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Spin glasses, generally defined as disordered systems with randomized competing
interactions that result in an extensively degenerate ground state! 2, are a widely
investigated complex system. Theoretical models describing spin glasses are broadly used
in other complex systems, such as those describing brain function® #, error-correcting
codes®, or stock-market dynamics®. This wide interest in spin glasses provides strong
motivation to generate an artificial spin glass within the framework of artificial spin ice
systems’™. Here, we present the first experimental realization of an artificial spin glass,
consisting of dipolar coupled single-domain Ising-type nanomagnets arranged onto an
interaction network that replicates the aspects of a Hopfield neural network®. Using
cryogenic x-ray photoemission electron microscopy (XPEEM), we performed
temperature dependent imaging of thermally driven moment fluctuations within these
networks and observed characteristic features of a two-dimensional Ising spin glass.
Specifically, the temperature dependence of the spin glass correlation function follows a
power law trend predicted from theoretical models on two-dimensional spin glasses'!.

Furthermore, we observe clear signatures of the hard to observe rugged spin glass free
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energy’ in the form of sub-aging, out of equilibrium autocorrelations'? and a transition

from convergent to divergent dynamics® 3.

Recent advances in nanofabrication techniques opened a pathway to create artificial spin
systems that exhibit geometrical frustration and allow direct real-space observations of
magnetic configurations®. Artificial spin ice systems, comprising Ising-type nanomagnets
lithographically arranged onto two-dimensional square!* ¥ and kagome!® " geometries,
emerged as prominent examples in recent years. Artificial spin ices exhibiting thermally
induced moment fluctuations'® paved the way for a whole new line of research where Ising-
type nanomagnets are arranged onto novel two-dimensional magnetically frustrated geometries
that exhibit a variety of emergent phenomena, ranging from emergent magnetic charge
screening'® 1° effective reduced®® and elevated’ dimensionalities, effective or mediate
interaction patterns?!: 22, to emergent topological order?3. Despite this long list of success stories
of artificial spin ice systems, the realization of an artificial spin glass system remained elusive.
True spin glass systems not only arise from random interactions and competition between
ferro- and antiferromagnet order, but also possess distinct thermodynamic and dynamical
traits>* 2. The main challenge remained to design arrays of nanomagnets with a dipolar
interaction network that leads to spin glass behavior. For example, using a Gaussian-type
disorder in arranging Ising-type nanomagnets onto a two-dimensional plane® determined that
the type and degree of disorder are crucial to the realization of spin glasses when an ideal
balance between ferro- and antiferromagnetic interactions is achieved. Despite balancing
competition between ferro- and antiferromagnetic interactions in a randomized array of
nanomagnets, a spin glass phase appears inaccessible at finite temperatures using this
approach®. Using the concept of effective dimensionality in interacting networks® and

theoretical predictions that a spin glass phase can only be stabilized at finite temperatures when



a critical effective dimension of 2.52 is surpassed?®, it was shown that tree-like nanomagnetic
patterns with elevated effective dimensionality can be a successful strategy to increase the
effective dimension well above this critical value’. However, fabricating extended and quasi-
infinite tree-like structures remains a currently unsurpassable challenge.

Here, we seek to realize an artificial spin glass implementing a proof-of-principle Hopfield
neural network?® (see methods), a model of associative memory mathematically equivalent to
a spin glass, to guide the disorder of artificial spin systems. Conceptually, associative memory
does not require a perfectly identical scenario to identify a memory. For example, most people
can recognize a familiar face if it is partially obscured or an entire song from a low-quality
recording. Hopfield networks are dynamical systems that evolve toward memories when their
inputs are within a neighborhood of those memories. The memories of these networks
correspond to ground states of a spin system and are robust to noise (see schematic in Figure
1a, b and Supplementary Figure 1). This robustness corresponds to a broad basin of attraction
surrounding the spin glass ground state, allowing the system, in theory, to relax towards the
ground state at non-zero temperatures.

