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SURROGATES

 Definition: Create a surrogate model (or emulator) to replace computationally expensive
simulations through machine learning (ML), cheaply.

* Method Used: Generative adversarial networks (GAN) and hybrid autoencoders.

* Initial Problem: Train on existing cosmological simulations from simple n-body to full-
physics hydrodynamical sims interpolating cosmological parameters.

(https://petreldata.net/exalearn)
» Software: CosmoGAN, CosmoFlow, LBANN, and Lya-demo.

* Results: Accurately build conditional GANs to interpolate.
* Next Steps: Incorporate CosmoGAN into LBANN and work with larger three-dimensional

sims while exploring other simulation capabilities: Combustion-Pele, ExaStar, etc.
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pyCOLA (Tassev et al., 2014) simulated (left) and GAN-generated (right)
images based on training from more than 10,000 pyCOLA n-body cosmology
simulations.
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Pixel intensity histograms of the fixed values for the simulations we trained
on (right) and the interpolated o5 = 0.65 (left). The interpolated CGAN-trained
cosmological simulation matches nicely with the blinded set of pyCOLA
simulations.
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Next steps: Move from two- to three-dimensional using LBANN and expand
the parameters we interpolate on from 1 to 2-3.
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A histogram of the pixel intensity (left) and the power spectrum or 2-pt
correlation function (right) for a pyCOLA simulated and GAN generated
images for values a single set of cosmological parameters.

DESIGN

 Definition: Solving optimization problems with simulations steered by machine learning
(ML) and optimal experimental design methods
* Methods Used: Bayesian optimization, message passing neural networks,
Reinforcement learning.
* Initial Problems:
1) Generate clusters of water molecules for quantitative examination of the nature and magnitude
of intermolecular interactions in liquid water.
2) Designing molecules for performant and safe electrolytes in next-generation Li-ion batteries out
of trillions of candidates.
» Software: Library of ML methods for graph generation, Colmena—an HPC toolkit for
steering ensemble simulations with machine learning.
* Results: Early EXARL implementation for water clusters; Bayesian optimization for
oxidation-resistant electrolytes on 512 Theta nodes.
* Next Steps: Surrogate models for NWChemEXx; water cluster optimization with EXARL.
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Step-wise reward r,:

rs = E(Ds) — {/var(Ds)

where D, is the degree distribution at step s. As shown for the final step, the
highest reward corresponds to the lowest energy structure.
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CONTROL

* Definition: Efficient exploration of complex problem spaces

* Methods Used: Reinforcement learning (RL) and surrogate models

* Problems: 1) Accelerator control for Booster at Fermi National Laboratory (FNAL), 2) Block
copolymer (BCP) self-annealing control, 3) Water cluster molecular design, and 4) Scalable
version of proxy application for balancing pole on cart (ExaCartPole).

» Software: EXARL scalable RL framework AND applications: 1) Neural network (NN)-based
digital twin of FNAL Booster, 2) BCP partial differential equation (PDE)-based simulations, 3)
NN-based environment for water cluster, 4) ExaCartPole multi-MPI-rank physics-based
environment (scalable “Hello world” for RL).

* Results: Functioning RL applications using scalable EXARL framework: 1) ExaBooster, 2)
ExaCH (BCP control), 3) ExaWaterCluster, and 4) ExaCartPole proxy application. EXARL
scalable framework. Prototype RL application performance monitoring tools.

* Next Steps: Continued scaling of EXARL, proxy application distribution (discrete and
continuous action space), continued integration of ExaWaterCluster into EXARL.
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RL applications: FNAL Booster control (upper left), cart pole proxy application (lower left); BCP self- theano pyTHRCH

annealing control and QR code for BCP demo (upper right); water cluster design (lower right).

EXARL scalable RL system components and workflow.
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INVERSE PROBLEMS

 Definition: Use machine learning (ML) methods to solve the inverse problem of predicting
material structures from X-ray or neutron scattering profiles.

 Methods Used: Transfer Learning, Multitask Networks, Convolutional Autoencoder.

* Initial Problem: Design a classifier to determine crystallographic symmetry and a regressor
to predict unit cell parameters of a known perovskite material from its neutron scattering
(Bragg) profiles.

« Software: GSAS-II for generation of labeled examples, Keras; Scikit-learn.

* Results: Two categories of models—class-conditional and integrated—were trained and
evaluated. The former relies on a two-stage inference pipeline in which a crystallographic
class label is first predicted followed by regression to predict the length/angle parameters. In
the latter category, the classification and regression tasks are performed as a single learning
task. These models were trained on synthetically generated data of three different symmetry
classes, validated against experimental observations, shown that integrated models
outperform class-conditional models and predicted with MSE ~ 0(1073).

* Next Steps: Build labeled examples of Bragg profiles that sample complete parameter

space of all seven crystallographic symmetry classes; build deep learning models that
predict symmetry classes and cell parameters of all seven crystallographic symmetries.
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