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Abstract—This paper presents a chance constrained stochastic
conic program model for networked microgrids planning. Under
a two-stage optimization framework, we integrate a multi-site
microgrids investment problem and two sets of operational
problems that correspond to the grid-connected and islanding
modes, respectively. To handle the uncertain nature of renewable
energy generation and load variation, as well as the contingent
islanding caused by external disruptions, stochastic scenarios are
employed to capture randomness and a joint chance constraint is
introduced to control the operational risks. A second-order conic
program (SOCP) formulation is also utilized to accurately de-
scribe the AC optimal power flow (OPF) in operational problems.
As the resulting mixed integer SOCP model is computationally
difficult, we customize the bilinear Benders decomposition with
non-trivial enhancement techniques to deal with practical in-
stances. Numerical results on 5- and 69-bus networked microgrids
demonstrate the effectiveness of the proposed planning model and
the superior performance of our solution algorithm.

Index Terms—Networked microgrids, multi-site resource plan-
ning, chance constrained stochastic program, second-order conic
program, bilinear Benders decomposition.

I. INTRODUCTION

THE growing proliferation of microgrids motivates their

interconnection to make a more reliable, secure, and

resilient network near the customer-side [1]–[3]. Networking

a few neighboring microgrids enables them to share the

generation, storage, and reserve resources, which prompts

the whole community to operate in a more economical and

efficient way. Also, each individual microgrid can benefit from

the reliability improvement due to the backup of others, which

ensures the power-supply continuity in case of emergency

events, e.g., utility contingencies or natural disasters [4], [5].

To achieve the full strength of the aforementioned advantages,

we believe that a networked microgrids system needs to be

properly configured and analytically studied.

As mentioned in [6]–[8], the ownership of microgrids could

belong to the utility (e.g., grid operator and government), local

community, electricity retailers, end consumers, or a hybrid of

above. According to the ownership, the microgrids planning
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can be implemented in a centralized or decentralized way.

In this study, we consider that the microgrids are owned

by a sole stakeholder (e.g., the utility) and planned in a

centralized manner. We note that the centralized planning

situation exists in many practical systems, e.g., some utility

microgrids with a single owner in U.S. [1], [9], Europe [10],

and China [11]. Under a centralized environment, the main

task of networked microgrids planning (NMP) is to optimize

the siting and sizing of multiple interconnected microgrids in a

distribution network, aiming to maximize the total investment

and operational benefits with guaranteed system performances,

e.g., reliability, flexibility, and efficiency.

Comparing to the single microgrid planning, which has been

heavily studied in literatures [12]–[14], the planning issues of

networked microgrids are much more complicated. Essentially,

the planning problems of networked microgrids, which fall

into a multi-site resource planning category, must follow the

system-wide power balance principle by including complex

power flow representations. Also, it should consider relevant

reactive power, voltage, and congestion issues. As a result, the

NMP is actually a non-linear combinatorial optimization prob-

lem, which could be very challenging for a practical network.

But for the single-site system, the network complications can

be ignored and the resulting planning formulation is drastically

simpler. Another critical issue for NMP is to manage the multi-

source uncertainties associated with the internal dynamics

and the external circumstances of microgrids. On one hand,

the intermittency of renewable energy generation as well as

the inaccuracy of load forecast within microgrids bring non-

trivial uncertainties into the planning data [14]. On the other

hand, the uncertainties of external disruptions, e.g., the forced

or scheduled maintenance of upstream grid, may drive the

entire networked system to transit from normal grid-connected

mode to islanded operation mode [15]. Since the needs for

islanding (a salient feature of microgrids) could lead to costly

investment, it is necessary to make a trade-off between the

cost-effectiveness and risk-immunity in planning decisions.

With the aforementioned challenges, it demands for strong

tools to analytically consider the impact of network issues and

multi-source uncertainties in NMP problems, which, however,

have not yet been fully addressed in the current literatures.

Many of the existing studies, e.g., [16]–[23], have concerned

the internal uncertainties, e.g., intermittent generation and

variable load. Ref [16] proposed a probabilistic minimal-cut

based approach for the interconnection planning of multiple

microgrids considering the stochastic output of distributed

energy resources (DERs). Ref [17] studied the meteorological

data analysis of renewable energy generation to support the
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cooperative planning of interconnected microgrids. Ref [18]

presented a two-stage stochastic program (SP) model to co-

optimize the investment plans of microgrids, generators, and

transmission lines under uncertain contingencies and load

growth. Ref [19], [20] adopted the heuristic-based SP methods

to handle the randomness of DERs’ output and load in

NMP problems. Ref [21]–[23] developed the bi-level program

frameworks to decide the sectioning and configuration scheme

of microgrids in a distribution network, while the uncer-

tainties were captured by scenario-based methods and robust

optimization respectively. Nevertheless, the uncertainties of

external disruptions, which may cause microgrids islanding

and further challenge the system performance, were often

neglected in the existing literatures [12], [24]. Moreover,

due to the non-linearity and non-convexity introduced by

network representations (e.g., AC power flow equations), many

of the current NMP formulations can only be solved by

heuristic approaches [19]–[23], which, however, generally do

not guarantee the global optimality of their solutions. The

aforementioned research gaps motivate our exploration on

more realistic modeling and analytical computation tools for

the configuration planning of networked microgrids.

