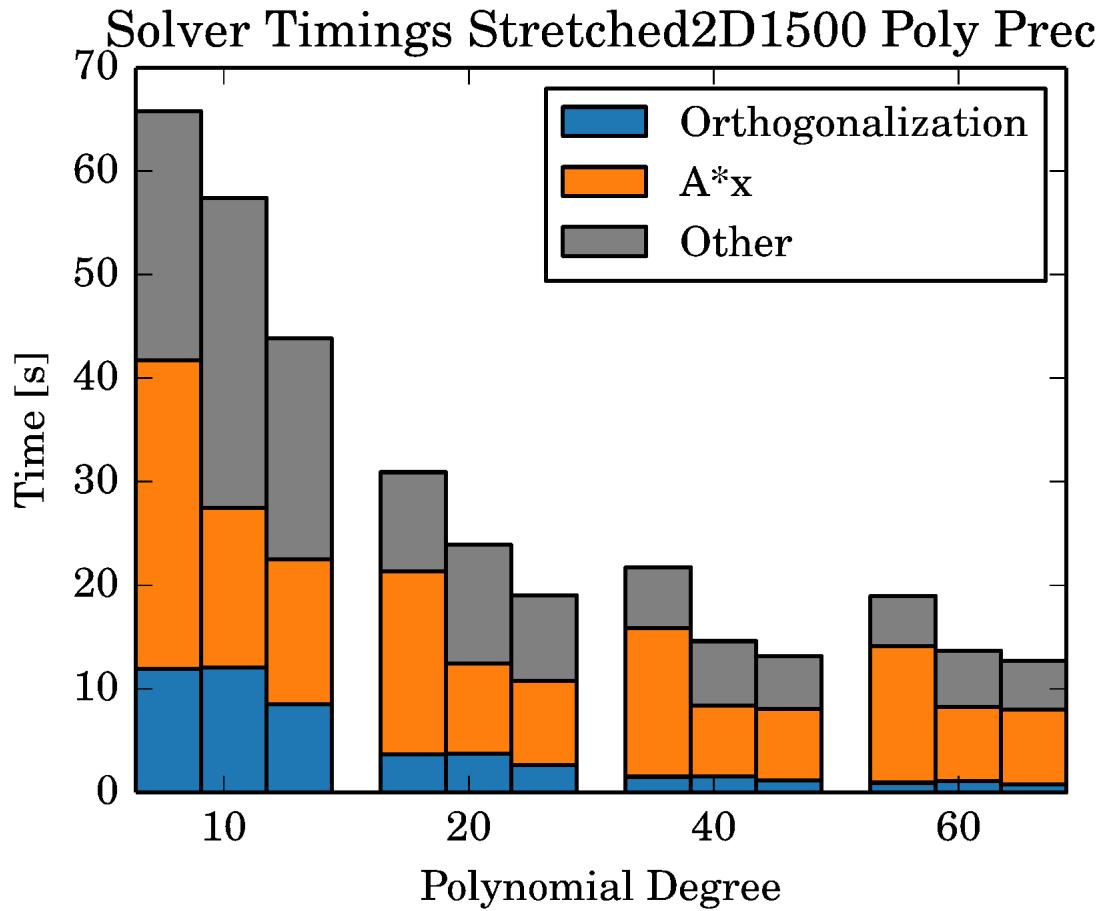
```

- GMRES-IR is the preferred GMRES solver for multi-precision computing. (See Carson, Higham, Anzt, Linquist and many others.)
- Our experiments showed 2.5x speedup in SpMV kernel from double to single precision.
- Speedup for  $A^*x$  comes from better use of the L2 cache in the GPU- “perfect caching” for vector  $x$  in single precision.
- Opportunity for polynomial preconditioning!



|                      | GMRES double | GMRES IR     | Speedup      |
|----------------------|--------------|--------------|--------------|
| <b>Total time:</b>   | <b>50.26</b> | <b>38.03</b> | <b>1.322</b> |
| Ortho: GEMV Trans    | 20.20        | 15.78        | 1.280        |
| Ortho: GEMV No Trans | 19.01        | 12.10        | 1.571        |
| Ortho (norm)         | 1.71         | 1.49         | 1.152        |
| $A^*x$               | 7.33         | 2.95         | 2.484        |

# Polynomial Preconditioning in multiple precisions:



## Test Problem:

- 2D Laplacian, Stretched Grid
- $n = 2.25$  million
- GMRES(50) to stopping tolerance of  $10^{-10}$

## Three solves compared:

1. GMRES double w/ double precision polynomial. (left)
2. GMRES double w/ single precision polynomial. (middle)
3. GMRES-IR (GMRES with Iterative Refinement) w/ single precision polynomial. (right)

- (Solve times do not include preconditioner creation.)

## Takeaways:

- Single precision preconditioning improves solve time up to 30% over double precision preconditioning.
- Polynomial preconditioning shifts main expense to SpMV rather than dense orthogonalization kernels.

# Future Questions to Answer:



- **BIG Question: Can polynomial preconditioning scale to large problems on multiple GPUs?**
- How does polynomial preconditioning perform in true weak and strong scaling experiments?
- Does reducing orthogonalization in favor of more SpMVs really pay off on an HPC machine like Summit?
- How does polynomial preconditioning compare to other preconditioners (e.g. Jacobi, ILU, AMG) at large-scale?
- Can we create high enough degree polynomials for life-size physics problems? Is it best to divide problem into subdomains and/or combine with other preconditioners?

Thanks to Christian Glusa, Ichi Yamazaki, and Siva Rajamanickam for their help in this work!

# More Polynomial Preconditioning Answers coming up Friday!



- How to make the GMRES polynomial stable by adding extra roots?
- How to give your preconditioner a new speedup: Compose it with a polynomial!
- Ritz values, eigenvectors, and the Arnoldi iteration: Polynomial preconditioning is for eigenvalue problems, too!

All this and more!

**Friday 11:00am CST**

**MS 80 – Recent Advances in Polynomial Preconditioning for Linear Algebra Problems**

Thanks to co-authors Ron Morgan and Mark Embree for their help in work leading up to this project.