We fabricated nanomagnetic Hopfield networks (see methods) consisting of permalloy
(NigoFe2o) Ising-type nanomagnets with lengths L = 300 nm, widths w = 100 nm, and
thicknesses d = 2.7 nm (see Figure 1c). The dimension of the nanomagnets was chosen to
ensure thermally driven moment reorientations occurring at the timescale of a few seconds to
occur at a blocking temperature Tz = 110 K. Following sample fabrication, the sample was kept
in vacuum at room temperature for several weeks to allow the Hopfield networks to relax
towards equilibrium low-energy states'® 2" before it was transferred into the photoemission
electron microscope (PEEM) for magnetic imaging, employing x-ray magnetic circular
dichroism (XMCD) at the Fe L3 edge?® (see methods). In PEEM, the sample was cooled down

to 105 K (below the blocking point) and imaged, to observe the frozen-in low-energy state



achieved after thermal annealing (see Figure 2a). Then, the sample was heated up to 120 K
(above the blocking temperature), to start our real-time observations of thermal fluctuations
and various temperatures (see Supplementary Movies 1 and 2).

As a first characterization step, we extracted the temperature dependent dimensionless
magnetic susceptibility® T:—: x(T) (see methods) and plotted its inverse as a function of
temperature (see Figure 3a). Note that these measures and those extracted from them result
from the collective system dynamics and therefore differ from those of isolated permalloy.

ks 1 _ ITd) (see green dashed

Fitting this temperature dependence to a Curie-Weiss law, — —— =
m? x(T) A

line in Figure 3a) revealed a Curie temperature T, = 27.6 + 15.7 K. This temperature is far
below the blocking temperature Tz = 100 K of the patterned nanomagnets, comparable to
results obtained from nanomagnetic arrays with a Gaussian disorder® and confirms that
interactions are well randomized in the Hopfield networks because ferromagnetic order does
not dominate as seen previously®.

In bulk experimental spin glass, a comparison between field cooled and zero field cooled
systems typically shows signatures of a spin glass. Here, we provide a more direct
characterization of the thermodynamics to explore spin glass behavior in these artificial
Hopfield networks. We extracted both the standard spin correlation function [C'(r)],, and the
unbiased spin glass correlation function® [C5¢(r)],, (see methods) and plotted them as a

function of distance (see Figure 3b). We then fit these correlation functions with a spatial decay

function in the form of e I and e LSGrm, with L(T) and LS¢(T) being the temperature
dependent standard (blue squares in Figure 3b) and spin glass correlation lengths (red asterisks
in Figure 3b), respectively. Fitting the temperature dependence of these correlation lengths to
a power law of the form f(T) = B(T —T,)" (see blue and red dashed lines in Figure 3b), we
calculate a standard critical exponent v = 0.171 £ 0.606 and a spin glass critical exponent

vS¢ = 3.86 + 1.2. The latter values come close to the critical exponent vS¢ = 3.559 predicted



for a two-dimensional Ising spin glass*!, indicating that our artificial Hopfield networks are
ordering towards a spin glass transition.

The dynamics of spin glass vary significantly when two factors are changed: whether the
system is in or out of equilibrium and above or below the glass transition. To complicate
matters further, evidence suggests that there is not simply a single, fixed glass transition® 2.
Typically, but not always, there is a second, dynamical transition temperature. This usually
exceeds the “static” critical temperature and is characterized by shifting peaks of AC
susceptibility in experimentst. Higher frequency measurements tend to increase the
temperature at which AC susceptibility peaks, which occurs in part because of an increasingly
prominent “memory” of previous states resulting from the slow exploration of phase space.
Computational studies observe this transition through how different initial states maintain a
finite overlap with one another over time®, settling into distinct regions in phase space. Others
characterize this as a transition from high temperature chaotic dynamics to low temperature
convergent dynamics. Here we employ an analysis of the system’s autocorrelation function, its
imperfect power law decay, and the Lyapunov exponent®® (see methods), all as a function of
temperature.

