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Abstract—This paper presents a chance constrained stochastic
conic program model for networked microgrids planning. Under
a two-stage optimization framework, we integrate a multi-site
microgrids investment problem and two sets of operational
problems that correspond to the grid-connected and islanding
modes, respectively. To handle the uncertain nature of renewable
energy generation and load variation, as well as the contingent
islanding caused by external disruptions, stochastic scenarios are
employed to capture randomness and a joint chance constraint is
introduced to control the operational risks. A second-order conic
program (SOCP) formulation is also utilized to accurately de-
scribe the AC optimal power flow (OPF) in operational problems.
As the resulting mixed integer SOCP model is computationally
difficult, we customize the bilinear Benders decomposition with
non-trivial enhancement techniques to deal with practical in-
stances. Numerical results on 5- and 69-bus networked microgrids
demonstrate the effectiveness of the proposed planning model and
the superior performance of our solution algorithm.

Index Terms—Networked microgrids, multi-site resource plan-
ning, chance constrained stochastic program, second-order conic
program, bilinear Benders decomposition.

I. INTRODUCTION

HE growing proliferation of microgrids motivates their

interconnection to make a more reliable, secure, and
resilient network near the customer-side [1]-[3]. Networking
a few neighboring microgrids enables them to share the
generation, storage, and reserve resources, which prompts
the whole community to operate in a more economical and
efficient way. Also, each individual microgrid can benefit from
the reliability improvement due to the backup of others, which
ensures the power-supply continuity in case of emergency
events, e.g., utility contingencies or natural disasters [4], [5].
To achieve the full strength of the aforementioned advantages,
we believe that a networked microgrids system needs to be
properly configured and analytically studied.

As mentioned in [6]—-[8], the ownership of microgrids could
belong to the utility (e.g., grid operator and government), local
community, electricity retailers, end consumers, or a hybrid of
above. According to the ownership, the microgrids planning
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can be implemented in a centralized or decentralized way.
In this study, we consider that the microgrids are owned
by a sole stakeholder (e.g., the utility) and planned in a
centralized manner. We note that the centralized planning
situation exists in many practical systems, e.g., some utility
microgrids with a single owner in U.S. [1], [9], Europe [10],
and China [11]. Under a centralized environment, the main
task of networked microgrids planning (NMP) is to optimize
the siting and sizing of multiple interconnected microgrids in a
distribution network, aiming to maximize the total investment
and operational benefits with guaranteed system performances,
e.g., reliability, flexibility, and efficiency.

Comparing to the single microgrid planning, which has been
heavily studied in literatures [12]-[14], the planning issues of
networked microgrids are much more complicated. Essentially,
the planning problems of networked microgrids, which fall
into a multi-site resource planning category, must follow the
system-wide power balance principle by including complex
power flow representations. Also, it should consider relevant
reactive power, voltage, and congestion issues. As a result, the
NMP is actually a non-linear combinatorial optimization prob-
lem, which could be very challenging for a practical network.
But for the single-site system, the network complications can
be ignored and the resulting planning formulation is drastically
simpler. Another critical issue for NMP is to manage the multi-
source uncertainties associated with the internal dynamics
and the external circumstances of microgrids. On one hand,
the intermittency of renewable energy generation as well as
the inaccuracy of load forecast within microgrids bring non-
trivial uncertainties into the planning data [14]. On the other
hand, the uncertainties of external disruptions, e.g., the forced
or scheduled maintenance of upstream grid, may drive the
entire networked system to transit from normal grid-connected
mode to islanded operation mode [15]. Since the needs for
islanding (a salient feature of microgrids) could lead to costly
investment, it is necessary to make a trade-off between the
cost-effectiveness and risk-immunity in planning decisions.

With the aforementioned challenges, it demands for strong
tools to analytically consider the impact of network issues and
multi-source uncertainties in NMP problems, which, however,
have not yet been fully addressed in the current literatures.
Many of the existing studies, e.g., [16]-[23], have concerned
the internal uncertainties, e.g., intermittent generation and
variable load. Ref [16] proposed a probabilistic minimal-cut
based approach for the interconnection planning of multiple
microgrids considering the stochastic output of distributed
energy resources (DERs). Ref [17] studied the meteorological
data analysis of renewable energy generation to support the
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cooperative planning of interconnected microgrids. Ref [18]
presented a two-stage stochastic program (SP) model to co-
optimize the investment plans of microgrids, generators, and
transmission lines under uncertain contingencies and load
growth. Ref [19], [20] adopted the heuristic-based SP methods
to handle the randomness of DERs’ output and load in
NMP problems. Ref [21]-[23] developed the bi-level program
frameworks to decide the sectioning and configuration scheme
of microgrids in a distribution network, while the uncer-
tainties were captured by scenario-based methods and robust
optimization respectively. Nevertheless, the uncertainties of
external disruptions, which may cause microgrids islanding
and further challenge the system performance, were often
neglected in the existing literatures [12], [24]. Moreover,
due to the non-linearity and non-convexity introduced by
network representations (e.g., AC power flow equations), many
of the current NMP formulations can only be solved by
heuristic approaches [19]-[23], which, however, generally do
not guarantee the global optimality of their solutions. The
aforementioned research gaps motivate our exploration on
more realistic modeling and analytical computation tools for
the configuration planning of networked microgrids.