In this paper, we capture the sequential and interdependent

microgrids’ investment and operation decisions using a two-

stage framework, and thus formulate the NMP as a two-stage

chance constrained stochastic conic program. Our formulation

incorporates the multi-site investment scheme at the first-

stage and the dual-mode (i.e., grid-connected and islanding

modes) operational models at the second-stage. Based on

two sets of operational problems, we combine the SP and

chance constrained program (CCP) to address the multi-source

uncertainties: 1) the SP is applied to manage the internal

generation and load uncertainties under grid-connected mode;

and 2) the CCP is included to ensure the feasibility of islanded

operation subject to external uncertainties, which provides a

trade-off scheme to balance the cost-benefit and the immunity

against operational risks. Also, the actual operation of multi-

microgrid network is captured by the non-linear branch flow

model [25]. We mention that this power flow model actually

can be convexified into a computationally friendly SOCP,

which ensures its solution’s global optimality with respect to

our original planning formulation under mild conditions [26]–

[28]. Moreover, to handle the challenging mixed-integer SOCP

formulation of the proposed planning problem, we customize

the bilinear Benders decomposition method [14], [29] with

strong duality and make non-trivial enhancements through the

techniques of Jensen’s inequalities and Pareto-optimal cuts,

which yields a strong computational capacity.

Comparing to the current literatures, our main contributions

can be summarized as:

1) A holistic NMP model is presented to consider the multi-

site microgrids investment and dual-mode network operations.

2) An integrated chance constrained stochastic framework is

proposed to manage the multi-source uncertainties associated

with different operational modes of networked microgrids.

3) An exact and efficient decomposition algorithm is devel-

oped to analytically solve the proposed mixed-integer SOCP

formulation.

Fig. 1. Conceptual Structure of Networked Microgrids

The remainder of this paper is organized as below. Section

2 formulates the chance constrained stochastic NMP model.

Section 3 presents details of the enhanced bilinear Benders de-

composition method. Section 4 shows the results of numerical

tests. Finally, conclusions are drawn in Section 5.

II. PROBLEM FORMULATION

The conceptual architecture of networked microgrids is

shown in Fig. 1. The multi-microgrid distribution network

is assumed to hold a radial topology with buses indexed by

j ∈ Ω and branches indexed by (i, j) ∈ E. The substation bus

is indexed by j = 0. The buses with microgrids integration

(via the points of common coupling (PCC)) are indexed by

j ∈ M , and the other buses are indexed by j ∈ Ω/M . The

(unique) sending end and the receiving ends of bus j are

indexed by i and h ∈ Θ(j). Also, we regard each individual

microgrid as a single-bus system even though it could have

inner network structure at a lower voltage class. Note that these

inner structures can be considered through extended network

modeling, but are not in the scope of this study.

Under these preliminaries, we formulate a two-stage chance

constrained stochastic NMP model. The centralized investment

decisions are made at the first stage to deploy the microgrids

on regional network as well as to decide the sizing plan of

DERs for each microgrid. Then, two sets of operational SOCPs

are included at the second stage to coordinately dispatch

the networked microgrids under grid-connected and islanding

modes, respectively. Without loss of generality, the candidate

DERs refer to renewable energy sources (RES), dispatchable

fuel generators (DFG), and energy storage devices (ES) [14].

A. 1st-Stage Problem: Investment Decisions

The first-stage problem is to minimize the annualized cost

of microgrids investment before the realization of uncertain

factors, which can be written as:

min
∑

j∈Ω

∑

k∈{res,dfg}

φkICkp̄kXk,j

+
∑

j∈Ω

∑

k∈es

φk(ECkēk + PCkp̄k)Xk,j (1)

φk =
R(1 +R)Lk

(1 +R)Lk − 1
, ∀k ∈ {res, dfg, es} (2)

s.t. zjXk,j ≤ Xk,j ≤ zjXk,j , ∀k ∈ {res, dfg, es}, ∀j ∈ Ω(3)
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∑

j∈Ω

zj ≤ Nmg (4)

Xk,j ∈ Z+, zj ∈ {0, 1}, ∀k ∈ {res, dfg, es}, ∀j ∈ Ω (5)

As shown in (1), the annualized investment cost is evaluated

by multiplying the capital cost of candidate DERs with their

capital recovery factors (φk), as defined in (2). Also, the ca-

pacities of candidate DERs are constrained by (3) to reflect the

limitations due to geographical, financial, and environmental

conditions, and the cardinality constraint in (4) introduces an

upper bound (Nmg) on the total number of microgrid sites.

Remark 1. Note that the optimal microgrids siting is actually

a complicated combinatorial problem [19], [30], [31]. For the

sake of illustration, a conceptual siting model is adopted as in

(1)-(5) with several of the practical factors, e.g., financial and

geographical issues. Moreover, our siting model can be easily

extended by incorporating other practical considerations (e.g.,

by adding linear or conic constraints) as well as the preference

of system planners (e.g., by fixing part of the siting variables).

B. 2nd-Stage Operational Problem in Grid-Connected Mode

The first set of operational problem is to perform the coor-

dinated scheduling of networked microgrids given a finite set

of stochastic scenarios S = {ξs|s = 1, 2, . . . , Ns}, which are

defined under typical days D(s) to capture the uncertainties of

RES generation (i.e., δtk(ξs)) and load variation (i.e., ptl,j(ξs)
and qtl,j(ξs)). Each scenario follows a probability πs. The grid-

connected scheduling problem (GSP) under scenario s ∈ S can

be written as:

min Cs
om + Cs

pt + Cs
loss + Cs

lc (6)

Cs
om = ~

∑

t∈D(s)

∑

j∈M

∑

k∈{res,dfg,es}

OCkp̄kXk,j∆t

+~

∑

t∈D(s)

∑

j∈M

∑

k∈dfg

FCkp
s,t
k,j∆t (7)