Signatures of the system’s state may be found directly from the two-point autocorrelation
function (see Methods). Both the general shape of the function and the critical exponent
resulting from a power law fitcan help categorize the system. The log-log plot of the
autocorrelation functions (Fig. 4a) all decrease in slope over time, indicating a variable critical
exponent and, by extension, that the system has not yet relaxed to equilibrium. The critical
exponent itself (Fig. 4b) reinforces this conclusion, as it is significantly lower than the
minimum values predicted in equilibrium, v = 0.395% or v = 0.52. Notably, non-equilibrium

autocorrelations are often flatter with lower time elapsed®.



To extract more information about the chaoticity of the system, we studied the Lyapunov
exponent from the spin dynamics. Transitions from convergent to chaotic behavior begin when
similar trajectories through phase space diverge exponentially and continue to diverge despite
the phase space being bound. The time rate of the exponential behavior, the Lyapunov
exponent, is positive when the system is divergent, potentially chaotic, and negative when the
system is convergent. Using a data driven method*, we find similar initial paths and use their
average distance over time to extract the Lyapunov exponent for each temperature (see
methods). The exponents transition from negative values at low temperatures to positive values
at high temperatures (Fig. 4c), consistent with a dynamical transition.

Assessing the system’s statics holistically, the dominance of the spin glass correlation length
over the standard correlation length and its temperature dependence are hallmarks of a system
with a glass ground state. Despite the system ordering as indicated by the increasing magnetic
susceptibility with decreasing temperature (Fig. 3a), the standard correlation lengths (Fig. 3b,
blue squares) are essentially noise. The power law fit determines that v = 0.171 + 0.606,
confirming that the standard correlation function can no longer determine the order parameter.
On the other hand, the spin glass correlation length grows rapidly as the system is cooled (Fig.
3b, red asterisks). Its power law fit produces a critical exponent of v = 3.86 + 1.27 which,
despite the relatively large uncertainty, is only 8.52% from the theoretically known value for a
two-dimensional spin glass, v = 3.559 + 0.025 %, The direct computation of the critical
exponent in a physical system validates core components of spin glass theory without the need
to rely on bulk measurements. Future experiments with longer time sequences and more
temperatures can improve the statistics to further validate this critical scaling.

A dynamical analysis indicates a non-equilibrium temporal correlation and a dynamical
transition support the hypothesis of a rough free energy landscape. The exact temperature

dependence is non-universal, but the autocorrelation function of many spin glasses decays with



a power law with an exponent v = 0.5 at the Alameda-Thouless line in equilibrium? and v =
0.395 for the Edwards-Anderson model®l. This exponent typically decreases as temperature
approaches zero. Experimental results and out of equilibrium simulations find that the critical
exponent varies over long periods of spin glass aging®. It is common for v to start small as the
system initially explores the phase space (sub-aging) and then increase as a path towards lower
energy states is found (aging)'?. Careful observation of autocorrelation functions from our
system shows that they tend to have a constant value of the exponent v until the end of our
measurements where v begins to increase (Fig. 4a). The exponent v varies earlier when
temperature is higher. Combining this observation with the fact that all v values (Fig. 4b) are
far below anything predicted by equilibrium theory suggests that the system is out of
equilibrium at all temperatures and relaxing in the sub-aging regime. Further, the faster
relaxation of the higher temperature systems allows the systems to leave the sub-aging regime
faster, resulting in more variable slopes and increasing the v determined by the fit as it
increases over time. Aside from this continuous evolution towards faster relaxation from sub-
aging, there is another prominent trend in the autocorrelation functions. At 157 K and above,
the values of the autocorrelation function remain relatively similar despite a decreasing slope.
However, as the temperature drops between 157 K and 147 K, systems more rapidly diminish
in their average autocorrelation, then slowly increase in their average autocorrelation after this
initial decrease in temperature. The secondary increase in autocorrelation is likely due to lower
fluctuation rates of the magnetic moments, but the initial dramatic decrease between 157 K and
147 K seems to arise from a dynamic transition. The Lyapunov exponents and the rough free
energy landscape®® of spin glasses further solidify this conclusion.

