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Spin glasses, generally defined as disordered systems with randomized competing 

interactions that result in an extensively degenerate ground state1, 2, are a widely 

investigated complex system. Theoretical models describing spin glasses are broadly used 

in other complex systems, such as those describing brain function3, 4, error-correcting 

codes5, or stock-market dynamics6. This wide interest in spin glasses provides strong 

motivation to generate an artificial spin glass within the framework of artificial spin ice 

systems7-9. Here, we present the first experimental realization of an artificial spin glass, 

consisting of dipolar coupled single-domain Ising-type nanomagnets arranged onto an 

interaction network that replicates the aspects of a Hopfield neural network10. Using 

cryogenic x-ray photoemission electron microscopy (XPEEM), we performed 

temperature dependent imaging of thermally driven moment fluctuations within these 

networks and observed characteristic features of a two-dimensional Ising spin glass. 

Specifically, the temperature dependence of the spin glass correlation function follows a 

power law trend predicted from theoretical models on two-dimensional spin glasses11. 

Furthermore, we observe clear signatures of the hard to observe rugged spin glass free 
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energy1 in the form of sub-aging, out of equilibrium autocorrelations12 and a transition 

from convergent to divergent dynamics1, 13. 

 

Recent advances in nanofabrication techniques opened a pathway to create artificial spin 

systems that exhibit geometrical frustration and allow direct real-space observations of 

magnetic configurations9. Artificial spin ice systems, comprising Ising-type nanomagnets 

lithographically arranged onto two-dimensional square14, 15 and kagome16, 17 geometries, 

emerged as prominent examples in recent years. Artificial spin ices exhibiting thermally 

induced moment fluctuations16 paved the way for a whole new line of research where Ising-

type nanomagnets are arranged onto novel two-dimensional magnetically frustrated geometries 

that exhibit a variety of emergent phenomena, ranging from emergent magnetic charge 

screening18, 19, effective reduced20 and elevated7 dimensionalities, effective or mediate 

interaction patterns21, 22, to emergent topological order23. Despite this long list of success stories 

of artificial spin ice systems, the realization of an artificial spin glass system remained elusive. 

True spin glass systems not only arise from random interactions and competition between 

ferro- and antiferromagnet order, but also possess distinct thermodynamic and dynamical 

traits1, 2. The main challenge remained to design arrays of nanomagnets with a dipolar 

interaction network that leads to spin glass behavior. For example, using a Gaussian-type 

disorder in arranging Ising-type nanomagnets onto a two-dimensional plane8 determined that 

the type and degree of disorder are crucial to the realization of spin glasses when an ideal 

balance between ferro- and antiferromagnetic interactions is achieved. Despite balancing 

competition between ferro- and antiferromagnetic interactions in a randomized array of 

nanomagnets, a spin glass phase appears inaccessible at finite temperatures using this 

approach8. Using the concept of effective dimensionality in interacting networks25 and 

theoretical predictions that a spin glass phase can only be stabilized at finite temperatures when 
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a critical effective dimension of 2.52 is surpassed26, it was shown that tree-like nanomagnetic 

patterns with elevated effective dimensionality can be a successful strategy to increase the 

effective dimension well above this critical value7. However, fabricating extended and quasi-

infinite tree-like structures remains a currently unsurpassable challenge.  

Here, we seek to realize an artificial spin glass implementing a proof-of-principle Hopfield 

neural network10 (see methods), a model of associative memory mathematically equivalent to 

a spin glass, to guide the disorder of artificial spin systems. Conceptually, associative memory 

does not require a perfectly identical scenario to identify a memory. For example, most people 

can recognize a familiar face if it is partially obscured or an entire song from a low-quality 

recording. Hopfield networks are dynamical systems that evolve toward memories when their 

inputs are within a neighborhood of those memories. The memories of these networks 

correspond to ground states of a spin system and are robust to noise (see schematic in Figure 

1a, b and Supplementary Figure 1). This robustness corresponds to a broad basin of attraction 

surrounding the spin glass ground state, allowing the system, in theory, to relax towards the 

ground state at non-zero temperatures.  

