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CONTROL
• Definition: Efficient exploration of complex problem spaces
• Methods Used: Reinforcement learning (RL) and surrogate models
• Problems: 1) Accelerator control for Booster at Fermi National Laboratory (FNAL), 2) Block 

copolymer (BCP) self-annealing control, 3) Water cluster molecular design, and 4) Scalable 
version of proxy application for balancing pole on cart (ExaCartPole).

• Software: EXARL scalable RL framework AND applications: 1) Neural network (NN)-based 
digital twin of FNAL Booster, 2) BCP partial differential equation (PDE)-based simulations, 3) 
NN-based environment for water cluster, 4) ExaCartPole multi-MPI-rank physics-based 
environment (scalable “Hello world” for RL).

• Results: Functioning RL applications using scalable EXARL framework: 1) ExaBooster, 2) 
ExaCH (BCP control), 3) ExaWaterCluster, and 4) ExaCartPole proxy application. EXARL 
scalable framework. Prototype RL application performance monitoring tools. 

• Next Steps: Continued scaling of EXARL, proxy application distribution (discrete and 
continuous action space), continued integration of ExaWaterCluster into EXARL.

RL applications: FNAL Booster control (upper left), cart pole proxy application (lower left); BCP self-
annealing control and QR code for BCP demo (upper right); water cluster design (lower right).

RL convergence plots for ExaCartPole (left, 6-rank environment) and ExaWaterCluster (right) 
problems using EXARL. Reward increases with training episodes. EXARL used by 3D BCP app on 32 nodes 

Summit. Training on GPU, environment on CPU.

Fermilab Site

Booster ring

Courtesy: Christian Herwig

EXARL scalable RL system components and workflow.

https://subscription.pac
ktpub.com/book/data/9
781789345803/6/ch06lv
l1sec47/introducing-
cartpole-v1

DESIGN
• Definition: Solving optimization problems with simulations steered by machine learning 

(ML) and optimal experimental design methods
• Methods Used: Bayesian optimization, message passing neural networks, 

Reinforcement learning.
• Initial Problems: 

1) Generate clusters of water molecules for quantitative examination of the nature and magnitude 
of intermolecular interactions in liquid water.

2) Designing molecules for performant and safe electrolytes in next-generation Li-ion batteries out 
of trillions of candidates.

• Software: Library of ML methods for graph generation, Colmena—an HPC toolkit for 
steering ensemble simulations with machine learning.

• Results: Early EXARL implementation for water clusters; Bayesian optimization for 
oxidation-resistant electrolytes on 512 Theta nodes.

• Next Steps: Surrogate models for NWChemEx; water cluster optimization with EXARL.
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where Ds is the degree distribution at step s. As shown for the final step, the
highest reward corresponds to the lowest energy structure.

𝑟" = 𝐸 𝐷" − 𝑣𝑎𝑟(𝐷")
Step-wise reward rs:

INVERSE PROBLEMS
• Definition: Use machine learning (ML) methods to solve the inverse problem of predicting 

material structures from X-ray or neutron scattering profiles.
• Methods Used: Transfer Learning, Multitask Networks, Convolutional Autoencoder.
• Initial Problem: Design a classifier to determine crystallographic symmetry and a regressor 

to predict unit cell parameters of a known perovskite material from its neutron scattering 
(Bragg) profiles.

• Software: GSAS-II for generation of labeled examples, Keras; Scikit-learn.
• Results: Two categories of models–class-conditional and integrated–were trained and 

evaluated. The former relies on a two-stage inference pipeline in which a crystallographic 
class label is first predicted followed by regression to predict the length/angle parameters. In 
the latter category, the classification and regression tasks are performed as a single learning 
task. These models were trained on synthetically generated data of three different symmetry 
classes, validated against experimental observations, shown that integrated models 
outperform class-conditional models and predicted with MSE ∼ 𝑂(10/0).

• Next Steps: Build labeled examples of Bragg profiles that sample complete parameter 
space of all seven crystallographic symmetry classes; build deep learning models that 
predict symmetry classes and cell parameters of all seven crystallographic symmetries. 
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(a) Classifier (left), class-conditional and integrated models. (b) CAENN integrated 
model prediction compared with experimentally observed tetragonal sample with cell 
lengths a = 3.9851 and c = 4.0358. (c) CAENN integrated model prediction compared 
with experimentally observed tetragonal sample with cell lengths a = 4.0196 and c = 
4.0210. 
For more details: C. Garcia-Cardona, R. Kannan, T. Johnston, T. Proffen and S. K. 
Seal, “Structure Prediction from Neutron Scattering Profiles: A Data Sciences 
Approach,” 2020 IEEE International Conference on Big Data, pp. 1147-1155, 2020.

SURROGATES
• Definition: Create a surrogate model (or emulator) to replace computationally expensive 

simulations through machine learning (ML), cheaply.
• Method Used: Generative adversarial networks (GAN) and hybrid autoencoders.
• Initial Problem: Train on existing cosmological simulations from simple n-body to full-

physics hydrodynamical sims interpolating cosmological parameters. 
(https://petreldata.net/exalearn)

• Software: CosmoGAN, CosmoFlow, LBANN, and Lya-demo.
• Results: Accurately build conditional GANs to interpolate.
• Next Steps: Incorporate CosmoGAN into LBANN and work with larger three-dimensional 

sims while exploring other simulation capabilities: Combustion-Pele, ExaStar, etc. 

pyCOLA (Tassev et al., 2014) simulated (left) and GAN-generated (right) 
images based on training from more than 10,000 pyCOLA n-body cosmology 
simulations. 

Pixel intensity histograms of the fixed values for the simulations we trained 
on (right) and the interpolated σ8 = 0.65 (left). The interpolated CGAN-trained 
cosmological simulation matches nicely with the blinded set of pyCOLA 
simulations.

Next steps: Move from two- to three-dimensional using LBANN and expand 
the parameters we interpolate on from 1 to 2-3. 

A histogram of the pixel intensity (left) and the power spectrum or 2-pt 
correlation function (right) for a pyCOLA simulated and GAN generated 
images for values a single set of cosmological parameters.

Typical cosmological simulations look at ~7 
parameters. Two are seen to the left, the 
Hubble constant (current expansion rate) and 
Ω𝑀 (matter density). For each set of 
parameters, we need to generate ~1000 
images to train our GANs, can we interpolate 
on this grid?

Using smaller images, 1282, trained at three values of σ8(0.5, 0.8, and 1.1) 
which measures the amplitude of the linear power spectrum on the scale of 
8*H0/100 Mpc, we will try to use a CGAN to interpolate at 0.65 with fixed H0
and Ω𝑀. 
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