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Obijectives

Project goal: Characterize interactions of doped cement materials (Low pH
cements and CEM 1) with carbonate geologic strata (e.g.,
limestone, marl, chalk, oil shale).

Specific objectives:

1) Use laboratory experiments to characterize the reactions and transport of
radionuclides (dopants) and primary matrix constituents at the interface
between carbonate rock types and cementitious barriers; and,

i) Demonstrate and benchmark multiphase diffusion reactive transport models
for parameter estimation and to simulate long-term interactions considering
potential intermediate depth borehole disposal.
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Project Approach

Rocks and cement 1313 tests (L/S=10and 1 1315 tests (diffusion) —
characterization — over range of pH) — calibration of tortuosity,
porosity, mineral calibration of mineral verification of mineral
assemblages reaction set reaction set
measured Completed
Data from Cement/rock .
plannin . / Interface Evaluations
cement/rock & |interface .
. < . * 6 rock types, each with 2 cements
interface modeling - .
. . * Experiments — ca. 1-2 years
experiments prediction . .
« Simulations
Experimental planning
. Experimental data interpretation
measured comparison Long-term prediction

Solids characterization — micro-CT,
Nano-indentation, SEM, LA-ICP-MS
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EPA Method 1313

Method 1313

* pH dependent leaching test n subsamples
— L/S(mlg?)of10and1 i‘? -!]?
for rock samples and ;1 i\ ;z )\ ;n N

two cement types.

— 10 parallel extractions at

3
n extraction B
conditions @ . e
. l \
dlfferent target end- — —
pomt pH n analytical
solutions

* Analysis
— Extracts analyzed using
ICP-OES, ICP-MS, TOC,
and IC. Additional
measurements include

pH, conductivity.
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Mineral Reaction Set Calibration

Data from USEPA 12006
Method 1313 eeos “\
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Experimental Methods (EPA 1315)

Method 1315

 Mass transfer rate tank r
leaching test - modified for pe
post-test profile |
characterization

Method 1315 - Experimental set up and sample processing
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Comparison of Diffusion Leaching Test to Field Conditions

Test Conditions Diffusion Leaching Test
* 10 mL/cm? liquid volume-to-surface area (L/S,)

Maonolith Bath New

A SIS eachon | » Leachant refreshed frequently to maximize
—— . Leachant reresh leaching (dilute boundary condition)

{well mixed) at scheduled times
o Saturated conditions

Leachate

Simulation Conditions Field Conditions
ﬂnterface « =0.02 to 0.1 mL/cm? liquid volume-to-
7 surface area (L/S,), based on saturation
bl' ﬁ * Unsaturated conditions; slow porewater
miusion displacement

» Leaching under field conditions is
W several orders-of-magnitude slower
Grout | J.. equilibrium Soil than lab test conditions
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Tortuosity Calibration
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Interface Experiments

Current Status:
Cements were cast on saturated rock (Oct. 2019)

6 rock types - limestone, chalk, marl, oil shale,
LOM and HOM

2 cements - OPC and low pH cement
6 samples per rock/cement interface

Curing and aging conditions:
30 °C and 100% relative humidity

Sampling time to be

based on simulation &
micro-CT results 2:5¢cm cement
¥ L 5cm
Current curing 2.5cm
time: ~12 months

5cm

energy.gov/ne



Advanced Characterization of Interfaces

Interfaces are characterized for:
« Leaching and interface characterization — SEM-EDS and LA-ICP-MS
* Volume and porosity change - micro-CT
« Changes in material mechanical properties as a result of interface reactions - Nano indentation

)

mmmmmmmmmmmmm of react_32micron (Metars)
 —

—
0.000000000 0000085676 0000171351 0000257027 0.000342702 0000426378 (.000514054

limestone - 16.5 nm
OPC -17.3 nm

Polishi Micro-
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Conceptual Model — Rock/Cement interface

Carbonated
Rock Cement |+ Cement

- =« |.|s H-%-Ih
Model assumptions: “ Model conditions for experimental case:
* 100 years simulated, saturated conditions, 30 C
* 1-D, 378 cells, Finite volume

* No fluxes at external boundaries

. Multi-ionic diffusi |  Thermodynamic databases — Minteq v4; LLNL,
Uiti-lonic dittision onty CEMDATA18 (Lothenbach et al. (2018))

 Initial carbonate content — based on 1313 test
« Tortuosity — calibrated values
* Porosity — measured values

 Each cell is well mixed
* Local equilibrium
* C-(N-)A-S-H solid solutions

Modeling platforms:
 LeachXS/ORCHESTRA
« PFLOTRAN
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Interface Models Results

135 limestone cement 135 marl cement
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Interface Models Results — carbonation front progress prediction

The location, X , of the moving
carbonation front as a function of
cement composition and conditions,
when the relative humidity is above
50%, is (Papadakis et al., 1989):
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Interface Models Results — effect of water saturation

=  water relative saturation in vadose zone:
10%-40% at depths deeper than 2m

1.E+00
» The diffusivity under saturated conditions is about
21 and 2150 time greater than at 40% and 10% 1E01 7
water relative saturation, respectively. e0p -
* |ncorporating these factors into the proportionality *EE o
constant (A) results in: g
* under 40% water relative saturation: % T
435,000 years and 4.5 million years for the O os .
carbonation front to penetrate to a depth of
14mm and 45mm (from 1,000 and 10,000 year 1E-06 1
scenarios) into cement. o | | | | | | | | |
* Under 10% water relative saturation, o o1 02 03 04 05 06 07 08 09 1
4.5 million years and 46 million years are Water relative saturation

required to penetrate depth of 14mm and
45mm.
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