We fabricated nanomagnetic Hopfield networks (see methods) consisting of permalloy 

(Ni80Fe20) Ising-type nanomagnets with lengths 𝐿  = 300 nm, widths 𝑊  = 100 nm, and 

thicknesses 𝑑 = 2.7 nm (see Figure 1c). The dimension of the nanomagnets was chosen to 

ensure thermally driven moment reorientations occurring at the timescale of a few seconds to 

occur at a blocking temperature 𝑇𝐵 = 110 K. Following sample fabrication, the sample was kept 

in vacuum at room temperature for several weeks to allow the Hopfield networks to relax 

towards equilibrium low-energy states19, 27 before it was transferred into the photoemission 

electron microscope (PEEM) for magnetic imaging, employing x-ray magnetic circular 

dichroism (XMCD) at the Fe L3 edge28 (see methods). In PEEM, the sample was cooled down 

to 105 K (below the blocking point) and imaged, to observe the frozen-in low-energy state 
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achieved after thermal annealing (see Figure 2a). Then, the sample was heated up to 120 K 

(above the blocking temperature), to start our real-time observations of thermal fluctuations 

and various temperatures (see Supplementary Movies 1 and 2).  

As a first characterization step, we extracted the temperature dependent dimensionless 

magnetic susceptibility8 
𝑚2

𝑘𝐵
𝜒(𝑇)  (see methods) and plotted its inverse as a function of 

temperature (see Figure 3a). Note that these measures and those extracted from them result 

from the collective system dynamics and therefore differ from those of isolated permalloy. 

Fitting this temperature dependence to a Curie-Weiss law, 
𝑘B

𝑚2

1

𝜒(𝑇)
=

(𝑇−𝑇𝐶)

𝐴
, (see green dashed 

line in Figure 3a) revealed a Curie temperature 𝑇𝐶  = 27.6 ± 15.7 K. This temperature is far 

below the blocking temperature 𝑇𝐵  = 100 K of the patterned nanomagnets, comparable to 

results obtained from nanomagnetic arrays with a Gaussian disorder8 and confirms that 

interactions are well randomized in the Hopfield networks because ferromagnetic order does 

not dominate as seen previously8. 

In bulk experimental spin glass, a comparison between field cooled and zero field cooled 

systems typically shows signatures of a spin glass. Here, we provide a more direct 

characterization of the thermodynamics to explore spin glass behavior in these artificial 

Hopfield networks. We extracted both the standard spin correlation function [𝐶′(𝑟)]𝑎𝑣 and the 

unbiased spin glass correlation function29 [𝐶𝑆𝐺(𝑟)]𝑎𝑣  (see methods) and plotted them as a 

function of distance (see Figure 3b). We then fit these correlation functions with a spatial decay 

function in the form of  𝑒
−

𝑟

𝐿(𝑇)  and 𝑒
−

𝑟

𝐿𝑆𝐺(𝑇) , with 𝐿(𝑇)  and 𝐿𝑆𝐺(𝑇)  being the temperature 

dependent standard (blue squares in Figure 3b) and spin glass correlation lengths (red asterisks 

in Figure 3b), respectively. Fitting the temperature dependence of these correlation lengths to 

a power law of the form 𝑓(𝑇) = 𝐵(𝑇 − 𝑇𝑐)
𝜈 (see blue and red dashed lines in Figure 3b), we 

calculate a standard critical exponent 𝜈 = 0.171 ± 0.606 and a spin glass critical exponent  

𝜈𝑆𝐺 = 3.86 ± 1.2. The latter values come close to the critical exponent 𝜈𝑆𝐺 = 3.559 predicted 
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for a two-dimensional Ising spin glass11, indicating that our artificial Hopfield networks are 

ordering towards a spin glass transition.  

The dynamics of spin glass vary significantly when two factors are changed: whether the 

system is in or out of equilibrium and above or below the glass transition. To complicate 

matters further, evidence suggests that there is not simply a single, fixed glass transition1, 2. 

Typically, but not always, there is a second, dynamical transition temperature. This usually 

exceeds the “static” critical temperature and is characterized by shifting peaks of AC 

susceptibility in experiments1. Higher frequency measurements tend to increase the 

temperature at which AC susceptibility peaks, which occurs in part because of an increasingly 

prominent “memory” of previous states resulting from the slow exploration of phase space. 

Computational studies observe this transition through how different initial states maintain a 

finite overlap with one another over time30, settling into distinct regions in phase space. Others 

characterize this as a transition from high temperature chaotic dynamics to low temperature 

convergent dynamics. Here we employ an analysis of the system’s autocorrelation function, its 

imperfect power law decay, and the Lyapunov exponent13 (see methods), all as a function of 

temperature. 

