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§ Motivation
74
/

« Goal: Increasing the peak load capacity of a structure, in addition to the structural toughness
« Proposal: an elastoplastic topology optimization formulation which incorporates both ductile failure and

hiickline registance

Maximize Total Work Maximize Total Work With Ductile Failure
Only Constraints
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Macroscopic view of proposed procedure
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P’ Elastoplastic model used during optimization procedure

« Small-strain J,-plasticity model with nonlinear hardening law

Global Residual 1= / BY : Spp1 AV + (%/ By U, dV) (/ BQ"; dV)
Equations: e JQ. Qe

Local Residual Equations:

Oy — Oy 0

If Elastic H e = AN =10

Step: eb —el | |O]
I 7% Op—1 Af)/n | 0
IS1‘tPI<3.5tiC H ¢ = \/%sn : 8y —oylan) | = |0
P el —el | — Av, N, 0

Voce-type hardening law: oy(a) = oy, + Ha + Yo (1 — exp (—da))




Buckling analysis used during optimization procedure

£

/ * Small-strain linear elasticity Kruyr = fo
Buckling load factors
- Linear elastic buckling eigenproblem K,¢; = 1; Kr¢p; where \; = —1/u;

- Transformed eigenproblem (Kt + Ks) ¢y = 1; Kr.p; where p; = 1.0 — i

« Buckling aggregation function Breg=—1In Zexp fkg,uz

fks

Employed buckling formulation largely consistent with:
Ferrari, F., Sigmund, O., 2019. Revisiting topology optimization with buckling constraints. Struct Multidisc Optim 59,

1401-1415. ‘




P SIMP Density Filter / Projection Operations

* Helmholtz PDE filter used to mitigate typical mesh instabilities

2V25 4 45— 6 in the d 0 6 Design Variables
- p+p=0,1nthe comain, p Filtered Design Variables

Vp-n =0, on the boundary, 0f) p Projected & Filtered Variables

«  Smooth Heaviside hyperbolic tangent projection used to obtain 0/1 designs with continuation on the
projection parameter

tanh(8n) + tanh(8(p. — 7))
tanh(8n) + tanh(8(1 — 1))

pe(pe(0)) =

(A7

Projected Density, p,

B=1

0 (.2 0.1 0.6 (0.8 1.0
[iltered Dengity, A,

Lazarov, B.S., Sigmund, O., 2011. Filters in topology optimization based on Helmholtz-type differential equations. [NME.
Guest et al., 2004. Achieving minimum length scale in topology optimization using nodal design variables and projection
functions.VIJNME.
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Optimization problem formulation

‘8
74 ; Elastoplastic Analysis Maximize Maximize Buckling Enforce Local
Linear Elastic Buckling Total Work Load Factors Ductile Failure
e Vo mie)) Bre@a) |
Coe . y VWi f51Ci Ks\U,uy, _
mmlemlze — w1 T/ scale + w2 RBscale +ws AL(0,{u;}, {c;})
KS
subject to 0<6, <1, e=1,..., Nejem
Constrain Mass > A(H) < Amax

Elastoplastic RY (97 {ﬂi}, {Cz}) =0, i=1,..., Nsteps
Analysis Constraints i H(z) (97 {’az}v {CZ}) — Oa L= 17 R 7Nstep3

Linear Elastic Buckling KL(O)@_LL = Jo

Analysis Constraints i KJ(B,T_LL)@ — /MKL(H)@' for i1 € B
inal
Augmented Lagrangian technique used to enforce Iocall) _ 053; 1 d
constraints at each quadrature point q 0 dq1+d2 exp (d3?7q)

% SDmaa? < 1
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Local ductile failure constraint enforcement

4

4 fznal 1
/ Local . fo d1+d~2 exp (6237](1) dOéq S Dmax S 1
constraint:

Ngvad

_ [ J .

AL, {a;}, {c;}) = Y (/\ng(pe,qu) + fgq(pe,qu)Z) 0.25 L _2
=1 — /
0.20:

. . . — 0 =1,0=0
Previously proposed constraint function > —- 0=1.0=001
form: o — 1=0573=0

. D, 5 0.10] = §=05%=001

p2% (52 1), i Dy, > D
9q(pe; Dy,) = Dmas ! .
0, otherwise
QR VN p——

e _ , _ 0.0 0.5 1.0 1.5
Modification to control nonlinearity and prevent entirely zero Dy,
gradient: 05 D, . Drmax

Pe’ (Cl (szm> <C2 - 261) —I_ Cl) if qu > Dmam
gq<peanq) — D
po¢, ( ﬂfgw) otherwise

Senhora, F.V., Giraldo-Londofio, O., Menezes, |.F.M., Paulino, G.H., 2020. Topology optimization with local stress constraints: a stress aggregation-free approach. Struct Multidisc ‘

™ e e e



P’ Material model calibration (Aluminum 2024-T351)
/d

/ Calibrated large deformation, ductile phase field fracture model to three round bar uniaxial tension

experiments
i
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Bao, Y., Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences 46, 81-

98.
Borden et al. 2016. A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and ﬂ
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Ductile failure criterion calibration (Aluminum 2024-T351)

x

7, " Calibrated Johnson-Cook ductile failure criterion to the same three round bar uniaxial tension
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Bao, Y., Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences 46, 81-