In this paper, we capture the sequential and interdependent
microgrids’ investment and operation decisions using a two-
stage framework, and thus formulate the NMP as a two-stage
chance constrained stochastic conic program. Our formulation
incorporates the multi-site investment scheme at the first-
stage and the dual-mode (i.e., grid-connected and islanding
modes) operational models at the second-stage. Based on
two sets of operational problems, we combine the SP and
chance constrained program (CCP) to address the multi-source
uncertainties: 1) the SP is applied to manage the internal
generation and load uncertainties under grid-connected mode;
and 2) the CCP is included to ensure the feasibility of islanded
operation subject to external uncertainties, which provides a
trade-off scheme to balance the cost-benefit and the immunity
against operational risks. Also, the actual operation of multi-
microgrid network is captured by the non-linear branch flow
model [25]. We mention that this power flow model actually
can be convexified into a computationally friendly SOCP,
which ensures its solution’s global optimality with respect to
our original planning formulation under mild conditions [26]-
[28]. Moreover, to handle the challenging mixed-integer SOCP
formulation of the proposed planning problem, we customize
the bilinear Benders decomposition method [14], [29] with
strong duality and make non-trivial enhancements through the
techniques of Jensen’s inequalities and Pareto-optimal cuts,
which yields a strong computational capacity.

Comparing to the current literatures, our main contributions
can be summarized as:

1) A holistic NMP model is presented to consider the multi-
site microgrids investment and dual-mode network operations.

2) An integrated chance constrained stochastic framework is
proposed to manage the multi-source uncertainties associated
with different operational modes of networked microgrids.

3) An exact and efficient decomposition algorithm is devel-
oped to analytically solve the proposed mixed-integer SOCP
formulation.
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Fig. 1. Conceptual Structure of Networked Microgrids

The remainder of this paper is organized as below. Section
2 formulates the chance constrained stochastic NMP model.
Section 3 presents details of the enhanced bilinear Benders de-
composition method. Section 4 shows the results of numerical
tests. Finally, conclusions are drawn in Section 5.

II. PROBLEM FORMULATION

The conceptual architecture of networked microgrids is
shown in Fig. 1. The multi-microgrid distribution network
is assumed to hold a radial topology with buses indexed by
j € Q and branches indexed by (i, j) € E. The substation bus
is indexed by 7 = 0. The buses with microgrids integration
(via the points of common coupling (PCC)) are indexed by
j € M, and the other buses are indexed by j € /M. The
(unique) sending end and the receiving ends of bus j are
indexed by i and h € O(j). Also, we regard each individual
microgrid as a single-bus system even though it could have
inner network structure at a lower voltage class. Note that these
inner structures can be considered through extended network
modeling, but are not in the scope of this study.

Under these preliminaries, we formulate a two-stage chance
constrained stochastic NMP model. The centralized investment
decisions are made at the first stage to deploy the microgrids
on regional network as well as to decide the sizing plan of
DERs for each microgrid. Then, two sets of operational SOCPs
are included at the second stage to coordinately dispatch
the networked microgrids under grid-connected and islanding
modes, respectively. Without loss of generality, the candidate
DERs refer to renewable energy sources (RES), dispatchable
fuel generators (DFG), and energy storage devices (ES) [14].

A. Ist-Stage Problem: Investment Decisions

The first-stage problem is to minimize the annualized cost
of microgrids investment before the realization of uncertain
factors, which can be written as:

min Z Z OrICrpr Xk, j
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Xij € Zy,z; €{0,1}, Vk € {res,dfg,es},Vj € Q (5)

As shown in (1), the annualized investment cost is evaluated
by multiplying the capital cost of candidate DERs with their
capital recovery factors (¢y), as defined in (2). Also, the ca-
pacities of candidate DERs are constrained by (3) to reflect the
limitations due to geographical, financial, and environmental
conditions, and the cardinality constraint in (4) introduces an
upper bound (Np,g) on the total number of microgrid sites.

Remark 1. Note that the optimal microgrids siting is actually
a complicated combinatorial problem [19], [30], [31]. For the
sake of illustration, a conceptual siting model is adopted as in
(1)-(5) with several of the practical factors, e.g., financial and
geographical issues. Moreover, our siting model can be easily
extended by incorporating other practical considerations (e.g.,
by adding linear or conic constraints) as well as the preference
of system planners (e.g., by fixing part of the siting variables).