Cs
pt = ~

∑

t∈D(s)

∑

j∈M

ρtps,tg,j∆t (8)

Cs
loss = ~

∑

t∈D(s)

∑

(i,j)∈E

ϑrijℓ
s,t
ij ∆t (9)

Cs
lc = ~

∑

t∈D(s)

∑

j∈Ω

(ςpp
s,t
lc,j + ςqq

s,t
lc,j)∆t (10)

s.t.
∑

k∈{res,dfg}

ps,tk,j +
∑

k∈es

(ds,tk,j − c
s,t
k,j) + ps,tg,j = ptl,j(ξs)− p

s,t
lc,j ,

∀j ∈M, ∀t (11)
∑

k∈res

qs,tk,j + qc,j + qs,tg,j = qtl,j(ξs)− q
s,t
lc,j , ∀j ∈M, ∀t (12)

0 ≤ ps,tk,j ≤ δ
t
k(ξs)p̄kXk,j , ∀k ∈ res, ∀j ∈M, ∀t (13)

|qs,tk,j | ≤
√

s̄2k − p̄
2
kXk,j , ∀k ∈ res, ∀j ∈M, ∀t (14)

p
k
Xk,j ≤ p

s,t
k,j ≤ p̄kXk,j , ∀k ∈ dfg, ∀j ∈M, ∀t (15)

0 ≤ ds,tk,j ≤ p̄kXk,j , ∀k ∈ es, ∀j ∈M, ∀t (16)

0 ≤ cs,tk,j ≤ p̄kXk,j , ∀k ∈ es, ∀j ∈M, ∀t (17)

es,t+1
k,j = es,tk,j + ηkc

s,t
k,j − d

s,t
k,j/ηk, ∀k ∈ es, ∀j ∈M, ∀t (18)

ekXk,j ≤ e
s,t
k,j ≤ ēkXk,j , ∀k ∈ es, ∀j ∈M, ∀t (19)

∑

t∈D(s)

(ηkc
s,t
k,j − d

s,t
k,j/ηk) = 0, ∀k ∈ es, ∀j ∈M (20)

P s,t
ij − rijℓ

s,t
ij −

∑

h∈Θ(j)

P s,t
jh =

{

ps,tg,j , ∀j ∈M, ∀t

ps,tl,j − p
s,t
lc,j , ∀j ∈ Ω/M, ∀t

(21)

Qs,t
ij − xijℓ

s,t
ij −

∑

h∈Θ(j)

Qs,t
jh =

{

qs,tg,j , ∀j ∈M, ∀t

qs,tl,j − q
s,t
lc,j , ∀j ∈ Ω/M, ∀t

(22)

vs,ti − v
s,t
j = 2(rijP

s,t
ij + xijQ

s,t
ij )− (r2ij + x2ij)ℓ

s,t
ij ,

∀(i, j) ∈ E, ∀t (23)

ℓs,tij v
s,t
i = (P s,t

ij )2 + (Qs,t
ij )

2, ∀(i, j) ∈ E, ∀t (24)

U2
j ≤ v

s,t
j ≤ U

2

j , ∀j ∈ Ω, ∀t (25)

0 ≤ ℓs,tij ≤ I
2

ij , ∀(i, j) ∈ E, ∀t (26)

−P sub ≤ p
s,t
0 =

∑

k∈Θ(0)

P s,t
0k ≤ P sub, ∀t (27)

−Qsub ≤ q
s,t
0 =

∑

k∈Θ(0)

Qs,t
0k ≤ Qsub, ∀t (28)

The second-stage objective (6) contains the operation and

maintenance (O&M) cost (Cs
om), power transaction cost (Cs

pt),

network loss cost (Cs
loss), and load reduction cost (Cs

lc), which

are evaluated through (7)-(10) respectively. In (7), the fixed

O&M cost is proportional to DERs installation, while its

varying part refers to the fuel cost of DFGs. Eq. (8) calculates

the total cost incurred by the power transactions between

the microgrids cluster (as a whole) and the main grid [32],

[33]. The network loss and load curtailment are penalized by

specific cost factors as in (9) and (10). All these cost terms

are evaluated on a daily basis and then scaled to derive yearly

values by a factor ~.

Eqs. (11)-(20) represent the operational constraints of each

individual microgrid. Constraints (11)-(12) ensure the active

and reactive power balance within each microgrid. The micro-

grids are supplied by both the DERs and the external network.

The power transactions through the PCCs could be positive

(power procurement status) or negative (power selling status).

Note also that the reactive power can be supplied by existing

shunt capacitors as well as the power electronic interface (e.g.,

converter) equipped with RES [34]. Additionally, the upper

restrictions on load reduction variables ps,tlc,j and qtlc,j can

be relaxed since they are heavily penalized in the objective

function. In (13), the active power output of RES is calculated

as the product of its installed capacity and time-varying factor

δtk(ξs), which mainly depends on weather conditions (e.g.,

solar irradiation and ambient temperature). The reactive power

served by the converters of RES is constrained by (14). The

generation constraint of DFGs is given in (15). The power and

energy states of ES are constrained by (16)-(20). Note that in

(20), the energy state of ES is kept as its initial value after a

daily charge-discharge cycle.

Eqs. (21)-(28) denote the operational constraints of multi-

microgrid network (as shown in Fig. 1). A nonlinear branch

flow model is defined by (21)-(24). With a recoverable angle

relaxation [28], we only need to deal with the magnitude rep-
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resentations of these power flow equations. The square of mag-

nitudes of nodal voltage and branch current are constrained by

(25) and (26). The exchanged active/reactive power between

networked microgrids and up-stream grid are constrained by

(27) and (28), respectively. Besides, the reference voltage level

at substation bus is specified as U0.

