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Abstract—The increasing availability of advanced metering infrastructure (AMI) data has led to significant
improvements in load modeling accuracy. However, since many AMI devices were installed to facilitate billing
practices, few utilities record or store reactive power demand measurements from their AMI. When reactive power
measurements are unavailable, simplifying assumptions are often applied for load modeling purposes, such as
applying constant power factors to the loads. The objective of this work is to quantify the impact that reactive power
load modeling practices can have on distribution system analysis, with a particular focus on evaluating the behaviors
of distributed photovoltaic (PV) systems with advanced inverter capabilities. Quasi-static time-series simulations were
conducted after applying a variety of reactive power load modeling approaches, and the results were compared to a
baseline scenario in which real and reactive power measurements were available at all customer locations on the
circuit. Overall, it was observed that applying constant power factors to loads can lead to significant errors when
evaluating customer voltage profiles, but that performing per-phase time-series reactive power allocation can be
utilized to reduce these errors by about 6x, on average, resulting in more accurate evaluations of advanced inverter
functions.
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P Introduction

- Load modeling is one of the most critical components of distribution system analysis

- Recently, the widespread adoption [1,2] of advanced metering infrastructure (AMI) or
“smart meters” has led to significant improvements in load modeling practices

« AMI typically record measurements every 15-minutes (30- and 60-min. resolutions are also

common)
« Modeling loads with smart meter data represents a drastic improvement to spatial and
temporal resolution of distribution system analyses

- However, while today’s smart meters have a variety of features and measurement
options, many utilities only record and store real power measurements

- When reactive power measurements are unavailable, assumptions have to be
applied like assigning constant power factors (PFs) to the loads

- Often, the PFs used for this are based on measurements from peak load conditions
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- Conventionally, load allocation was implemented, and a static analysis was performed to
analyze the peak loading conditions modeling for static peak load analysis

« In this case, the demand measured at the substation or feeder head is allocated to the downstream
loads. The “allocation factors” for the loads were typically selected based on billing information (like
peak energy usage) or based on the upstream service transformer rating

« Next, the allocation algorithm would implement an iterative power flow analysis, adjusting the loads
after each iteration until the simulation results matched the measured values, whereby the iterative
process accounts for losses and other mismatches in the system model

rd

’

- Today, many analysis and planning tasks require time-series power flow analyses, or quasi-
static time-series (QSTS) simulations

« Avrecent EPRI report [3] highlighted the impacts of various load allocation approaches on the
accuracy of QSTS simulations, specifically that accuracy improves with:

- The frequency of allocation (e.g., every time step vs 1/year)
« The proximity of the sensors to the customer
« Reactive power measurements
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« Perthe IEEE 1547 Standard [4], all new PV
inverters must be able to operate in a variety of
grid-support modes, including Volt-VAR (VV) mode

* InVV mode, inverter will inject reactive power to
boost low voltages and consume reactive power to
reduce high voltages, curtailing real power if
necessary (VAR-priority) v
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* In order to evaluate the performance of

distributed PV systems with Volt-VAR enabled, an
accurate feeder model is required as well as
accurate time-series load models to ensure the
voltages at the PV inverter terminals are accurate
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In this work, the objective was to quantify the impact of
various reactive power modeling practices on the ability to
evaluate the performance of distributed PV systems with
advanced inverter functions (i.e., autonomous Volt-VAR)

 Test Circuit: Modified EPRI Ckt 5

* 1379 customers, each modeled with 15-minute P and Q
profiles from an actual utility AMI dataset

- 701 distributed PV systems, separately metered
* PV penetration = 35% peak load

« QSTS simulations:
*  Yearlong simulation with 15-minute time steps in OpenDSS
« Tstsimulation, all PV set to output unity PF

- 2ndsimulation, all PV set to Volt-VAR mode

« |EEE 1547 [4] Cat. B Default Volt-VAR settings, with max. VAR output
at 0.95 and 1.05 Vpu

- Total yearlong PV energy difference between the simulations
represents the curtailed energy for each PV system
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- 5 different reactive power modeling
scenarios were explored

« For all scenarios, real power consumption is
based on 15-minute AMI data

- Each scenario represents a different spatial
and/or temporal resolution of Q modeling

Scenario 1 (Baseline) ey

. . | 1379

« P and Q both modeled with 15-minute AM| ke c e e

data for all 1379 loads 2 12 Allocated Per-Phase, Per-Zone

. 3 3 Allocated Per-Phase

- Each load has a unique P, Q, and PF at each

time point of the year (i.e., 1379 Q profiles) p 0 Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]
5 0 Constant PF, Avg. from peak load

= [0.9549] applied to all customers
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Scenario 2: Q-Allocation Per-Phase, Per-Zone

Reactive power measurements from the
substation and 3 grid sensors are allocated to
the loads in their respective zones at each

time step

« Q allocation applies an iterative power flow
simulation that adjusts the magnitude of the
load reactive power to account for circuit
losses until the simulated value matches the
measured value at the sensor

- Additional details provided on next slide

Ultimately, each load ends up with unique P
and Q profiles, but always shares a PF with
loads in the same Zone and Phase

- 12 types of Q profiles (4 Zones x 3 Phases)
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=[0.9540, 0.9539, 0.9568]

Constant PF, Avg. from peak load
= [0.9549] applied to all customers
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4 Q-Allocation Procedure Overview

Substation
PV System
Sensor 1
Sensor 2
Sensor 3

OO0+

1.