The Lyapunov exponents increase with increasing temperature (Fig. 4c), showing a tendency
for similar initial states to diverge as the system heats up. The system transitions from

convergent dynamics (1< 0) to divergent dynamics (1> 0) around 157 K, the same



temperature where average autocorrelation jumps dramatically. This is consistent with the
system settling into deeper free energy minima, after losing enough energy to no longer
traverse a broader section of phase space (See Supplementary Movie 3), increasing the rate of
relaxation and grouping together similar trajectories in the same basin. A grouping of
trajectories explains the energetic origins of both dynamic transition and memory in spin glass,
especially considering that the basin is likely centered around a state encoded into the
underlying Hopfield network. As a whole, a varying relaxation over time and a rough free
energy landscape are both hallmarks of a spin glass.

As annealing for these systems is further improved, direct real-space studies and investigation
of the spin glass ground state will be accessible and assist in our understanding of equivalent
NP hard problems®® and brain science models®. The freedom to lithographically tweak these
systems’ interaction networks will allow for the representation of other computing problems.
It has already been shown that nanomagnetic systems may potentially approach the Landauer
limit at room temperature® and thus make excellent candidates for low energy computing.
Altogether, visual access to the dynamics of these systems allows for a rich tool in

comprehending novel disordered phases and the myriad of systems with glassy behavior.

Methods

Designing a nanomagnetic Hopfield network. Both Hopfield networks and Ising spin
systems evolve as governed by their “interaction” networks. Here we describe how those
networks are defined and how they may be modified computationally to match one another
prior to fabrication.

A Hopfield neural network of size N is represented by a vector S;™ of binary states (-1 and 1)

at iteration m. A connectivity matrix w;; governs its dynamics via the rule



N
Si,m+1 = f(z 1Wl]S’m>
]=

To maintain a binary range, the activation function is defined as f(x) = % the “sign” function.

The connectivity matrix is created from a set of n patterns, ¢/, each labelled by v, that ;™
intends to “recall,” or grow closer to, over several iterations. The storage is encoded in the

connection or weight matrix by the Hebbian learning rule:

n
wij = lz §¢5.
n v=1

Here we consider & to be a random vector whose entries are independently drawn from the

probability distribution p(¢Y = 1) =p(§/ = —1) = 0.5. Practically speaking, patterns of

interest may not take on this form, but a mapping of all bits from a set of patterns ELV onto & is
possible if n < N. The attractors of this dynamical system are ¢, making them the
“memorized” patterns of the system.

Hopfield showed that the iterative evolution described in equation (1) always decreases an

effective Hamiltonian,

1 1ol

The Ising Hamiltonian in zero field has the same form,

1
ij

Ji; is here determined by magnetic interactions and is analogous to the connectivity matrix w;;.
In artificial nanomagnets, dipolar interaction strength is determined by the distribution of
magnetization and positions and orientations of the nanomagnets for patterned nanomagnetic
systems and S; is the binary Ising variable indicating the orientation of the magnetization. To
model the exact interaction strength for a collection of nanomagnets with positions r;and

orientations 6;, we implement the compass needle model:
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Since this model assumes interactions occur between magnetic charges at the ends of the
nanomagnets, r,; and r,; are the positions of the positive and negative charge belonging to
spin i as determined by the lengths, positions, and orientations of the magnets.