B. 2nd-Stage Operational Problem in Grid-Connected Mode

The first set of operational problem is to perform the coor-
dinated scheduling of networked microgrids given a finite set
of stochastic scenarios S = {&|s = 1,2,..., Ny}, which are
defined under typical days D(s) to capture the uncertainties of
RES generatlon (i.e., 01 (&s)) and load variation (i.e., p! j(fs)
and ¢/ j(&5)). Each scenario follows a probability . The grid-
connected scheduling problem (GSP) under scenario s € S can
be written as:
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The second-stage objective (6) contains the operation and
maintenance (O&M) cost (C,,), power transaction cost (C’gt)
network loss cost (Cf ), and load reduction cost (CY), which
are evaluated through (7)-(10) respectively. In (7), the fixed
O&M cost is proportional to DERs installation, while its
varying part refers to the fuel cost of DFGs. Eq. (8) calculates
the total cost incurred by the power transactions between
the microgrids cluster (as a whole) and the main grid [32],
[33]. The network loss and load curtailment are penalized by
specific cost factors as in (9) and (10). All these cost terms
are evaluated on a daily basis and then scaled to derive yearly
values by a factor h.

Egs. (11)-(20) represent the operational constraints of each
individual microgrid. Constraints (11)-(12) ensure the active
and reactive power balance within each microgrid. The micro-
grids are supplied by both the DERs and the external network.
The power transactions through the PCCs could be positive
(power procurement status) or negative (power selling status).
Note also that the reactive power can be supplied by existing
shunt capacitors as well as the power electronic interface (e.g.,
converter) equipped with RES [34]. Additionally, the upper
restrictions on load reduction variables pf(;fj and ¢f, ; can
be relaxed since they are heavily penalized in the objective
function. In (13), the active power output of RES is calculated
as the product of its installed capacity and time-varying factor
6% (&), which mainly depends on weather conditions (e.g.,
solar irradiation and ambient temperature). The reactive power
served by the converters of RES is constrained by (14). The
generation constraint of DFGs is given in (15). The power and
energy states of ES are constrained by (16)-(20). Note that in
(20), the energy state of ES is kept as its initial value after a
daily charge-discharge cycle.

Egs. (21)-(28) denote the operational constraints of multi-
microgrid network (as shown in Fig. 1). A nonlinear branch
flow model is defined by (21)-(24). With a recoverable angle
relaxation [28], we only need to deal with the magnitude rep-



resentations of these power flow equations. The square of mag-
nitudes of nodal voltage and branch current are constrained by
(25) and (26). The exchanged active/reactive power between
networked microgrids and up-stream grid are constrained by
(27) and (28), respectively. Besides, the reference voltage level
at substation bus is specified as Up.

Remark 2. Since (21)-(24) introduce the non-convexity to
our mixed integer nonlinear planning formulation, its global
optimality cannot be guaranteed. To convexify (21)-(24), we
relax the equalities in (24) to derive a set of rotated second-
order conic constraints:

(P2 + (@32 < 1oy

ij >t V(i,j) € BVEYs (29)

As a result, we obtain a convex and computationally friendly
SOCP relaxation, which includes (6)-(23), (25)-(28) and (29)
(denoted by GSP-r), to the original GSP. Moreover, through
the sufficient conditions presented in [28], [35], this SOCP
relaxation is exact and its convexity guarantees a global
optimal solution to the original GSP.

C. 2nd-Stage Operational Problem in Islanding Mode

The second set of operational problem is to guarantee the
feasibility of islanding under external disruptions. The capacity
sufficiency for islanded operation is validated based on a finite
set of scenarios I = {wy|n =1,2,..., N7}, which are defined
under 7-hour islanding periods [15]. Each islanding scenario
n occurs with a probability 7,,. According to IEEE Standard
1547.4 [36], the major concern for microgrids islanding is
to maintain the reliability and operational security. As the
economic target is less critical for the islanded operation, we
only require that the operational cost (A;), which includes
the O&M cost, network loss cost, and load reduction cost,
is no larger than an expected value by imposing the cost-
bound constraints. Note that the power transaction cost, which
originates from the exchanged power with main grid, is
excluded when computing A,,. Hence, the islanding validation
problem (IVP-r) under scenario n € I can be written as:

A, =Cl +CP +CP <A (30)
E™H(11) = (23),(25) — (26),(29)}, VteT(n) (31)
pet=0,¢"=0, Vter(n) (32)

where the cost-bound constraint is given in (30). In (31), the
operational constraints in GSP-r are re-defined in constraints
set 2! under each islanding scenario. Besides, the boundary
conditions for islanded operation are clarified in (32)

Since the load reduction is penalized in A,,, the variables
that slack constraints set =™ are actually restricted by our
cost-bound constraints. In this regard, the cost-bound require-
ments in (30) could become too restrictive for some very
adversarial scenarios (i.e., with high risks of load reduction).
The full consideration of cost-bound may force the planners
to generate and implement a highly capacitated and costly
planning scheme. To achieve a trade-off between the cost-
benefit and the immunity against islanding risks, we impose
a chance constraint on (30) so that it is allowed to be relaxed
with a pre-defined small probability. Note also that the chance

constraint of (30) involves multi-variate integration, which
makes it very difficult to be represented by a closed-form
expression. Hence, we follow the strategies in [29] to express
the chance constraints by a scenario-based bilinear formulation
as below.