Signatures of the system’s state may be found directly from the two-point autocorrelation 

function (see Methods). Both the general shape of the function and the critical exponent 

resulting from a power law fit can help categorize the system. The log-log plot of the 

autocorrelation functions (Fig. 4a) all decrease in slope over time, indicating a variable critical 

exponent and, by extension, that the system has not yet relaxed to equilibrium. The critical 

exponent itself (Fig. 4b) reinforces this conclusion, as it is significantly lower than the 

minimum values predicted in equilibrium, ν = 0.39531 or ν = 0.52. Notably, non-equilibrium 

autocorrelations are often flatter with lower time elapsed1. 
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To extract more information about the chaoticity of the system, we studied the Lyapunov 

exponent from the spin dynamics. Transitions from convergent to chaotic behavior begin when 

similar trajectories through phase space diverge exponentially and continue to diverge despite 

the phase space being bound. The time rate of the exponential behavior, the Lyapunov 

exponent, is positive when the system is divergent, potentially chaotic, and negative when the 

system is convergent. Using a data driven method34, we find similar initial paths and use their 

average distance over time to extract the Lyapunov exponent for each temperature (see 

methods). The exponents transition from negative values at low temperatures to positive values 

at high temperatures (Fig. 4c), consistent with a dynamical transition.  

Assessing the system’s statics holistically, the dominance of the spin glass correlation length 

over the standard correlation length and its temperature dependence are hallmarks of a system 

with a glass ground state. Despite the system ordering as indicated by the increasing magnetic 

susceptibility with decreasing temperature (Fig. 3a), the standard correlation lengths (Fig. 3b, 

blue squares) are essentially noise. The power law fit determines that 𝜈 = 0.171 ± 0.606 , 

confirming that the standard correlation function can no longer determine the order parameter. 

On the other hand, the spin glass correlation length grows rapidly as the system is cooled (Fig. 

3b, red asterisks). Its power law fit produces a critical exponent of 𝜈 = 3.86 ± 1.27 which, 

despite the relatively large uncertainty, is only 8.52% from the theoretically known value for a 

two-dimensional spin glass, 𝜈 = 3.559 ± 0.025 11. The direct computation of the critical 

exponent in a physical system validates core components of spin glass theory without the need 

to rely on bulk measurements. Future experiments with longer time sequences and more 

temperatures can improve the statistics to further validate this critical scaling. 

A dynamical analysis indicates a non-equilibrium temporal correlation and a dynamical 

transition support the hypothesis of a rough free energy landscape. The exact temperature 

dependence is non-universal, but the autocorrelation function of many spin glasses decays with 
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a power law with an exponent v = 0.5 at the Alameda-Thouless line in equilibrium2 and ν =

0.395 for the Edwards-Anderson model31. This exponent typically decreases as temperature 

approaches zero. Experimental results and out of equilibrium simulations find that the critical 

exponent varies over long periods of spin glass aging1. It is common for 𝑣 to start small as the 

system initially explores the phase space (sub-aging) and then increase as a path towards lower 

energy states is found (aging)12. Careful observation of autocorrelation functions from our 

system shows that they tend to have a constant value of the exponent 𝑣 until the end of our 

measurements where 𝑣  begins to increase (Fig. 4a). The exponent 𝑣  varies earlier when 

temperature is higher. Combining this observation with the fact that all 𝑣 values (Fig. 4b) are 

far below anything predicted by equilibrium theory suggests that the system is out of 

equilibrium at all temperatures and relaxing in the sub-aging regime. Further, the faster 

relaxation of the higher temperature systems allows the systems to leave the sub-aging regime 

faster, resulting in more variable slopes and increasing the 𝑣  determined by the fit as it 

increases over time. Aside from this continuous evolution towards faster relaxation from sub-

aging, there is another prominent trend in the autocorrelation functions. At 157 K and above, 

the values of the autocorrelation function remain relatively similar despite a decreasing slope. 

However, as the temperature drops between 157 K and 147 K, systems more rapidly diminish 

in their average autocorrelation, then slowly increase in their average autocorrelation after this 

initial decrease in temperature. The secondary increase in autocorrelation is likely due to lower 

fluctuation rates of the magnetic moments, but the initial dramatic decrease between 157 K and 

147 K seems to arise from a dynamic transition. The Lyapunov exponents and the rough free 

energy landscape33 of spin glasses further solidify this conclusion.  