Run a baseline QSTS simulation (Scenario 1), record Q R W E o
measurements at each sensor and substation to represent the [ zone 1 FFE TR
“measured” values —

Sseo
______

Reset the simulation and remove Q profiles from the loads

Set t=1, solve initial power flow

For Zone 1, take per-phase “measured” Q from Sensor 1 and subtract the “simulated” per-phase
Q values from the power flow solution

Allocate that reactive power difference to any&/l?)— hase loads based on their share of the total
real power of all loads in that zone (sum of AMI P for all Zone 1 loads)

Allocate the remaining Phase 1 reactive power to the Phase 1 loads in that zone based on their
share of the total Phase 1 real power (sum of AMI P for Phase 1 loads)

Solve the power flow again and compare “simulated” and “measured” values. Repeat Steps 4-6
adjusting allocated Q as needed until convergence (below some pre-defined error threshold)

Repei_at Steps 4-7 until all Zones have converged, then repeat Steps 4-8 for all remaining time
points
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Scenario 3: Q-Allocation Per-Phase

Reactive power measurements from the
substation only are allocated to the loads
at each time step

- Same procedure as Scenario 2 but now all
loads are essentially in the same zone

Substation
PV System
Sensor 1
Sensor 2
Sensor 3
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Ultimately, each load ends up with unique P m

and Q profiles, but always shares a PF with
loads in the same Phase

« 3 types of Q profiles (1 Zone x 3 Phases)

1379

2 12 Allocated Per-Phase, Per-Zone
|-------------------------------------'
I 3 3 Allocated Per-Phase |
L------------------------------------‘

4 0 Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]
5 0 Constant PF, Avg. from peak load

= [0.9549] applied to all customers
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/Scenario 4: Constant PF (Peak Load, Per-Phase)

- Allloads on the same phase are assigned a
constant PF as measured at the substation
during peak load conditions

- PFdoes not change, there no time-series Q profiles
applied to the loads

 Utilities use peak load measurements for a

variety of applications, so the input data for this  |EARL T
1 AMI

scenario is very common 1379
» The measurements would first have to be adjusted

for known reactive power injections (e.g., from 2 12 Allocated Per-Phase, Per-Zone
capacitor banks) but no such sources were present . h
in thiS Case ---3--------3----------é-oiale-d-Pe-r-P-a-se- -----

Constant PF, Per-Phase from peak load

Scenario 5: Constant PF (Peak Load, 3P avg.) - [0.9540, 0.9539, 0.9568]

- Same as Scenario 4, but assumes only 3-phase
total measurements are available, meaning the 1005491 arliod to ol
peak load PF represents the average across all 3 L - [0.9549] applied to all customers
phases

Constant PF, Avg. from peak load
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/ All PV at PF=1: Voltage Comparison to Baseline Scenario 1 for a Single Customer (#918)
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Results - Customer Reactive Power Accuracy

/7 All PV at PF=1: Reactive Power Comparison to Baseline Scenario 1 for a Single Customer (#918)

’
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Each Customer Q Error Through the Year

Mean Absolute Error (kVAR)
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7~ Results - Customer Voltage and Reactive Power Accuracy

Impacts were more pronounced on customer voltages

Using estimated reactive power profiles was better than using

constant power factors, median error was 6x lower

Q estimation algorithm could provide more accurate synthetic
MI Q data is unavailable

voltages when
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? Results - Volt-VAR Curtailment Accuracy
/

/  Baseline Curtailment Evaluation

Each PV Through the Year

The curtailment evaluation results are shown below for the
baseline Scenario 1, representing the real energy difference
when Volt-VAR was enabled

Since load reactive power modeling imﬁacts customer voltages,
it will also impact the performance of the PV inverters when
Volt-VAR is enabled
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P Results - Volt-VAR Curtailment Accuracy

Compared to Scenario 1, Scenarios 2 and 3 were the most accurate while Scenarios 4

Each PV Through the Year

200 |

Annual Curtailment (kWh)

and 5 were both S|gn|f|cantly less accurate

For Scenarios 2 and 3, curtailment errors were normally distributed around O

For Scenarios 4 and 5, curtailment errors were always negative
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Results - Volt-VAR Curtailment Accuracy

For Scenarios 4 and 5, the substation PFs are significantly lower
during peak load conditions than they are the rest of the year

With low inductive PFs at all the loads, the Volt-VAR controllers did
not need to absorb as much reactive power, meaning these scenarios
consistently underrepresented the conditions for curtailment

The substation per-phase PFs provide a fairly reasonable
approximation for avg. customer PFs

The Q-allocation in Scenarios 2 and 3 uses these measurements as
the starting point then estimates individual customer contributions

On average, those estimates are accurate and capture individual
variability but the prediction for any specific customer may be noisy
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/" Estimating Customer Voltages:

« The estimated reactive power load profiles provided ~6x
more accurate customer voltages than the constant PF
methods

. Sli%ht advantage when additional feeder sensors are
included in the estimation algorithm (Scenario 2 vs 3), but
not very noticeable

« The constant PFs used in Scenarios 4 and 5 led to an
underestimation of voltages throughout the feeder

Analyzing PV System Performance:

« PVinverters perform grid-support functions (like Volt-VAR)
and change their output based on grid conditions

« Estimating Q grofiles for load modeling at each time step
(Scenarios 2, 3) enabled the PV system performance to be
accurately captured

- Modeling loads with constant PFs does not capture enough
temporal or spatial variability at the customer locations
where the PV systems are installed

@O0 9%
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