A1 —uy,) < A, Vnel (33)
Z Ty < € (34)
nel

Remark 3. Constraints (33)-(34) ensure that the cost-bound
constraint is satisfied with a probability greater than or equal
to 1 — ¢, where ¢ is the risk tolerance level. Note that binary
variable w.,, is utilized to indicate that the full requirements of
islanding scenario n is imposed or not. Clearly, when u,, = 0,
the cost-bound constraint under islanding scenario n must be
satisfied, and when u, = 1, otherwise. The total probability
of islanding scenarios that can be partially deactivated is
restricted by the joint chance constraint (34).

Actually, the chance constraints (33)-(34) can be equiva-
lently interpreted as value-at-risk (VaR) constraints [37], [38],
which perform as the risk measure. Hence, by adjusting the
parameter €, the chance constraints can be applied to quanti-
tatively control the operational risks of microgrids islanding.

D. Full Formulation of Networked Microgrids Planning

Combining (1)-(5) with (6)-(23), (25)-(29) and (31)-(34),
we obtain the full formulation of two-stage chance constrained
stochastic NMP model. For convenience, its compact matrix
form is given as below.

¢ =min L'z + Z Tedlys (35
ses

st. Az <b (36)
Fy,=fs, VseS (37
Wsx + Rys > v, Vse S (38)
|Gmysllz < ghys, Vs € S,¥m € L, (39)
Loys > 1y, VseS (40)
r€Zyi,ys €R, VseS 41
Tyn(1—u,) <A, Vnel (42)
Hy,=h,, Vnel (43)
Vox + Ky, >w, Vnel (44)
|Brynllz < rhyn, VYnel,VmeL, (45)
Zﬁnun <e Vnel (46)
nel

yn € Ryu, €{0,1}, Vnel 47)

The objective function is abstracted in (35). The vector x
represent the first-stage variables, while y, and y,, denote the
second-stage variables defined under stochastic and islanding
scenarios. The investment decisions are constrained by (36),
corresponding to constraints (3)-(4). Constraints (37)-(38) de-
note the linear equalities and inequalities in GSP-r, i.e., (11)-
(23), (25), (26). Constraint (39) stands for the conic constraints
in (29), where m is the index of such constraints. Constraint
(40) represents constraints (27)-(28), which are only for grid-
connected operation. Constraints (42) and (46) denote the joint



chance constraints in IVP-r, i.e., (33) and (34). Constraints
(43)-(45) correspond to the rest constraints in IVP-r.

III. ENHANCED BILINEAR BENDERS DECOMPOSITION
METHOD FOR STOCHASTIC MIXED INTEGER SOCP

We observe that the chance constrained stochastic mixed
integer SOCP in (35)-(47) is a large-scale non-convex formu-
lation, which is very challenging for professional solvers. To
address such computational challenges, we follow the strategy
in [14], [29] to develop and customize a decomposition
method, i.e., the bilinear Benders decomposition method, that
can significantly improve our solution capacity. Also, two
enhancement techniques are adopted for better performance.

The framework of classical Benders decomposition for
stochastic linear programming (LP) involves a master problem
and a set of subproblems. The latter one is actually the dual
of the second-stage problem in every scenario. Note that,
different from LP, it is not always the case that an SOCP
formulation has the strong duality, which actually could be the
case for the popular AC OPF SOCP formulation (as revealed
by the numerical study in [39]). Note that if the strong conic
duality fails, there is no guarantee that Benders decomposition
for mixed-integer SOCP leads to exact solutions. However, to
the best of our knowledge, although conic dual problem has
been utilized for algorithm development (e.g., [40]-[42]), this
issue was rarely mentioned in any publication. Based on an
analytical study in [39], our second-stage AC OPF problems
are observed to fit a sufficient condition that guarantees the
strong duality of SOCP formulation, which thus ensures the
exactness of our bilinear Benders reformulation.

1) Feasibility-Check Subproblem: We first define a sub-
problem (SP,) to check the feasibility of first-stage solution
(denoted by z) with respect to the chance constraints (42) and
(46) under islanding scenarios. SP, is formulated as below.

SP, : A; = min Ztn (48)
nel

st.oty>Tp(l—up)—A, Vnel (49)

D Mt < ¢ (50)

nel

tn > 0,u, €{0,1}, Vnel (51

where Y, is to denote the operational cost from the islanding
scenario n, which can be attained by computing the cost-
minimization counterpart of IVP-r as in the following.