The Lyapunov exponents increase with increasing temperature (Fig. 4c), showing a tendency 

for similar initial states to diverge as the system heats up. The system transitions from 

convergent dynamics ( 𝜆 < 0 ) to divergent dynamics ( 𝜆 > 0 ) around 157 K, the same 
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temperature where average autocorrelation jumps dramatically. This is consistent with the 

system settling into deeper free energy minima, after losing enough energy to no longer 

traverse a broader section of phase space (See Supplementary Movie 3), increasing the rate of 

relaxation and grouping together similar trajectories in the same basin. A grouping of 

trajectories explains the energetic origins of both dynamic transition and memory in spin glass, 

especially considering that the basin is likely centered around a state encoded into the 

underlying Hopfield network. As a whole, a varying relaxation over time and a rough free 

energy landscape are both hallmarks of a spin glass.  

As annealing for these systems is further improved, direct real-space studies and investigation 

of the spin glass ground state will be accessible and assist in our understanding of equivalent 

NP hard problems30 and brain science models3. The freedom to lithographically tweak these 

systems’ interaction networks will allow for the representation of other computing problems. 

It has already been shown that nanomagnetic systems may potentially approach the Landauer 

limit at room temperature34 and thus make excellent candidates for low energy computing. 

Altogether, visual access to the dynamics of these systems allows for a rich tool in 

comprehending novel disordered phases and the myriad of systems with glassy behavior.  

 

Methods 

Designing a nanomagnetic Hopfield network. Both Hopfield networks and Ising spin 

systems evolve as governed by their “interaction” networks. Here we describe how those 

networks are defined and how they may be modified computationally to match one another 

prior to fabrication. 

A Hopfield neural network of size 𝑁 is represented by a vector 𝑆𝑖
′𝑚 of binary states (-1 and 1) 

at iteration 𝑚. A connectivity matrix 𝑤𝑖𝑗 governs its dynamics via the rule 
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𝑆𝑖
′𝑚+1 = 𝑓 (∑ 𝑤𝑖𝑗𝑆𝑗

′𝑚
𝑁

𝑗=1
). 

To maintain a binary range, the activation function is defined as 𝑓(𝑥) =
|𝑥|

𝑥
, the “sign” function. 

The connectivity matrix is created from a set of 𝑛 patterns, 𝜉𝑖
𝜈, each labelled by 𝜈, that 𝑆𝑖

′𝑚 

intends to “recall,” or grow closer to, over several iterations. The storage is encoded in the 

connection or weight matrix by the Hebbian learning rule: 

𝑤𝑖𝑗 =
1

𝑛
∑ 𝜉𝑖

𝜈𝜉𝑗
𝜈

𝑛

𝜈=1
. 

Here we consider 𝜉𝑖
𝜈 to be a random vector whose entries are independently drawn from the 

probability distribution 𝑝(𝜉𝑖
𝜈 = 1) = 𝑝(𝜉𝑖

𝜈 = −1) = 0.5 . Practically speaking, patterns of 

interest may not take on this form, but a mapping of all bits from a set of patterns 𝜉
~

𝑖
𝜈 onto 𝜉𝑖

𝜈 is 

possible if 𝑛 < 𝑁 . The attractors of this dynamical system are 𝜉𝑖
𝜈 , making them the 

“memorized” patterns of the system.  

Hopfield showed that the iterative evolution described in equation (1) always decreases an 

effective Hamiltonian, 

𝐻𝑒𝑓𝑓 = −
1

2
∑ 𝑤𝑖𝑗𝑆𝑖

′𝑆𝑗
′

𝑖𝑗
. 

The Ising Hamiltonian in zero field has the same form, 

𝐻𝐼 = −
1

2
∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗

𝑖𝑗
. 

𝐽𝑖𝑗 is here determined by magnetic interactions and is analogous to the connectivity matrix 𝑤𝑖𝑗. 

In artificial nanomagnets, dipolar interaction strength is determined by the distribution of 

magnetization and positions and orientations of the nanomagnets for patterned nanomagnetic 

systems and 𝑆𝑖 is the binary Ising variable indicating the orientation of the magnetization. To 

model the exact interaction strength for a collection of nanomagnets with positions 𝒓𝑖and 

orientations 𝜃𝑖, we implement the compass needle model: 
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𝐽𝑖𝑗 = −(
1

|𝒓𝑎𝑖 − 𝒓𝑎𝑗|
−

1

|𝒓𝑎𝑖 − 𝒓𝑏𝑗|
−

1

|𝒓𝑏𝑖 − 𝒓𝑎𝑗|
+

1

|𝒓𝑏𝑖 − 𝒓𝑏𝑗|
). 