Remark 2. Since (21)-(24) introduce the non-convexity to

our mixed integer nonlinear planning formulation, its global

optimality cannot be guaranteed. To convexify (21)-(24), we

relax the equalities in (24) to derive a set of rotated second-

order conic constraints:

(P s,t
ij )2 + (Qs,t

ij )
2 ≤ ℓs,tij v

s,t
i , ∀(i, j) ∈ E, ∀t, ∀s (29)

As a result, we obtain a convex and computationally friendly

SOCP relaxation, which includes (6)-(23), (25)-(28) and (29)

(denoted by GSP-r), to the original GSP. Moreover, through

the sufficient conditions presented in [28], [35], this SOCP

relaxation is exact and its convexity guarantees a global

optimal solution to the original GSP.

C. 2nd-Stage Operational Problem in Islanding Mode

The second set of operational problem is to guarantee the

feasibility of islanding under external disruptions. The capacity

sufficiency for islanded operation is validated based on a finite

set of scenarios I = {ωn|n = 1, 2, . . . , NI}, which are defined

under τ -hour islanding periods [15]. Each islanding scenario

n occurs with a probability πn. According to IEEE Standard

1547.4 [36], the major concern for microgrids islanding is

to maintain the reliability and operational security. As the

economic target is less critical for the islanded operation, we

only require that the operational cost (Λn), which includes

the O&M cost, network loss cost, and load reduction cost,

is no larger than an expected value by imposing the cost-

bound constraints. Note that the power transaction cost, which

originates from the exchanged power with main grid, is

excluded when computing Λn. Hence, the islanding validation

problem (IVP-r) under scenario n ∈ I can be written as:

Λn = Cn
om + Cn

loss + Cn
lc ≤ Λ̄ (30)

Ξn,t{(11)− (23), (25)− (26), (29)}, ∀t ∈ τ(n) (31)

pn,t0 = 0, qn,t0 = 0, ∀t ∈ τ(n) (32)

where the cost-bound constraint is given in (30). In (31), the

operational constraints in GSP-r are re-defined in constraints

set Ξn,t under each islanding scenario. Besides, the boundary

conditions for islanded operation are clarified in (32)

Since the load reduction is penalized in Λn, the variables

that slack constraints set Ξn,t are actually restricted by our

cost-bound constraints. In this regard, the cost-bound require-

ments in (30) could become too restrictive for some very

adversarial scenarios (i.e., with high risks of load reduction).

The full consideration of cost-bound may force the planners

to generate and implement a highly capacitated and costly

planning scheme. To achieve a trade-off between the cost-

benefit and the immunity against islanding risks, we impose

a chance constraint on (30) so that it is allowed to be relaxed

with a pre-defined small probability. Note also that the chance

constraint of (30) involves multi-variate integration, which

makes it very difficult to be represented by a closed-form

expression. Hence, we follow the strategies in [29] to express

the chance constraints by a scenario-based bilinear formulation

as below.

Λn(1− un) ≤ Λ̄, ∀n ∈ I (33)
∑

n∈I

πnun ≤ ε (34)

Remark 3. Constraints (33)-(34) ensure that the cost-bound

constraint is satisfied with a probability greater than or equal

to 1− ε, where ε is the risk tolerance level. Note that binary

variable un is utilized to indicate that the full requirements of

islanding scenario n is imposed or not. Clearly, when un = 0,

the cost-bound constraint under islanding scenario n must be

satisfied, and when un = 1, otherwise. The total probability

of islanding scenarios that can be partially deactivated is

restricted by the joint chance constraint (34).

Actually, the chance constraints (33)-(34) can be equiva-

lently interpreted as value-at-risk (VaR) constraints [37], [38],

which perform as the risk measure. Hence, by adjusting the

parameter ε, the chance constraints can be applied to quanti-

tatively control the operational risks of microgrids islanding.

D. Full Formulation of Networked Microgrids Planning

Combining (1)-(5) with (6)-(23), (25)-(29) and (31)-(34),

we obtain the full formulation of two-stage chance constrained

stochastic NMP model. For convenience, its compact matrix

form is given as below.

ζ = min cTx+
∑

s∈S

πsd
T ys (35)

s.t. Ax ≤ b (36)

Fys = fs, ∀s ∈ S (37)

Wsx+Rys ≥ v, ∀s ∈ S (38)

‖Gmys‖2 ≤ g
T
mys, ∀s ∈ S, ∀m ∈ Ls (39)

L0ys ≥ l0, ∀s ∈ S (40)

x ∈ Z+, ys ∈ R, ∀s ∈ S (41)

qT yn(1− un) ≤ Λ̄, ∀n ∈ I (42)

Hyn = hn, ∀n ∈ I (43)

Vnx+Kyn ≥ w, ∀n ∈ I (44)

‖Bmyn‖2 ≤ r
T
myn, ∀n ∈ I, ∀m ∈ Ln (45)

∑

n∈I

πnun ≤ ε, ∀n ∈ I (46)

yn ∈ R, un ∈ {0, 1}, ∀n ∈ I (47)

The objective function is abstracted in (35). The vector x
represent the first-stage variables, while ys and yn denote the

second-stage variables defined under stochastic and islanding

scenarios. The investment decisions are constrained by (36),

corresponding to constraints (3)-(4). Constraints (37)-(38) de-

note the linear equalities and inequalities in GSP-r, i.e., (11)-

(23), (25), (26). Constraint (39) stands for the conic constraints

in (29), where m is the index of such constraints. Constraint

(40) represents constraints (27)-(28), which are only for grid-

connected operation. Constraints (42) and (46) denote the joint
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chance constraints in IVP-r, i.e., (33) and (34). Constraints

(43)-(45) correspond to the rest constraints in IVP-r.