Y, =min {¢"y,: 43)—@7}, Vnel (52)
Yn

Remark 4. As mentioned in [14] that if Ay = 0, we can

conclude that the current I is a feasible solution towards

constraints (42) and (46). Otherwise, a different first stage

investment plan should be generated in the next iteration.

2) Optimality Subproblems: Next, two types of optimality
subproblems are defined based on our operational SOCP
problems. The first type SP?3 , which corresponds to the GSP-
r under each scenario s € S, is to minimize the recourse cost

d"y, subject to constraints (37)-(40) for a given Z. The dual
form of SPY is given as follows.

SP3 : &, = max ul fo + \(v — W) + 671, (53)
st Flpug+ BT\ + L0, + Y (Gl +0l'gm) =d

meLsg
(54)
s ll2 < og,  Vm € Ly (55)
s, Vet €ER, A, 05,00 €Ry, Vm € L (56)

where g, As,0s are the dual variables of constraints (37),
(38) and (40), while «*, 07" are the dual variables of conic
constraints for all m € L in (39) . ®, is the operational cost
from the stochastic scenario s. Note that GSP-r is bounded and
also feasible since (37)-(40) can be slacked by load reduction
variables. The dual solution of SP% provides a set of Benders
optimality cuts OC3 as in (63).

Another type of optimality subproblem is needed to ensure
the feasibility of (42)-(46) under each islanding scenario
n € I. Following an idea presented in [14] to deal with such
constraint, we consider the left-hand-side of (42) and make
use of its associated optimality cuts to achieve the feasibility.
The second type of optimality subproblem (SPF3) is defined
as following, which is in the dual form of (52):

SPL : T, = max xLh, + L (w— Vi) (57)
st H X+ KT + > (BhvI + K'rm) = (58)

meL,
vl < &3 Vm € Ly, (59)
Xns Uy €ER, WY,k € Ry, Vme L, (60)

Similarly, the dual solution of SPgR (i.e., Xn, ¥n, V1", &)
yields another set of optimality cuts OCg as in (65).

Remark 5. Note that the primal forms of SP3 and SPY,
i.e., (37)-(40) and (52), can be equivalently expressed as
the OPF-SOCP in [39]. Then, due to the inclusion of load
reduction variables (with relaxed upper bounds), the condition
Cl-(d) in [39] holds for SPY and SPY, which thus ensures
the strong duality of our SOCP subproblems.

3) Investment Master Problem: Combining (35), (36), (42),
and (46) with the Benders optimality cuts OCY in (63) and
OCE in (65), the master problem (MP) (in j-th iteration) of
our networked microgrids planning model can be defined as:

MP : 0 =min 'z + Y m,®, 61)
seS

s.t. Ax <b (62)
Dy >y — AN Wz — 1), Vs€S,i=1,...,5 — 1(63)
T,(1—u,) <A, Vnel (64)
Yo >Toi—Of V(e —2),Vneli=1,...,j—1(65)
anun <e (66)
nel

x€Zly, P, eR, VseS (67)
T, R u, €{0,1}, Vnel (63)

where j is the counter of current iteration.



Remark 6. (i) Note that the bilinear structure in (64)-(66)
corresponds to the chance constrained formulation (42)-(46).
When u,, = 1, (64) is always satisfied, which means that the
corresponding OCY, in (65) is deactivated. Otherwise, OCgR
is enforced in MP.

(ii) The bilinear inequalities in (64) can be easily linearized
through McCormick linearization method [29]. Consequently,
MP is converted into a mixed-integer linear program (MILP).
Actually, (64)-(65) are strengthened bilinear Benders cuts
developed in [14], which renders MP readily computable for
state-of-the-art MILP solvers. Then, the linearized MP can
be strengthened by adding two sets of cuts OC3 and OCg
iteratively until the optimality condition is satisfied.

Following the decomposition scheme in (53)-(68), the de-
tailed procedures of customized bilinear Benders decomposi-
tion method are outlined as below:

— Step 1. Set LB = —o0, UB = +o0, j = 0, 0CY7 =
OCg” = 0; Set the gap threshold e;

— Step 2. Compute the master problem MP ;;

o If MIP; is infeasible, terminate the algorithm and report
the infeasibility of the original problem;

e Otherwise, derive an optimal solution (i, %) and objec-
tive value Oj, then update LB = Oj and j =7+ 1;

— Step 3. For &, compute SP}, for every s € S; Get the
dual solutions and generate the cuts OC3”;

— Step 4. For &, compute SP} for every n € I; Get the
dual solutions and generate the cuts OCy”;

— Step 5. Compute SP, to get the feasibility gap Ay; If
Ay = 0, evaluate the primal objective value CA in (35) and
update UB = min{UB, (};

— Step 6. Get the optimality gap A, = [(UB — LB)/LBj;
o If A, < e, converge to current &, then go to Step 7,

N, N _
e Otherwise, MP; «+ MP,_; |J OC}’ UI ocg?,
s=1 n=1

then go to Step 2;
— Step 7. Report the optimal solution z.