Since this model assumes interactions occur between magnetic charges at the ends of the 

nanomagnets, 𝒓𝑎𝑖 and 𝒓𝑏𝑖 are the positions of the positive and negative charge belonging to 

spin 𝑖 as determined by the lengths, positions, and orientations of the magnets. 

To fabricate an Ising system equivalent to a Hopfield network, one must first reduce the 

difference between 𝑤𝑖𝑗  and 𝐽𝑖𝑗  as much as possible (see Fig. 1a-b). The scale of each is 

irrelevant, so they are both normalized by the average absolute interaction strength per neuron 

or spin. Specifically, 𝑤𝑖𝑗
′ = 𝑤𝑖𝑗𝑁/∑ |𝑤𝑖𝑗|𝑖𝑗  and 𝐽𝑖𝑗

′ = 𝐽𝑖𝑗𝑁/∑ |𝐽𝑖𝑗|𝑖𝑗 . We then use machine 

learning methods to change 𝜉𝑖
𝜈  and the positions and angles of a nanomagnetic design to 

minimize a cost function 𝐶 = ∑ (𝑤𝑖𝑗
′ − 𝐽𝑖𝑗

′ )
2

𝑖𝑗 . We determine this through gradient descent of 

the continuous variables, 𝒓𝑖  and 𝜃𝑖 , and relatively quickly reach local minima. The cost 

function may be further reduced through modification of the discrete pattern states, 𝜉𝑖
𝜈, as any 

states of interest may be mapped onto arbitrary stored patterns. A Monte Carlo Metropolis 

annealing of “energy” 𝐶 with “spins” 𝜉𝑖
𝜈 is an appropriate method of further reducing the cost 

function. This is carried out with parallel tempering at 100 separate temperatures, the lowest 

temperature of which is used for the new 𝜉𝑖
𝜈. The overall process of matching the systems 

progresses by alternating gradient descent and annealing until 𝐶 converges. The positions and 

orientations are then used to fabricate our nanomagnetic system (Fig. 1c). 

 

Sample fabrication. Lift-off assisted electron beam lithography was used to generate 

nanomagnetic Hopfield networks. A 1×1 cm2 Silicon (100) substrate is first spin-coated with 

a 70 nm thick layer of polymethylmethacrylate (PMMA) resist. Then, a VISTEC VB300 e-

beam writer is used to define the Hopfield patterns onto the substrate. Following development 

of the exposed resist layer, a 2.7 nm thin Permalloy (Ni80Fe20) film is deposited on the substrate 
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at a base pressure of 1.4×10-7 torr, together with an Aluminum capping layer of 2 nm, to avoid 

fast oxidation. Then, the substrate is placed into Acetone for lift-off. The resulting 

nanomagnetic artificial Hopfield networks consisted of nanomagnets with lengths L = 300 nm 

and widths W = 100 nm.  

 

Photoemission electron microscopy (PEEM). Magnetic imaging was performed at the PEEM 

endstation of the SIM beamline at the Swiss Light Source (SLS) and the 21-ID-2 Beamline at 

the National Synchrotron Light Source (NSLS), employing x-ray magnetic circular dichroism 

(XMCD) at the Fe L3 edge28. An XMCD image is a result of pixelwise division of images 

obtained with circular left and circular right polarized light. The typical dark and bright contrast 

is a direct measure of orientation of a magnetic moment with the incoming x-ray propagation 

vector. Moments with a non-zero component towards the incoming x-rays will appear dark, 

while moment pointing in the opposite direction will appear bright (Fig. 2a). 70 XMCD images 

were recorded every 14 seconds at 120 K, 130 K, 147 K, 157 K, 168 K, 181 K, and 196 K. 

Systemwide time evolution occurred on the order of seconds as indicated by Fig. 2b. 

 

Spin-spin correlations and magnetic susceptibility. Temperature dependent spatial spin 

correlations are extracted using our previously employed method8. The spatial correlation 

function was calculated: 

𝐶(𝒓𝑖𝑗) = ⟨𝑆𝑖𝑆𝑗⟩𝑇 

where 𝑆𝑖 = ±1 to represent the Ising state of spin i, 𝒓𝑖𝑗 is the distance between spins i and j, 

and ⟨⋯ ⟩𝑇 denotes a thermal average. The absolute value of this, 𝐶′(𝒓𝑖𝑗) = |𝐶(𝒓𝑖𝑗)|, was used 

for correlation function calculations. All correlation function values corresponding to 𝑟 −

Δ/2 < 𝑟𝑖𝑗 < 𝑟 + Δ/2 where Δ is the distance between consecutive 𝑟𝑘, were averaged to a single 

value,  
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[𝐶′(𝑟)]𝑎𝑣 =
1

𝑁𝑝𝑎𝑖𝑟
∑𝐶′(𝒓𝑖𝑗).