To fabricate an Ising system equivalent to a Hopfield network, one must first reduce the
difference between w;; and J;; as much as possible (see Fig. 1a-b). The scale of each is
irrelevant, so they are both normalized by the average absolute interaction strength per neuron
or spin. Specifically, wj; = w;;N/¥;;|w;;| and Ji; = J;iN/X¥;; J;j| . We then use machine
learning methods to change & and the positions and angles of a nanomagnetic design to
minimize a cost function € = ¥;;(w;; —]{j)z. We determine this through gradient descent of
the continuous variables, r; and 6;, and relatively quickly reach local minima. The cost
function may be further reduced through modification of the discrete pattern states, &, as any
states of interest may be mapped onto arbitrary stored patterns. A Monte Carlo Metropolis
annealing of “energy” C with “spins” &} is an appropriate method of further reducing the cost
function. This is carried out with parallel tempering at 100 separate temperatures, the lowest
temperature of which is used for the new ¢. The overall process of matching the systems
progresses by alternating gradient descent and annealing until ¢ converges. The positions and

orientations are then used to fabricate our nanomagnetic system (Fig. 1c).

Sample fabrication. Lift-off assisted electron beam lithography was used to generate
nanomagnetic Hopfield networks. A 1x1 cm? Silicon (100) substrate is first spin-coated with
a 70 nm thick layer of polymethylmethacrylate (PMMA) resist. Then, a VISTEC VB300 e-
beam writer is used to define the Hopfield patterns onto the substrate. Following development

of the exposed resist layer, a 2.7 nm thin Permalloy (NigoFe2o) film is deposited on the substrate
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at a base pressure of 1.4x107 torr, together with an Aluminum capping layer of 2 nm, to avoid
fast oxidation. Then, the substrate is placed into Acetone for lift-off. The resulting
nanomagnetic artificial Hopfield networks consisted of nanomagnets with lengths L = 300 nm

and widths W = 100 nm.

Photoemission electron microscopy (PEEM). Magnetic imaging was performed at the PEEM
endstation of the SIM beamline at the Swiss Light Source (SLS) and the 21-ID-2 Beamline at
the National Synchrotron Light Source (NSLS), employing x-ray magnetic circular dichroism
(XMCD) at the Fe L3 edge®®. An XMCD image is a result of pixelwise division of images
obtained with circular left and circular right polarized light. The typical dark and bright contrast
is a direct measure of orientation of a magnetic moment with the incoming x-ray propagation
vector. Moments with a non-zero component towards the incoming x-rays will appear dark,
while moment pointing in the opposite direction will appear bright (Fig. 2a). 70 XMCD images
were recorded every 14 seconds at 120 K, 130 K, 147 K, 157 K, 168 K, 181 K, and 196 K.

Systemwide time evolution occurred on the order of seconds as indicated by Fig. 2b.

Spin-spin correlations and magnetic susceptibility. Temperature dependent spatial spin
correlations are extracted using our previously employed method®. The spatial correlation
function was calculated:
C(ryj) = (sl-s,-)T

where S; = +1 to represent the Ising state of spin i, r;; is the distance between spins i and j,
and (---)r denotes a thermal average. The absolute value of this, ¢'(r;;) = |C(r;;)|, was used
for correlation function calculations. All correlation function values corresponding to r —
A/2 <r; <r+A/2where A is the distance between consecutive 7, were averaged to a single

value,
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Npair

1
(€' @ay = — ) €'y,
ij
The decay of the correlation function is expected to follow an exponential function [C'(7)] 4, =

e"ﬁ , Where L(T) is the standard correlation length, which can also be plotted as function of
temperature.

The dimensionless magnetic susceptibility y was calculated from this correlation using the
fluctuation dissipation theorem. This susceptibility y was returned to appropriate dimensions

by an additional factor, m, the magnetic moment of a single Ising macrospin:

__m ZC
X= A ().
7]
For the nanomagnets discussed here, the magnetic moment m is calculated from a saturation

magnetization, M = 85 kA/m found for similarly thin-film permalloy structures®, to be m =

5.41 x 108 Am?.