1 Enhancement Techniques: We note that those two different
sets of subproblems (subject to stochastic and islanding sce-
narios), which are of different natures, generate complicated
interactions and incur a large number of Benders iterations in
our computation. Hence, on top of the aforementioned cus-
tomization of bilinear Benders procedure, we have designed
and implemented two enhancement techniques to achieve a
stronger computational performance:

e One is to generate and adopt more useful Benders cuts,
i.e., Pareto-Optimal cuts [43]-[45], from computing the
subproblems with core-point based reformulation. Also,
the core points are updated following the methods in [44]
to further improve the computation efficiency.

e Another one is to strengthen the master problem by
creating and including a virtual scenario through Jensen’s
inequality [29], [46]. Although such inclusion increases
the size and computational complexity of the master
problem, the augmented master problem should be a
tighter relaxation to the original formulation.

TABLE I
MAIJOR PARAMETERS OF CANDIDATE DERS

Renewable Energy and Dispatchable Fuel Generators

Nom. Min Capital O&M Fuel  Life
Label  Type (S5 Wy (SIW) (AW (AW (31
PV Solar Panel 120 0 1800 0 0 15
MT Micro Turbine 60 6 800  0.030  0.153 10

Energy Storage Devices

Power Energy Power Energy O&M Effi- Life

Cap. Cap. Cost Cost Cost Time
Label T p p :

abe TPE kW) (KWh) (SAW) ($/AWh) ($/kW/h) Ciency (yr)
BB Battery Bank 100 200 250 200 0004 090 8

Actually, with those two enhancements, as demonstrated in
our numerical study in Section IV, the computational capabil-
ity of proposed bilinear Benders decomposition algorithm is
greatly improved by reducing the necessary Benders iterations
significantly before convergence.

I'V. NUMERICAL RESULTS

The proposed two-stage chance constrained stochastic NMP
model and bilinear Benders decomposition algorithm with en-
hancements are first verified on a 5-bus illustrative networked
microgrids system. Then, our method is further tested on a
more complex microgrids structure based on IEEE 69-bus dis-
tribution system to prove its scalability. For demonstration, we
choose photovoltaic (PV) panels, micro turbines, and battery
banks to represent RES, DFG, and ES, respectively. Table I
presents the major parameters of candidate DERs. Table II lists
other essential parameters (partly from the published data of
U.S. Energy Information Administration). The time-varying
patterns of PV generation and load demand are captured by
daily operating curves in 10,000 scenarios. To make a trade-off
between accuracy and computational efficiency, the k-means
clustering method is applied to generate the reduced scenario
sets. All the algorithm development and computations, includ-
ing our bilinear Benders decomposition, are made by CPLEX
in MATLAB environment on a laptop computer with Intel
Core 17-7820HQ 2.90GHZ processer.

A. 5-Bus Test System

The 5-bus networked microgrids system is shown in Fig. 2.
The proposed dual-mode planning model (35)-(47), as denoted
by CC_SP, is solved given A = $300,000, ¢ = 0.10, 7 =
8h, (Ns, N7) = (80,80). To demonstrate the effectiveness of
CC_SP, we set up two benchmark cases (i.e., DT and SP) as in
Table III. The optimal solutions and objective values of DT, SP,
and CC_SP are presented in Fig. 2-(a), (b), (c), respectively.
We observe that the DT solution invests 3 microgrids at bus 1,
2, 3, which are neighboring to the substation bus. Even though
such siting scheme enables an easy access of microgrids to
gain power-selling revenues, the remote users at bus 4, 5 could
be vulnerable to the prevailing uncertainties. In contrast, the
SP solution moves MG_B from bus 2 to bus 5 to improve the



TABLE II
TECH-ECONOMICAL PARAMETERS FOR PLANNING

Parameter Description Value
R Discount rate 0.04

9 Cost Coefficient of Power Loss ($/kWh) 0.05
Sp/Sq Penalty Cost Factors of Load Reduction 20/20
On-Peak Electricity Price ($/kWh) 0.193
ot Partial-Peak Electricity Price ($/kWh) 0.138
Off-Peak Electricity Price ($/kWh) 0.083

Uo Reference Voltage of Distribution Network (kV) 10
U, U] Allowable Range of Voltage Magnitudes (kV) [9,11]
T Upper Bound of Current Magnitudes (A) 250
Paub Active Power Limit of Substation (MW) 5.00
Qsub Reactive Power Limit of Substation (M Var) 3.10

TABLE III
NOTATIONS OF PLANNING CASES
Notation Definition

DT Deterministic NMP model

Stochastic NMP model

(i.e., (35)-(41) that excludes islanding mode)

Chance constrained stochastic NMP model (i.e., (35)-(47))

Sp

CC_SpP

reliability of remote users. Also, the total storage capacity is
added from 3.00MW to 4.40MW to handle the randomness of
PV generation. Compared to the SP solution, CC_SP adopts
a similar siting scheme while reinforcing the capacity plan
of DERs to further hedge the external uncertainties. The MT
installation is increased from 0.66MW to 1.08MW, while more
storage units are deployed at the remote buses to ensure the
power supply continuity during islanded operation.