𝑖𝑗

 

The decay of the correlation function is expected to follow an exponential function [𝐶′(𝑟)]𝑎𝑣 =

𝑒
−

𝑟

𝐿(𝑇) , where 𝐿(𝑇) is the standard correlation length, which can also be plotted as function of 

temperature. 

The dimensionless magnetic susceptibility 𝜒 was calculated from this correlation using the 

fluctuation dissipation theorem. This susceptibility 𝜒 was returned to appropriate dimensions 

by an additional factor, 𝑚, the magnetic moment of a single Ising macrospin: 

𝜒 =
𝑚

𝑘𝐵𝑇
∑𝐶(𝒓𝑖𝑗)

𝑖𝑗

. 

For the nanomagnets discussed here, the magnetic moment 𝑚 is calculated from a saturation 

magnetization, M = 85 kA/m found for similarly thin-film permalloy structures16, to be m = 

5.41 × 10-18 Am2.  

 

Unbiased spin glass spin-spin correlation and correlation length. The measurements 

determine 𝐶𝑖𝑗, an estimate for the spin-spin correlation ⟨𝑆𝑖𝑆𝑗⟩, between all pairs of spins 𝑖 and 

𝑗.  Naturally, there is an uncertainty in the experimental results.  Let us write  

𝐶𝑖𝑗 = ⟨𝑆𝑖𝑆𝑗⟩ + 𝜖𝑖𝑗. (1) 

Assuming that the system is equilibrated, the error 𝜖𝑖𝑗 is a random variable with zero mean.  

We say that 𝐶𝑖𝑗 is an unbiased estimator for ⟨𝑆𝑖𝑆𝑗⟩.  (Unbiased means that if one repeats the set 

of measurements many times, then the average gets arbitrarily close to the exact answer). 

However, for spin glass correlations we need the square of the correlation function.  In this 

case, 𝐶𝑖𝑗
2  is a biased estimator for the spin glass correlation function ⟨𝑆𝑖𝑆𝑗⟩

2
 because  

𝐶𝑖𝑗
2 = ⟨𝑆𝑖𝑆𝑗⟩

2
+ 2⟨𝑆𝑖𝑆𝑗⟩𝜖𝑖𝑗 + 𝜖𝑖𝑗

2  
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and the term 𝜖𝑖𝑗
2  has a non-zero mean. As a simple example, suppose that 𝐶𝑖𝑗 is obtained from 

just one spin configuration. Then 𝐶𝑖𝑗
2 = ⟨𝑆𝑖𝑆𝑗⟩

2
= 1, for all pairs.  Hence summing over all pairs 

to give the spin glass susceptibility gives a completely wrong result.  However, even if 𝐶𝑖𝑗 is 

obtained from just one spin configuration, summing 𝐶𝑖𝑗 over all pairs to get the ferromagnetic 

susceptibility gives a result which, though having quite large error bars, is nonetheless 

unbiased. From spin configurations one can calculate: 

⟨𝑆𝑖𝑆𝑗⟩ estimated from 𝐶𝑖𝑗 =
1

𝑛𝑡
∑ 𝑆𝑖(𝑡𝛼)𝑆𝑗(𝑡𝛼).
𝑛𝑡
𝛼=1  

⟨𝑆𝑖𝑆𝑗⟩
2
 estimated from 𝐶𝑖𝑗

2 = [
1

𝑛𝑡
∑ 𝑆𝑖(𝑡𝛼)𝑆𝑗(𝑡𝛼)
𝑛𝑡
𝛼=1 ]

2
. 