Unbiased spin glass spin-spin correlation and correlation length. The measurements

determine C;;, an estimate for the spin-spin correlation (S;S;), between all pairs of spins i and

ij
j. Naturally, there is an uncertainty in the experimental results. Let us write

Cij = (SiS;) + €. (1)
Assuming that the system is equilibrated, the error ¢;; is a random variable with zero mean.
We say that C;; is an unbiased estimator for (5;S;). (Unbiased means that if one repeats the set
of measurements many times, then the average gets arbitrarily close to the exact answer).

However, for spin glass correlations we need the square of the correlation function. In this

case, C/; is a biased estimator for the spin glass correlation function (Sl-Sj)2 because



13

and the term e7; has a non-zero mean. As a simple example, suppose that C;; is obtained from

just one spin configuration. Then ¢, = (SiS]-)Z = 1, for all pairs. Hence summing over all pairs
to give the spin glass susceptibility gives a completely wrong result. However, even if C;; is
obtained from just one spin configuration, summing C;; over all pairs to get the ferromagnetic
susceptibility gives a result which, though having quite large error bars, is nonetheless
unbiased. From spin configurations one can calculate:

(S:S;) estimated from ¢;; = nitz’;;lsi(ta)sj(ta).
2 ; 2 _ |1 yne 2
(S:S;)" estimated from C7 = [n—Zazlsi(ta)Sj(ta)] .
t

One can eliminate the bias in the above estimate for (SL-S]-)Z by dividing the n, measurement
times into two equal halves, and correlating the spin product (S;S;) at a time t,, in the first half
with the same spin product at the corresponding time in the second half, i.e.

estimate (s;S;)” from C5° = ﬁz’;g/f Si(t)Si(ta)Si(tasny/2)Si (tasmyy2)-

If ¢,,, is greater than the relaxation time of the spins there is no correlation between the spins at

the earlier and later times and so, on average, this expression for ¢3¢ is equal to the desired

quantity (SL-SJ-)2 without any bias. This estimate of ¢3¢ was mapped to C¢(r;;) for the

nanomagnets and was spatially averaged to extract a spin glass correlation length:

Dynamical Analysis

Now, we turn our attention to temperature-dependent observations of thermal fluctuations in
our artificial Ising spin glass structures. Spin glass is observed and theorized to relax in
different ways depending on whether the spin is equilibrated and below the critical
temperature® 2. The equilibrium behavior of more ideal spin glasses is thoroughly catalogued

through early theories on spin glasses. The two-point autocorrelation function,



14

C(ty,tp) = (Sj(tz)Sj(t1)>j,
where (...); is an average over all spin indices, relaxes in many different forms depending on
the whether or not the system is above the Alameda-Thouless line, a dynamical transition
temperature depending on external field, and the precise model being used®. A power law
relaxation?® best fit our system:

C(ty, tp) = (t, — t;1)VD,
v(T) is an exponent that varies with temperature. The two-point autocorrelation function is
extracted from our time dependent data at each temperature and fit to the power law decay to
extract v(T) (Fig 4. a-b).
One can help assess whether a dynamic series is chaotic through computation of the Lyapunov
exponent. The notion of the Lyapunov exponent considers a system and a near identical
duplicate with a small offset in initial conditions. The systems evolve in parallel and an
appropriate measure of distance, D(t), between the two systems is analyzed. If a system is
chaotic, D(t) should grow exponentially. If not, D(t) will diminish. This mathematical form,
D(t) = Dye’t, is fit by a variety of methods to determine the sign of 1, deemed the Lyapunov
exponent, a positive value indicating chaos. Note that the metric D(t) may exist in higher
dimensions and yield a variety of Lyapunov exponents, a Lyapunov spectrum, where the sign
of the largest exponent is used to evaluate whether or not the system is chaotic. The method
employed here uses one average measure of distance to estimate this largest Lyapunov
exponent.
We begin by considering a series of spin data, S;(t;), as a dynamical sequence. The sequence
is processed as follows®:

1. The mean period, T, of the system is estimated from the peak of the power spectrum of

the sum over all spins. That is, from the spectrum P(f) = |F(ZN_ Sc(t))|”, where
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F(---) is the 1-D Fourier transform, one can determine the frequency that corresponds
to the maximum power, frqx ,» andthen T = 1/fqx-

2. For each time t;, this mean period was used to find a “nearest neighbor” state at time
A A A 2
t;. Thatis, t; is the time where Y, <Sk(t]-) — Sk (t]-)> IS minimized under the condition

that |tj —t

> T to prevent just picking a temporally correlated state. This comparison

between similar, but temporally disparate states is assumed to be close to an experiment

where two separate states with similar initial conditions are evolved in parallel.
R 2
3. Compute the distances, d;(t;) = X (Sk(tj) — Sk (tj + ti)> , between these two states

over all possible times (that is, cease computation when either ¢; or t; +t; grows
beyond the size of the data set).

4. Average the logarithm of the distances over every starting point, j:

y(t) = i(log (dj(ti))> . Given the base hypothesis that similar states exponentially
j

grow or shrink in distance, the slope of the linear fit to this data is the estimate of the
largest Lyapunov exponent, A.
These exponents were calculated at every temperature and plotted in Fig. 4g. The exponents
increase with temperature, transitioning from negative to positive values between 157 K and

168 K. This indicates a leap into chaotic or divergent behavior.
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Figures

Figure 1. Nanomagnetic artificial Hopfield networks. a, An artificial spin glass with the
coupling between spins represented as red (J;; > 0 or ferromagnetic) and blue (J;; <0 or
antiferromagnetic) lines, their thickness proportional to strength. b, A Hopfield neural network
to which the spin glass was matched. The dots represent the neurons and the lines the dominant
connections, drawn red if w;; < 0 and blue if w;; > 0. Further optimization will correct for
mismatched features of these graphs, such as the higher proportion of non-local interactions in
(b) and larger number of extraordinarily strong interactions in (a). ¢, Scanning electron
microscopy (SEM) image of a portion of an artificial Hopfield network consisting of Ising-
type nanomagnets with lengths L = 300 nm, widths W = 100 nm and thickness d = 2.7 nm. The

red scale bar indicates a length of 600 nm.
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Figure 2. Imaging low-energy moment configurations in a nanomagnetic artificial
Hopfield network. a, XMCD image recorded at 105 K of a frozen-in low-energy state
achieved after thermal annealing. The yellow arrow indicates the direction of the incoming x-
rays. Moments pointing the incoming x-rays appear dark, while moments in the opposite
direction will appear bright. The red scale bar indicates a length of 2um. b, Cropped XMCD
image sequence of 6 images covering a timeframe of 63 seconds with moment reorientations

occurring from frame to frame indicated with different colors.
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Figure 3. Temperature dependent inverse susceptibility and correlation length derived
from real-space observations. a, The dimensionless, inverse susceptibility, ’,:L—Z)(‘l, of the
B

annealed spin glass is plotted as green circles and fit to the Curie law, ’:—ZX(T) = ﬁ, green
B —lc

dashed line, yielding T, = 27.6 + 15.7 K and A = —221. b, The standard and spin glass
correlation lengths extracted from their respective correlation functions (see Supplementary
Figure 2) are plotted as blue squares and red asterisks, respectively. Fitting their critical
behavior, f(T) = B(T —T,)", finds a standard exponent and temperature of v = 0.171 + 0.606

and B = 1.33 ‘I‘(—’f and spin glass parameters of v = 3.86 + 1.27 and B = 1.78 x 108 %l
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Figure 4. Dynamical behavior of a nanoamgnetic Hopfield network. a, The autocorrelation

function plotted on a log-log plot for all lattice temperatures. If the anticipated power law decay

is observed, the plots will be linear. b, The decay power v fit from the autocorrelation function

of the form C(¢ —t,) = Co(t — t,)™". ¢, The Lyapunov exponent of moment dynamics plotted

versus temperature.
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