98.
Alberdi, R.A., 2019. Computational Methods for Multiscale Analysis and Design of Nonlinear Multifunctional Materials and Structures for Energy ‘




P Cantilever beam numerical example

W: De5|gn only maximizing total WF De5|gn with ductile failure (omitting
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Portal frame numerical example

/W: Design only maximizing total work WEF: Design with ductile failure (omitting
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Failiira) hiicrl-lino
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Optimization problem reformulation

Minimize Volume Fraction Instead of Maximizing Work

A
’ VF(O \ B 0. u
minimize  wy VFS(Cal)e w2 Kg;gél:"l’) +wy AL(O, {u;}, {c;})
SUbjeCt to OS@@S ]-7 6:17"-7Nelem
Constrain »REF(0,{u;},{ci}) > RFin
Reaction Force (i) B .
Instead of R (9,{’(1,7;},{61‘}) =0, 1= 17-"7N8t€198
Vol F ' ;
olume Fraction H(Z)(e, {u;},{c;}) =0, i=1,..., Noteps
K (0)ur = fo

K, (0, ur)p; = u; Ki,(0)¢p; for i € B




" Portal frame numerical example
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P Concluding Remarks

Demonstrated the importance of incorporating both failure constraints and buckling in design optimization

- Demonstrated, simple, computationally-efficient method for incorporating buckling resistance into topology
optimization with ductile material physics

« Adapted Augmented-Lagrange local constraint methodology for elastoplastic local ductile failure indicators

- Demonstrated importance of verification step, either experimentally or with higher fidelity numerical models with
large strain kinematics

* For more information please refer to the following publication:

Russ, J.B., Waisman, H., 2020b. A novel elastoplastic topology optimization formulation for enhanced failure resistance via local

ductile failure constraints and linear buckling analysis. Computer Methods in Applied Mechanics and Engineering 373, 113478.
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Large strain ductile phase field fracture model

o _JIr e =1 | ) 5
vl = Vo herarice 0=z | 7wy f(s,0) = llsll = gu(c)y/ 5o
0
+ 1.¢
Tde’u — MPd@U :b / K 1 T HS‘
R I
_ {0 ife>1 2 © P o)
T =9 e , — 1
J°I  otherwise g(c) = —e/ g(c) dVj P(p, 8) = di + do exp (d3i>
TN+ + _ 0 QS ||SH
T = g(C)Tfuol + g(C)Tdev +7

/ Tn (Vodu-Fn_l) dVp =0
Q

e
0

n -~ bn-— GC
/ (771)0 Act 1 + 9] Cn de + 2GclOVOCn . VOCSC) dVO = / (g/(Cn)W—I_ + leg(cn) <Wp . W())) Se d‘/o
Qg 0 Q

e
0

* Borden et al. 2016. A phase-field formulation for fracture in ductile materials, CMAME.
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SIMP interpolation

£

/4 Interpolation used for plasticity:

With hardening function:

oy(a) =0y, + Ho+ Y (1 — exp (—dcv))

Interpolation used for buckling:

E = (.4 (1 —e)pb) B>
H = (Ep + (1 - ep)Pcel) Hoote
oy = (€p + (1 —€)pd) JZSM
Yoo = (6p + (1 —€p)p?) Yciao”d

EL — (10—6 T (1 o 10—6)pp)Esolid

e

E :ppEsolid




Nt eps Nt eps
f(pJ{ﬂZ}7{cl}>:f(p7{{u’ {CZ Z ATL paunaun 1,CnyCn— 1 Z An p;unaun 1,Cn,Cn— 1)

F,

Begin with last step |
Cor,”. om,”. [ of )

At step n = Ngeps One must solve n \n n \n for A’z and A7;.
— A + — AN = — —
i.e. the last step of " " n
the forward oR," ., OH, .,  Of
lysi e P e, M T de,
analysis \_ Cp Cn \ c”/f

|
Subsequently, traverse the forward analysis in backward F.
ovidedch step n = {Nateps — 1, Noteps — 2,-.., 3, 2, 1} one mu

Usolve | for| Az and A7;.

/ l N
8RnT>\n N 8HnT>\n _of 8Rn+1T>\ln+1 OH ' X;H
ou, & om, = O, du, = Oty
6RnT)\n L 3HnT)\n _ _8_fT _ aRnHT)\nH B a1LIn+1T>\n+1

R H — R H

\8cn Jdc,, [ oc,, oc,, dce,, 4/

|
F,
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Sensitivity analysis continued

If we label the right hand side of each equation in each of the aformentioned systems F, and F.,

and apply a Schur-complement technique, we arrive at the following system,

\

OR, OR,0H,'0H,\",, . OR,0H,”'

ou, de, dc,  Ouy, B0 9e, 0, ¢

| | : A% — 8Hn_1 F. OH, A% Fast Element
Assemble At Element 1 e, © ou, " Level
Level Operations

which is mathematically beautiful and numerically efficient. Once the adjoint vectors are known,

the computation of the sensitivities reduces to simple elemental operations.

A N teps Nste s
a  df  of < 1 oR, * L OH,
Clﬂe dpe 8,06 + Z R ape + Z

n=1
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Sensitivity analysis continued
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P Topology Optimization for Ductile Failure and Buckling Resistance

/W De5|gn only maximizing total WF De5|gn for ductile failure (omitting
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