One can eliminate the bias in the above estimate for ⟨𝑆𝑖𝑆𝑗⟩
2
 by dividing the 𝑛𝑡 measurement 

times into two equal halves, and correlating the spin product ⟨𝑆𝑖𝑆𝑗⟩ at a time 𝑡𝛼 in the first half 

with the same spin product at the corresponding time in the second half, i.e. 

estimate ⟨𝑆𝑖𝑆𝑗⟩
2
 from 𝐶𝑖𝑗

𝑆𝐺 =
1

𝑛𝑡 2⁄
∑ 𝑆𝑖(𝑡𝛼)𝑆𝑗(𝑡𝛼)𝑆𝑖(𝑡𝛼+𝑛𝑡/2)𝑆𝑗(𝑡𝛼+𝑛2/2)
𝑛𝑡 2⁄
𝛼=1 . 

If 𝑡𝑛𝑡 is greater than the relaxation time of the spins there is no correlation between the spins at 

the earlier and later times and so, on average, this expression for 𝐶𝑖𝑗
𝑆𝐺 is equal to the desired 

quantity ⟨𝑆𝑖𝑆𝑗⟩
2

without any bias. This estimate of 𝐶𝑖𝑗
𝑆𝐺  was mapped to 𝐶𝑆𝐺(𝒓𝑖𝑗)  for the 

nanomagnets and was spatially averaged to extract a spin glass correlation length:  

[𝐶𝑆𝐺(𝑟)]𝑎𝑣 =
1

𝑁𝑝𝑎𝑖𝑟
∑𝐶𝑖𝑗

𝑆𝐺(𝒓𝑖𝑗).

𝑖𝑗

 

Dynamical Analysis 

Now, we turn our attention to temperature-dependent observations of thermal fluctuations in 

our artificial Ising spin glass structures. Spin glass is observed and theorized to relax in 

different ways depending on whether the spin is equilibrated and below the critical 

temperature1, 2. The equilibrium behavior of more ideal spin glasses is thoroughly catalogued 

through early theories on spin glasses. The two-point autocorrelation function, 
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𝐶(𝑡1, 𝑡2) = ⟨𝑆𝑗(𝑡2)𝑆𝑗(𝑡1)⟩𝑗
, 

where ⟨… ⟩𝑗 is an average over all spin indices, relaxes in many different forms depending on 

the whether or not the system is above the Alameda-Thouless line, a dynamical transition 

temperature depending on external field, and the precise model being used2. A power law 

relaxation29 best fit our system: 

𝐶(𝑡1, 𝑡2) = (𝑡2 − 𝑡1)
v(𝑇). 

v(𝑇) is an exponent that varies with temperature. The two-point autocorrelation function is 

extracted from our time dependent data at each temperature and fit to the power law decay to 

extract v(𝑇) (Fig 4. a-b).  

One can help assess whether a dynamic series is chaotic through computation of the Lyapunov 

exponent. The notion of the Lyapunov exponent considers a system and a near identical 

duplicate with a small offset in initial conditions. The systems evolve in parallel and an 

appropriate measure of distance, 𝐷(𝑡), between the two systems is analyzed. If a system is 

chaotic, 𝐷(𝑡) should grow exponentially. If not, 𝐷(𝑡) will diminish. This mathematical form, 

𝐷(𝑡) = 𝐷0𝑒
𝜆𝑡, is fit by a variety of methods to determine the sign of 𝜆, deemed the Lyapunov 

exponent, a positive value indicating chaos. Note that the metric 𝐷(𝑡) may exist in higher 

dimensions and yield a variety of Lyapunov exponents, a Lyapunov spectrum, where the sign 

of the largest exponent is used to evaluate whether or not the system is chaotic. The method 

employed here uses one average measure of distance to estimate this largest Lyapunov 

exponent. 

We begin by considering a series of spin data, 𝑆𝑗(𝑡𝑖), as a dynamical sequence. The sequence 

is processed as follows34: 

1. The mean period, 𝑇, of the system is estimated from the peak of the power spectrum of 

the sum over all spins. That is, from the spectrum 𝑃(𝑓) = |ℱ(∑ 𝑆𝑘(𝑡𝑖)
𝑁
𝑘=1 )|

2
, where 
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ℱ(⋯) is the 1-D Fourier transform, one can determine the frequency that corresponds 

to the maximum power, 𝑓𝑚𝑎𝑥 , and then 𝑇 = 1/𝑓𝑚𝑎𝑥. 

2. For each time 𝑡𝑖, this mean period was used to find a “nearest neighbor” state at time 

𝑡
^

𝑖. That is, 𝑡
^

𝑖 is the time where ∑ (𝑆𝑘(𝑡𝑗) − 𝑆𝑘 (𝑡
^

𝑗))

2

𝑘 is minimized under the condition 

that |𝑡𝑗 − 𝑡
^

𝑗| > 𝑇 to prevent just picking a temporally correlated state. This comparison 

between similar, but temporally disparate states is assumed to be close to an experiment 

where two separate states with similar initial conditions are evolved in parallel. 