III. ENHANCED BILINEAR BENDERS DECOMPOSITION

METHOD FOR STOCHASTIC MIXED INTEGER SOCP

We observe that the chance constrained stochastic mixed

integer SOCP in (35)-(47) is a large-scale non-convex formu-

lation, which is very challenging for professional solvers. To

address such computational challenges, we follow the strategy

in [14], [29] to develop and customize a decomposition

method, i.e., the bilinear Benders decomposition method, that

can significantly improve our solution capacity. Also, two

enhancement techniques are adopted for better performance.

The framework of classical Benders decomposition for

stochastic linear programming (LP) involves a master problem

and a set of subproblems. The latter one is actually the dual

of the second-stage problem in every scenario. Note that,

different from LP, it is not always the case that an SOCP

formulation has the strong duality, which actually could be the

case for the popular AC OPF SOCP formulation (as revealed

by the numerical study in [39]). Note that if the strong conic

duality fails, there is no guarantee that Benders decomposition

for mixed-integer SOCP leads to exact solutions. However, to

the best of our knowledge, although conic dual problem has

been utilized for algorithm development (e.g., [40]–[42]), this

issue was rarely mentioned in any publication. Based on an

analytical study in [39], our second-stage AC OPF problems

are observed to fit a sufficient condition that guarantees the

strong duality of SOCP formulation, which thus ensures the

exactness of our bilinear Benders reformulation.

1) Feasibility-Check Subproblem: We first define a sub-

problem (SP∗) to check the feasibility of first-stage solution

(denoted by x̂) with respect to the chance constraints (42) and

(46) under islanding scenarios. SP∗ is formulated as below.

SP∗ : ∆f = min
∑

n∈I

tn (48)

s.t. tn ≥ Υ̂n(1− un)− Λ̄, ∀n ∈ I (49)
∑

n∈I

πnun ≤ ε (50)

tn ≥ 0, un ∈ {0, 1}, ∀n ∈ I (51)

where Υn is to denote the operational cost from the islanding

scenario n, which can be attained by computing the cost-

minimization counterpart of IVP-r as in the following.

Υ̂n = min
yn

{qT yn : (43)− (47)}, ∀n ∈ I (52)

Remark 4. As mentioned in [14] that if ∆f = 0, we can

conclude that the current x̂ is a feasible solution towards

constraints (42) and (46). Otherwise, a different first stage

investment plan should be generated in the next iteration.

2) Optimality Subproblems: Next, two types of optimality

subproblems are defined based on our operational SOCP

problems. The first type SP
s
A, which corresponds to the GSP-

r under each scenario s ∈ S, is to minimize the recourse cost

dT ys subject to constraints (37)-(40) for a given x̂. The dual

form of SPs
A is given as follows.

SP
s
A : Φ̃s = max µT

s fs + λTs (v −Wsx̂) + θTs l0 (53)

s.t. FTµs +RTλs + LT
0 θs +

∑

m∈Ls

(GT
mγ

m
s + σm

s gm) = d

(54)

‖γms ‖2 ≤ σ
m
s , ∀m ∈ Ls (55)

µs, γ
m
s ∈ R, λs, θs, σ

m
s ∈ R+, ∀m ∈ Ls (56)

where µs, λs, θs are the dual variables of constraints (37),

(38) and (40), while γms , σ
m
s are the dual variables of conic

constraints for all m ∈ Ls in (39) . Φs is the operational cost

from the stochastic scenario s. Note that GSP-r is bounded and

also feasible since (37)-(40) can be slacked by load reduction

variables. The dual solution of SPs
A provides a set of Benders

optimality cuts OCs
A as in (63).

Another type of optimality subproblem is needed to ensure

the feasibility of (42)-(46) under each islanding scenario

n ∈ I . Following an idea presented in [14] to deal with such

constraint, we consider the left-hand-side of (42) and make

use of its associated optimality cuts to achieve the feasibility.

The second type of optimality subproblem (SPn
B) is defined

as following, which is in the dual form of (52):

SP
n
B : Υ̃n = max χT

nhn + ψT
n (w − Vnx̂) (57)

s.t. HTχn +KTψn +
∑

m∈Ln

(BT
mν

m
n + κmn rm) = q (58)

‖νmn ‖2 ≤ κ
m
n , ∀m ∈ Ln (59)

χn, ν
m
n ∈ R, ψn, κ

m
n ∈ R+, ∀m ∈ Ln (60)

Similarly, the dual solution of SP
n
B (i.e., χn, ψn, ν

m
n , κ

m
n )

yields another set of optimality cuts OCn
B as in (65).

Remark 5. Note that the primal forms of SP
s
A and SP

n
B,

i.e., (37)-(40) and (52), can be equivalently expressed as

the OPF-SOCP in [39]. Then, due to the inclusion of load

reduction variables (with relaxed upper bounds), the condition

C1-(d) in [39] holds for SP
s
A and SP

n
B, which thus ensures

the strong duality of our SOCP subproblems.

