
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Polynomial Preconditioned
GMRES for GPU Computing

Jenni fer Loe and Er ik Boman
wi th S iva Rajamanickam, Chr is t ian Glusa, and Ich i
Yamazaki

1

SAND2021-6164C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Why do we care about GPU computing?

 Parallel computing terms:
 CPU- Heavyweight cores, just a few
 GPU- Very weak cores, many of them

 Supercomputer Summit has 4608
compute nodes, each with 6 NVIDIA
V100 GPUs. Not using GPUs -> not
using 97% of Summit’s compute
power!

 Future exascale computers (Aurora,
Frontier, El Capitan) will also be built
relying upon GPUs.

 BIG Question: Can
polynomial preconditioning
scale to large problems on
multiple GPUs?

2

https://www.olcf.ornl.gov/summit/

So how does polynomial preconditioning perform on
Summit?

 ???
3

 Tests are just beginning!
 TODAY: Preliminary
results; Algorithmic

scaling.

What is polynomial preconditioning?4

Why use polynomial preconditioning?
Why does it have potential for High-Performance

Computing?
 Works for general non-symmetric matrices.

 Can compute p(A) for entire matrix A; no need to divide
A into subproblems.

 Matrix-free implementation.

 Stable at high degrees via added roots. (See Friday’s
talks!)

 Can be used to accelerate standard preconditioning.

 Use more SpMVs (local communication) rather than
dot products from orthogonalization (global
communication).

 Can reduce solve time, iteration count, and SpMVs:
 Example: Matrix ML_Geer from Janna collection:

nonsymmetric poroelastic structure problem, n=1.5 million
 Using GMRES(100) run to tolerance of 10-8.
 Run with 32 MPI processes on 1 node. (No GPU here.)

5

Polynomial
Degree Iterations SpMVs Solve Time

20 12897 260500 3214

40 1487 61580 731.5

60 472 29570 346.7

80 200 16970 197

Results from ML_Geer:

Linear Solvers in Trilinos:

 Trilinos:
 Large numerical software library
 Open-source: www.github.com/trilinos
 Many contributors; primarily developed at Sandia National Labs
 Packages for: linear solvers, nonlinear solvers, eigensolvers, multigrid preconditioning,

mesh partitioning, factorization-based preconditioning, optimization, time integration,
automatic differentiation, and more!

 Belos: Krylov Linear Solvers package in Trilinos:
 All linear algebra kernels are abstracted through “adapter” interface.
 Uses Epetra, Tpetra, or custom linear algebra kernels

 Kokkos and Kokkos Kernels:
 Portable parallel linear algebra.
 Performant BLAS kernels for GPU (single node).
 Tpetra = Kokkos + MPI

6

http://www.github.com/trilinos

7 Implementation of Polynomial Preconditioning in Trilinos:

Three questions for today’s talk:

1. Algorithmic scaling 1: How can I use polynomial
preconditioning to get a constant number of iterations as I
refine the mesh for my PDE problem?

2. Algorithmic scaling 2: What happens to GMRES
convergence if I fix the polynomial degree and keep refining
the PDE mesh anyway?

3. Multiprecision Applications: What makes polynomial
preconditioning a good candidate for mixed-precision
computing?

8

How to get a constant number of iterations:9

Another example of near-constant iterations: 10

When you fix the polynomial degree:11

Multi-precision GMRES:

 GMRES-IR is the preferred GMRES solver for
multi-precision computing. (See Carson, Higham,
Anzt, Linquist and many others.)

 Our experiments showed 2.5x speedup in SpMV
kernel from double to single precision.

 Speedup for A*x comes from better use of the L2
cache in the GPU- “perfect caching” for vector x in
single precision.

 Opportunity for polynomial preconditioning!

12

GMRES double GMRES IR Speedup

Total time: 50.26 38.03 1.322

Ortho: GEMV Trans 20.20 15.78 1.280
Ortho: GEMV No
Trans 19.01 12.10 1.571

Ortho (norm) 1.71 1.49 1.152

A*x 7.33 2.95 2.484

Polynomial Preconditioning in multiple precisions:13

Takeaways:
• Single precision preconditioning improves solve time

up to 30% over double precision preconditioning.
• Polynomial preconditioning shifts main expense to

SpMV rather than dense orthogonalization kernels.

Test Problem:
• 2D Laplacian, Stretched Grid
• n = 2.25 million
• GMRES(50) to stopping tolerance of 10-10

Three solves compared:
1. GMRES double w/ double precision polynomial.

(left)
2. GMRES double w/ single precision polynomial.

(middle)
3. GMRES-IR (GMRES with Iterative Refinement)

w/ single precision polynomial. (right)
• (Solve times do not include preconditioner creation.)

Future Questions to Answer:

 BIG Question: Can polynomial preconditioning scale to large problems on
multiple GPUs?
 How does polynomial preconditioning perform in true weak and strong scaling
experiments?
 Does reducing orthogonalization in favor of more SpMVs really pay off on an HPC
machine like Summit?
 How does polynomial preconditioning compare to other preconditioners (e.g. Jacobi,
ILU, AMG) at large-scale?
 Can we create high enough degree polynomials for life-size physics problems? Is it best
to divide problem into subdomains and/or combine with other preconditioners?

Thanks to Christian Glusa, Ichi Yamazaki, and Siva Rajamanickam for their help in this
work!

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

14

 More Polynomial Preconditioning Answers coming up
Friday!
 How to make the GMRES polynomial stable by adding extra roots?

 How to give your preconditioner a new speedup: Compose it with a polynomial!

 Ritz values, eigenvectors, and the Arnoldi iteration: Polynomial preconditioning is for
eigenvalue problems, too!

All this and more!

 Friday 11:00am CST
 MS 80 – Recent Advances in Polynomial Preconditioning for Linear Algebra Problems

 Thanks to co-authors Ron Morgan and Mark Embree for their help in work leading up to
this project.

15