3. Compute the distances, 𝑑𝑗(𝑡𝑖) = ∑ (𝑆𝑘(𝑡𝑗) − 𝑆𝑘 (𝑡
^

𝑗 + 𝑡𝑖))

2

𝑘 , between these two states 

over all possible times (that is, cease computation when either 𝑡𝑗  or  𝑡
^

𝑗 + 𝑡𝑖  grows 

beyond the size of the data set). 

4. Average the logarithm of the distances over every starting point, 𝑗:  

𝑦(𝑡𝑖) =
1

Δt
⟨log (𝑑𝑗(𝑡𝑖))⟩

𝑗
. Given the base hypothesis that similar states exponentially 

grow or shrink in distance, the slope of the linear fit to this data is the estimate of the 

largest Lyapunov exponent, 𝜆. 

These exponents were calculated at every temperature and plotted in Fig. 4g. The exponents 

increase with temperature, transitioning from negative to positive values between 157 K and 

168 K. This indicates a leap into chaotic or divergent behavior. 
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Figures 

 

Figure 1. Nanomagnetic artificial Hopfield networks. a, An artificial spin glass with the 

coupling between spins represented as red (𝐽𝑖𝑗 > 0  or ferromagnetic) and blue (𝐽𝑖𝑗 < 0  or 

antiferromagnetic) lines, their thickness proportional to strength. b, A Hopfield neural network 

to which the spin glass was matched. The dots represent the neurons and the lines the dominant 

connections, drawn red if 𝑤𝑖𝑗 < 0 and blue if 𝑤𝑖𝑗 > 0. Further optimization will correct for 

mismatched features of these graphs, such as the higher proportion of non-local interactions in 

(b) and larger number of extraordinarily strong interactions in (a). c, Scanning electron 

microscopy (SEM) image of a portion of an artificial Hopfield network consisting of Ising-

type nanomagnets with lengths L = 300 nm, widths W = 100 nm and thickness d = 2.7 nm. The 

red scale bar indicates a length of 600 nm.  
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Figure 2. Imaging low-energy moment configurations in a nanomagnetic artificial 

Hopfield network. a, XMCD image recorded at 105 K of a frozen-in low-energy state 

achieved after thermal annealing. The yellow arrow indicates the direction of the incoming x-

rays. Moments pointing the incoming x-rays appear dark, while moments in the opposite 

direction will appear bright. The red scale bar indicates a length of 2μm. b, Cropped XMCD 

image sequence of 6 images covering a timeframe of 63 seconds with moment reorientations 

occurring from frame to frame indicated with different colors.  
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Figure 3. Temperature dependent inverse susceptibility and correlation length derived 

from real-space observations. a, The dimensionless, inverse susceptibility, 
𝑚2

𝑘𝐵
𝜒−1, of the 

annealed spin glass is plotted as green circles and fit to the Curie law, 
𝑚2

𝑘𝐵
𝜒(𝑇) =

𝐴

𝑇−𝑇𝑐
, green 

dashed line, yielding 𝑇𝑐 = 27.6 ± 15.7  K and 𝐴 = −221 . b, The standard and spin glass 

correlation lengths extracted from their respective correlation functions (see Supplementary 

Figure 2) are plotted as blue squares and red asterisks, respectively. Fitting their critical 

behavior, 𝑓(𝑇) = 𝐵(𝑇 − 𝑇𝑐)
𝜈, finds a standard exponent and temperature of 𝜈 = 0.171 ± 0.606 

and 𝐵 = 1.33
𝜇𝑚

𝐾𝜈 , and spin glass parameters of 𝜈 = 3.86 ± 1.27 and 𝐵 = 1.78 × 108
𝜇𝑚

𝐾𝜈 . 



20 

 

 

Figure 4. Dynamical behavior of a nanoamgnetic Hopfield network. a, The autocorrelation 

function plotted on a log-log plot for all lattice temperatures. If the anticipated power law decay 

is observed, the plots will be linear. b, The decay power 𝑣 fit from the autocorrelation function 

of the form 𝐶(𝑡 − 𝑡𝑝) = 𝐶0(𝑡 − 𝑡𝑝)
−𝑣. c, The Lyapunov exponent of moment dynamics plotted 

versus temperature.  
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