3) Investment Master Problem: Combining (35), (36), (42),

and (46) with the Benders optimality cuts OCs
A in (63) and

OCn
B in (65), the master problem (MP) (in j-th iteration) of

our networked microgrids planning model can be defined as:

MP : O = min cTx+
∑

s∈S

πsΦs (61)

s.t. Ax ≤ b (62)

Φs ≥ Φ̃s,i − λ̂
T
s,iWs(x− x̂), ∀s ∈ S, i = 1, . . . , j − 1(63)

Υn(1− un) ≤ Λ̄, ∀n ∈ I (64)

Υn ≥ Υ̃n,i − ψ̂
T
n,iVn(x− x̂), ∀n ∈ I, i = 1, . . . , j − 1 (65)

∑

n∈I

πnun ≤ ε (66)

x ∈ Z+, Φs ∈ R, ∀s ∈ S (67)

Υn ∈ R+, un ∈ {0, 1}, ∀n ∈ I (68)

where j is the counter of current iteration.
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Remark 6. (i) Note that the bilinear structure in (64)-(66)

corresponds to the chance constrained formulation (42)-(46).

When un = 1, (64) is always satisfied, which means that the

corresponding OCn
B in (65) is deactivated. Otherwise, OCn

B

is enforced in MP.

(ii) The bilinear inequalities in (64) can be easily linearized

through McCormick linearization method [29]. Consequently,

MP is converted into a mixed-integer linear program (MILP).

Actually, (64)-(65) are strengthened bilinear Benders cuts

developed in [14], which renders MP readily computable for

state-of-the-art MILP solvers. Then, the linearized MP can

be strengthened by adding two sets of cuts OCs
A and OCn

B

iteratively until the optimality condition is satisfied.

Following the decomposition scheme in (53)-(68), the de-

tailed procedures of customized bilinear Benders decomposi-

tion method are outlined as below:

− Step 1. Set LB = −∞, UB = +∞, j = 0, OCs,j
A =

OCn,j
B = ∅; Set the gap threshold e;

− Step 2. Compute the master problem MPj ;

• If MPj is infeasible, terminate the algorithm and report

the infeasibility of the original problem;

• Otherwise, derive an optimal solution (x̂, û) and objec-

tive value Ôj , then update LB = Ôj and j = j + 1;

− Step 3. For x̂, compute SP
s
A for every s ∈ S; Get the

dual solutions and generate the cuts OCs,j
A ;

− Step 4. For x̂, compute SP
n
B for every n ∈ I; Get the

dual solutions and generate the cuts OCn,j
B ;

− Step 5. Compute SP∗ to get the feasibility gap ∆f ; If

∆f = 0, evaluate the primal objective value ζ̂ in (35) and

update UB = min{UB, ζ̂};
− Step 6. Get the optimality gap ∆o = |(UB−LB)/LB|;
• If ∆o ≤ e, converge to current x̂, then go to Step 7;

• Otherwise, MPj ← MPj−1

Ns
⋃

s=1
OCs,j

A

NI
⋃

n=1
OCn,j

B ,

then go to Step 2;

− Step 7. Report the optimal solution x̂.

� Enhancement Techniques: We note that those two different

sets of subproblems (subject to stochastic and islanding sce-

narios), which are of different natures, generate complicated

interactions and incur a large number of Benders iterations in

our computation. Hence, on top of the aforementioned cus-

tomization of bilinear Benders procedure, we have designed

and implemented two enhancement techniques to achieve a

stronger computational performance:

• One is to generate and adopt more useful Benders cuts,

i.e., Pareto-Optimal cuts [43]–[45], from computing the

subproblems with core-point based reformulation. Also,

the core points are updated following the methods in [44]

to further improve the computation efficiency.

• Another one is to strengthen the master problem by

creating and including a virtual scenario through Jensen’s

inequality [29], [46]. Although such inclusion increases

the size and computational complexity of the master

problem, the augmented master problem should be a

tighter relaxation to the original formulation.

TABLE I
MAJOR PARAMETERS OF CANDIDATE DERS

Renewable Energy and Dispatchable Fuel Generators

Label Type

Nom. Min Capital O&M Fuel Life
Cap. Output Cost Cost Cost Time
(kW) (kW) ($/kW) ($/kW/h) ($/kW/h) (yr)

PV Solar Panel 120 0 1800 0 0 15

MT Micro Turbine 60 6 800 0.030 0.153 10

Energy Storage Devices

Label Type

Power Energy Power Energy O&M Effi- Life
Cap. Cap. Cost Cost Cost

ciency
Time

(kW) (kWh) ($/kW) ($/kWh) ($/kW/h) (yr)

BB Battery Bank 100 200 250 200 0.004 0.90 8

Actually, with those two enhancements, as demonstrated in

our numerical study in Section IV, the computational capabil-

ity of proposed bilinear Benders decomposition algorithm is

greatly improved by reducing the necessary Benders iterations

significantly before convergence.

IV. NUMERICAL RESULTS

The proposed two-stage chance constrained stochastic NMP

model and bilinear Benders decomposition algorithm with en-

hancements are first verified on a 5-bus illustrative networked

microgrids system. Then, our method is further tested on a

more complex microgrids structure based on IEEE 69-bus dis-

tribution system to prove its scalability. For demonstration, we

choose photovoltaic (PV) panels, micro turbines, and battery

banks to represent RES, DFG, and ES, respectively. Table I

presents the major parameters of candidate DERs. Table II lists

other essential parameters (partly from the published data of

U.S. Energy Information Administration). The time-varying

patterns of PV generation and load demand are captured by

daily operating curves in 10,000 scenarios. To make a trade-off

between accuracy and computational efficiency, the k-means

clustering method is applied to generate the reduced scenario

sets. All the algorithm development and computations, includ-

ing our bilinear Benders decomposition, are made by CPLEX

in MATLAB environment on a laptop computer with Intel

Core i7-7820HQ 2.90GHZ processer.