Then, the rationality of CC_SP solution is verified through
Monte Carlo simulation (MCS) given different islanding prob-
abilities (p). Note that, when p=5%, the actual operational
cost of CC_SP solution (¢=0.10) is expected to be 277.7k$
(<300.0k$), which is significantly lower than SP (685.1k$)
and DT (1806.0k$). We also notice that the biased evalua-
tion for operational cost in DT solution may lead to overly
optimistic investment in RES units, which renders larger
investment cost (724.1k$) than CC_SP (601.7k$). Other per-
formance metrics attained by MCS include expected network
loss (ENL) and loss of power supply probability (LPSP) [47].
Table IV shows detailed results of performance evaluation.
In all instances, the CC_SP solution demonstrates higher
reliability and efficiency levels than DT. Particularly, when
p=10%, our CC_SP can reduce the LPSP and ENL by 72.4%
and 42.4%. Given the same condition, the CC_SP solution also
shows obvious advantage over SP, which reduces the LPSP
by 54.6% due to its dual-mode consideration. In Table IV, we
also investigate the impact of risk tolerance level € on CC_SP
solutions. The increase of ¢ from 0.10 to 0.20 leads to an
increasing LPSP (in most cases) and a falling ENL, along with
the decline of investment cost. Hence, by solving CC_SP via a
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1.8MW 0.48MW 1.4MWh

MG_A 0.30MW
— > 0.20MVar 020MW
. 0.15MVar
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0.18MW @ m {\2 / MG B
0.10MVar - — ‘@ 1OSMW
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(b) SP Solution OBJ=$803,470

0.15MW
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0.36MW 0.1I8MW 0.8MWh

Fig. 2. Planning Solutions: 5-Bus System

TABLE IV
PERFORMANCE EVALUATION OF PLANNING SOLUTIONS: 5-BUS SYSTEM

Inv. p=0 p=5% p=10%
Solution Cost ENL LPSP ENL LPSP ENL LPSP
k$) MW) MW) (MW)
€=0.10 601.7 276.5 0.34% 273.5 0.44% 271.3 0.97%
CC SP e=0.15 538.9 2723 042% 270.1 0.55% 268.1 1.04%
e=0.20 529.1 256.0 0.48% 254.1 0.61% 251.7 0.94%
Sp 527.0 2575 0.42% 2545 097% 251.0 1.54%
DT 724.1 5102 2.45% 4959 3.01% 470.6 3.51%

varying €, we can obtain different trade-offs between the cost-
effectiveness and the actual operational performance under
uncertainties. The above observations demonstrate the validity
of proposed planning model, which provides a flexible scheme
to manage the multi-source uncertainties in NMP problem.

Finally, the computational capability of enhanced bilinear
Benders decomposition method (EBD) is tested by comparing
to the basic bilinear Benders decomposition (BD) and the
direct use of CPLEX (CPX). Table V exhibits the test results
under different sizes of scenario sets (N, Ny). The objective
values, iteration numbers, solution times (in minutes), termi-

nation gaps are recorded in columns “OBJ”, “itr”, “min”, and



TABLE V
COMPUTATIONAL TEST: 5-BUS SYSTEM

EBD BD CPX

OBJ itr
(k$)

OBJ min
(k$)

OBJ itr min min

(k$)

(Ns,Np) gap gap gap

797 25
805 17
810 17 2.73 0.31%
817 17 577 0.27% 816 64.69 <0.5%
824 14 10.70 0.33% 858 T 5.63%
824 14 16.52 0.17%  / T N/A

1.63
1.66

0.10%
0.40%

798 0.31 <0.5%
804 6.22 <0.5%
810 6.74 <0.5%

(5,5)
(10,10)
(20,20)

795 12 093 0.42%
805 9 0.99 0.35%
812 8 1.41 0.41%
(40,40) 817 11 4.55 0.13%
(80,80) 821 10 10.18 0.46%
(120,120) 823 9 15.93 0.26%

“gap”, respectively. If any problem is terminated due to the
time limit of 480 mins, its solution time will be marked by
“T”. Also, the gap threshold is set as 0.5%. In case where
the gap report is unavailable, it will be recorded by “N/A”.
When (Ns, N7) =(5,5), it can be seen that all the methods
can efficiently solve the problem. With the growth of scenario
size, however, both BD methods (even without enhancements)
perform much faster than CPX, which can mostly reduce the
solution time by 97.88%. When (N, N;)=(120,120), our EBD
reaches the optimality condition in less than 16 mins, while
CPX fails to derive any feasible solution in 8 hours with no
gap available. We also notice that, for those can be solved by
both CPX and EBD, the difference between objective values
is maintained below 0.33% (<0.5%). Hence, the proposed
algorithm holds similar precision to commercial solver but
drastically improves the computational efficiency.