A. 5-Bus Test System

The 5-bus networked microgrids system is shown in Fig. 2.

The proposed dual-mode planning model (35)-(47), as denoted

by CC SP, is solved given Λ̄ = $300, 000, ε = 0.10, τ =
8h, (Ns, NI) = (80, 80). To demonstrate the effectiveness of

CC SP, we set up two benchmark cases (i.e., DT and SP) as in

Table III. The optimal solutions and objective values of DT, SP,

and CC SP are presented in Fig. 2-(a), (b), (c), respectively.

We observe that the DT solution invests 3 microgrids at bus 1,

2, 3, which are neighboring to the substation bus. Even though

such siting scheme enables an easy access of microgrids to

gain power-selling revenues, the remote users at bus 4, 5 could

be vulnerable to the prevailing uncertainties. In contrast, the

SP solution moves MG B from bus 2 to bus 5 to improve the
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TABLE II
TECH-ECONOMICAL PARAMETERS FOR PLANNING

Parameter Description Value

R Discount rate 0.04

ϑ Cost Coefficient of Power Loss ($/kWh) 0.05

ςp/ςq Penalty Cost Factors of Load Reduction 20/20

ρt

On-Peak Electricity Price ($/kWh) 0.193

Partial-Peak Electricity Price ($/kWh) 0.138

Off-Peak Electricity Price ($/kWh) 0.083

U0 Reference Voltage of Distribution Network (kV) 10

[U,U ] Allowable Range of Voltage Magnitudes (kV) [9,11]

I Upper Bound of Current Magnitudes (A) 250

P sub Active Power Limit of Substation (MW) 5.00

Qsub Reactive Power Limit of Substation (MVar) 3.10

TABLE III
NOTATIONS OF PLANNING CASES

Notation Definition

DT Deterministic NMP model

SP
Stochastic NMP model

(i.e., (35)-(41) that excludes islanding mode)

CC SP Chance constrained stochastic NMP model (i.e., (35)-(47))

reliability of remote users. Also, the total storage capacity is

added from 3.00MW to 4.40MW to handle the randomness of

PV generation. Compared to the SP solution, CC SP adopts

a similar siting scheme while reinforcing the capacity plan

of DERs to further hedge the external uncertainties. The MT

installation is increased from 0.66MW to 1.08MW, while more

storage units are deployed at the remote buses to ensure the

power supply continuity during islanded operation.

Then, the rationality of CC SP solution is verified through

Monte Carlo simulation (MCS) given different islanding prob-

abilities (ρ). Note that, when ρ=5%, the actual operational

cost of CC SP solution (ε=0.10) is expected to be 277.7k$

(<300.0k$), which is significantly lower than SP (685.1k$)

and DT (1806.0k$). We also notice that the biased evalua-

tion for operational cost in DT solution may lead to overly

optimistic investment in RES units, which renders larger

investment cost (724.1k$) than CC SP (601.7k$). Other per-

formance metrics attained by MCS include expected network

loss (ENL) and loss of power supply probability (LPSP) [47].

Table IV shows detailed results of performance evaluation.

In all instances, the CC SP solution demonstrates higher

reliability and efficiency levels than DT. Particularly, when

ρ=10%, our CC SP can reduce the LPSP and ENL by 72.4%

and 42.4%. Given the same condition, the CC SP solution also

shows obvious advantage over SP, which reduces the LPSP

by 54.6% due to its dual-mode consideration. In Table IV, we

also investigate the impact of risk tolerance level ε on CC SP

solutions. The increase of ε from 0.10 to 0.20 leads to an

increasing LPSP (in most cases) and a falling ENL, along with

the decline of investment cost. Hence, by solving CC SP via a

1
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0.10MVar
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0.20MVar
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0.15MVar
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(a) DT Solution OBJ=$711,801
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(c) CC SP Solution(ε=0.10) OBJ=$821,190

Fig. 2. Planning Solutions: 5-Bus System

TABLE IV
PERFORMANCE EVALUATION OF PLANNING SOLUTIONS: 5-BUS SYSTEM

Solution

Inv. ρ=0 ρ=5% ρ=10%

Cost ENL LPSP ENL LPSP ENL LPSP
(k$) (MW) (MW) (MW)

CC SP

ε=0.10 601.7 276.5 0.34% 273.5 0.44% 271.3 0.97%

ε=0.15 538.9 272.3 0.42% 270.1 0.55% 268.1 1.04%

ε=0.20 529.1 256.0 0.48% 254.1 0.61% 251.7 0.94%

SP 527.0 257.5 0.42% 254.5 0.97% 251.0 1.54%

DT 724.1 510.2 2.45% 495.9 3.01% 470.6 3.51%

varying ε, we can obtain different trade-offs between the cost-

effectiveness and the actual operational performance under

uncertainties. The above observations demonstrate the validity

of proposed planning model, which provides a flexible scheme

to manage the multi-source uncertainties in NMP problem.

Finally, the computational capability of enhanced bilinear

Benders decomposition method (EBD) is tested by comparing

to the basic bilinear Benders decomposition (BD) and the

direct use of CPLEX (CPX). Table V exhibits the test results

under different sizes of scenario sets (Ns, NI ). The objective

values, iteration numbers, solution times (in minutes), termi-

nation gaps are recorded in columns “OBJ”, “itr”, “min”, and
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TABLE V
COMPUTATIONAL TEST: 5-BUS SYSTEM

(Ns,NI )

EBD BD CPX

OBJ itr min gap OBJ itr min gap OBJ min gap
(k$) (k$) (k$)

(5,5) 795 12 0.93 0.42% 797 25 1.63 0.10% 798 0.31 <0.5%
(10,10) 805 9 0.99 0.35% 805 17 1.66 0.40% 804 6.22 <0.5%
(20,20) 812 8 1.41 0.41% 810 17 2.73 0.31% 810 6.74 <0.5%
(40,40) 817 11 4.55 0.13% 817 17 5.77 0.27% 816 64.69 <0.5%
(80,80) 821 10 10.18 0.46% 824 14 10.70 0.33% 858 T 5.63%

(120,120) 823 9 15.93 0.26% 824 14 16.52 0.17% / T N/A

“gap”, respectively. If any problem is terminated due to the

time limit of 480 mins, its solution time will be marked by

“T”. Also, the gap threshold is set as 0.5%. In case where

the gap report is unavailable, it will be recorded by “N/A”.

When (Ns, NI) =(5,5), it can be seen that all the methods

can efficiently solve the problem. With the growth of scenario

size, however, both BD methods (even without enhancements)

perform much faster than CPX, which can mostly reduce the

solution time by 97.88%. When (Ns, NI)=(120,120), our EBD

reaches the optimality condition in less than 16 mins, while

CPX fails to derive any feasible solution in 8 hours with no

gap available. We also notice that, for those can be solved by

both CPX and EBD, the difference between objective values

is maintained below 0.33% (<0.5%). Hence, the proposed

algorithm holds similar precision to commercial solver but

drastically improves the computational efficiency.

B. 69-Bus Test System

To evaluate our planning model and solution algorithm on

practical-scale systems, we further test a 69-bus networked

microgrids. The planning solution of 69-bus system is shown

in Fig. 3. We observe that the microgrid with largest DER

installation (MG D) is located near the substation bus to

pursue higher cost benefits. Also, several smaller microgrids

(MG C, MG E, MG G, MG H) are deployed near the far-

end buses, so as to improve the reliability level and reduce the

network loss. Table VI exhibits the results of computational

tests on 69-bus network. We notice that the EBD is capable to

address all the instances using at most 420 mins (for intractable

120-scenario instance), which shows a clear superiority over

CPX. Furthermore, EBD outperforms its basic form since the

iteration numbers are significantly reduced by applying the

enhancement techniques. For those can be solved by both

methods, our enhancements reduce the iteration number by

more than 60.0%, and thus saving the computation time by

56.3%-73.5%. When (Ns, NI)=(80,80) or (120,120), EBD

is still applicable while BD can only report a low quality

solution with a very large optimality gap. Together with our

observations on 5-bus test system, we can conclude that

the proposed algorithm has a strong scalable capacity to

solve a practical NMP problem with numerous stochastic and

islanding scenarios.

V. CONCLUSION AND DISCUSSION

This paper proposes a two-stage chance constrained stochas-

tic conic program model to address the networked microgrids
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MG_C: PV=1.32MW, MT=0.48MW, BB=1.80MWh 
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MG_F: PV=1.68MW, MT=0.84MW, BB=2.40MWh 

Fig. 3. Planning Solution: 69-Bus System

TABLE VI
COMPUTATIONAL TEST: 69-BUS SYSTEM

(Ns,NI )

EBD BD CPX

OBJ itr min gap OBJ itr min gap OBJ min gap
(k$) (k$) (k$)

(5,5) 1619 38 37.59 0.49% 1618 95 141.63 0.49% 1619 47.22 <0.5%
(10,10) 1638 30 31.44 0.47% 1632 83 93.38 0.46% 1633 42.20 <0.5%
(20,20) 1655 26 52.58 0.22% 1655 69 143.61 0.47% 1657 480.00 <0.5%
(40,40) 1659 23 118.09 0.49% 1655 59 269.96 0.35% 1654 369.75 <0.5%
(80,80) 1680 19 251.03 0.36% 1691 47 T 1.89% / T N/A

(120,120) 1667 17 420.09 0.46% 2176 30 T 47.69% / T N/A

planning problem concerning the multi-site investment, dual-

mode operations, multi-source uncertainties, and non-linear

power flow representations. Moreover, the bilinear Benders

decomposition method is customized with two enhancement

techniques to analytically solve the challenging mixed-integer

SOCP formulation. Numerical studies are conducted to verify

the proposed planning method on 5- and 69-bus networked

microgrids systems. Some key observations and insights from

our numerical results are listed as below:

1) Importance of dual-mode operational modeling: We

notice that the consideration on dual-mode operations

has clearly influenced the siting and sizing decisions of

networked microgrids. So, the solution of our CC SP

model can provide an informative guidance for the plan-

ning and long-term dual-mode operations of networked

microgrids.

2) Effectiveness of chance constrained stochastic conic

formulation: We observe that the planning solution

of our CC SP model achieves a significantly lower

operational cost as well as higher reliability and energy

efficiency levels than the benchmark cases. Moreover, by

adjusting the risk parameter, our model yields a flexible

and practical scheme to support real systems with trade-

offs between the cost-effectiveness and the risk-hedging

capability for islanded operations.

3) Strong scalable capacity of enhanced bilinear Ben-

ders decomposition: Our enhancements on bilinear

Benders decomposition method demonstrate a superior

computational capacity to its basic form and the direct

use of a professional commercial solver, which makes it

applicable for networked microgrids planning in practi-

cal distribution systems.

In our future work, the proposed method will be extended in
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several aspects, e.g., microgrids planning under a deregulated

environment and a multi-stage framework.
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