B. 69-Bus Test System

To evaluate our planning model and solution algorithm on
practical-scale systems, we further test a 69-bus networked
microgrids. The planning solution of 69-bus system is shown
in Fig. 3. We observe that the microgrid with largest DER
installation (MG_D) is located near the substation bus to
pursue higher cost benefits. Also, several smaller microgrids
MG_C, MG_E, MG_G, MG_H) are deployed near the far-
end buses, so as to improve the reliability level and reduce the
network loss. Table VI exhibits the results of computational
tests on 69-bus network. We notice that the EBD is capable to
address all the instances using at most 420 mins (for intractable
120-scenario instance), which shows a clear superiority over
CPX. Furthermore, EBD outperforms its basic form since the
iteration numbers are significantly reduced by applying the
enhancement techniques. For those can be solved by both
methods, our enhancements reduce the iteration number by
more than 60.0%, and thus saving the computation time by
56.3%-73.5%. When (N, N1)=(80,80) or (120,120), EBD
is still applicable while BD can only report a low quality
solution with a very large optimality gap. Together with our
observations on 5-bus test system, we can conclude that
the proposed algorithm has a strong scalable capacity to
solve a practical NMP problem with numerous stochastic and
islanding scenarios.

V. CONCLUSION AND DISCUSSION

This paper proposes a two-stage chance constrained stochas-
tic conic program model to address the networked microgrids

59 60 61 62 63 64 65 66 67 68 6

MG_E
36 37 3 (39 4 4 g ($imcn

i
MG A MG B MG_C
o1 2 3/ o/ s 6 7 8/ 9 w w1/ 13 14 15 16 17 18 719 20 21 2 23 (24,25 26 27

MG_F MG G
42 43 44 45 46 47 48 49 S0, S1 ;2 (53 s

MG_A: PV=0.60MW, MT=0.12MW, BB=0.80MWh
MG_B: PV=0.72MW, MT=0.36MW, BB=0.40MWh
MG_C: PV=1.32MW, MT=0.48MW, BB=1.80MWh
MG_D: PV=3.60MW, MT=0.60MW, BB=6.00MWh

MG_E: PV=2.28MW, BB=2.60MWh
MG_G: PV=0.48MW, MT=0.06MW, BB=1.00MWh
MG_H: PV=0.12MW, MT=0.12MW
MG_F: PV=1.68MW, MT=0.84MW, BB=2.40MWh

Fig. 3. Planning Solution: 69-Bus System

TABLE VI
COMPUTATIONAL TEST: 69-BUS SYSTEM

CPX

OBJ min
(k$)

1619 47.22 <0.5%
1633 42.20 <0.5%
1657 480.00 <0.5%
1654 369.75 <0.5%
N/A
N/A

EBD BD

gap OBJitr min
(k$)

(5,5) 161938 37.59 0.49% 161895 141.63 0.49%
(10,10) 163830 31.44 0.47% 163283 93.38 0.46%
(20,20) 165526 52.58 0.22% 165569 143.61 0.47%
(40,40) 165923 118.09 0.49% 165559 269.96 0.35%
(80,80) 168019251.030.36% 169147 T 1.89% / T

(120,120) 1667 17 420.09 0.46% 217630 T 47.69% / T

(Ns,Np) OBJ itr min gap gap
k$)

planning problem concerning the multi-site investment, dual-
mode operations, multi-source uncertainties, and non-linear
power flow representations. Moreover, the bilinear Benders
decomposition method is customized with two enhancement
techniques to analytically solve the challenging mixed-integer
SOCP formulation. Numerical studies are conducted to verify
the proposed planning method on 5- and 69-bus networked
microgrids systems. Some key observations and insights from
our numerical results are listed as below:

1) Importance of dual-mode operational modeling: We
notice that the consideration on dual-mode operations
has clearly influenced the siting and sizing decisions of
networked microgrids. So, the solution of our CC_SP
model can provide an informative guidance for the plan-
ning and long-term dual-mode operations of networked
microgrids.

2) Effectiveness of chance constrained stochastic conic
formulation: We observe that the planning solution
of our CC_SP model achieves a significantly lower
operational cost as well as higher reliability and energy
efficiency levels than the benchmark cases. Moreover, by
adjusting the risk parameter, our model yields a flexible
and practical scheme to support real systems with trade-
offs between the cost-effectiveness and the risk-hedging
capability for islanded operations.

3) Strong scalable capacity of enhanced bilinear Ben-
ders decomposition: Our enhancements on bilinear
Benders decomposition method demonstrate a superior
computational capacity to its basic form and the direct
use of a professional commercial solver, which makes it
applicable for networked microgrids planning in practi-
cal distribution systems.

In our future work, the proposed method will be extended in



several aspects, e.g., microgrids planning under a deregulated
environment and a multi-stage framework.
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