
Abstract—The increasing availability of advanced metering infrastructure (AMI) data has led to significant
improvements in load modeling accuracy. However, since many AMI devices were installed to facilitate billing
practices, few utilities record or store reactive power demand measurements from their AMI. When reactive power
measurements are unavailable, simplifying assumptions are often applied for load modeling purposes, such as
applying constant power factors to the loads. The objective of this work is to quantify the impact that reactive power
load modeling practices can have on distribution system analysis, with a particular focus on evaluating the behaviors
of distributed photovoltaic (PV) systems with advanced inverter capabilities. Quasi-static time-series simulations were
conducted after applying a variety of reactive power load modeling approaches, and the results were compared to a
baseline scenario in which real and reactive power measurements were available at all customer locations on the
circuit. Overall, it was observed that applying constant power factors to loads can lead to significant errors when
evaluating customer voltage profiles, but that performing per-phase time-series reactive power allocation can be
utilized to reduce these errors by about 6x, on average, resulting in more accurate evaluations of advanced inverter
functions.
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• Load modeling is one of the most critical components of distribution system analysis

• Recently, the widespread adoption [1,2] of advanced metering infrastructure (AMI) or 
“smart meters” has led to significant improvements in load modeling practices

• AMI typically record measurements every 15-minutes (30- and 60-min. resolutions are also 
common)

• Modeling loads with smart meter data represents a drastic improvement to spatial and 
temporal resolution of distribution system analyses

• However, while today’s smart meters have a variety of features and measurement 
options, many utilities only record and store real power measurements

• When reactive power measurements are unavailable, assumptions have to be 
applied like assigning constant power factors (PFs) to the loads

• Often, the PFs used for this are based on measurements from peak load conditions
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• Conventionally, load allocation was implemented, and a static analysis was performed to 
analyze the peak loading conditions modeling for static peak load analysis

• In this case, the demand measured at the substation or feeder head is allocated to the downstream 
loads. The “allocation factors” for the loads were typically selected based on billing information (like 
peak energy usage) or based on the upstream service transformer rating

• Next, the allocation algorithm would implement an iterative power flow analysis, adjusting the loads 
after each iteration until the simulation results matched the measured values, whereby the iterative 
process accounts for losses and other mismatches in the system model

• Today, many analysis and planning tasks require time-series power flow analyses, or quasi-
static time-series (QSTS) simulations

• A recent EPRI report [3] highlighted the impacts of various load allocation approaches on the 
accuracy of QSTS simulations, specifically that accuracy improves with:

• The frequency of allocation (e.g., every time step vs 1/year)

• The proximity of the sensors to the customer

• Reactive power measurements
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• Per the IEEE 1547 Standard [4], all new PV 
inverters must be able to operate in a variety of 
grid-support modes, including Volt-VAR (VV) mode

• In VV mode, inverter will inject reactive power to 
boost low voltages and consume reactive power to 
reduce high voltages, curtailing real power if 
necessary (VAR-priority)

• In order to evaluate the performance of 
distributed PV systems with Volt-VAR enabled, an 
accurate feeder model is required as well as 
accurate time-series load models to ensure the 
voltages at the PV inverter terminals are accurate
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• In this work, the objective was to quantify the impact of 
various reactive power modeling practices on the ability to 
evaluate the performance of distributed PV systems with 
advanced inverter functions (i.e., autonomous Volt-VAR)

• Test Circuit: Modified EPRI Ckt 5

• 1379 customers, each modeled with 15-minute P and Q 
profiles from an actual utility AMI dataset

• 701 distributed PV systems, separately metered 

• PV penetration = 35% peak load

• QSTS simulations:

• Yearlong simulation with 15-minute time steps in OpenDSS

• 1st simulation, all PV set to output unity PF

• 2nd simulation, all PV set to Volt-VAR mode 

• IEEE 1547 [4] Cat. B Default Volt-VAR settings, with max. VAR output 
at 0.95 and 1.05 Vpu

• Total yearlong PV energy difference between the simulations 
represents the curtailed energy for each PV system

Zone 1

Zone 2

Zone 3

Zone 4

Zone # of Loads # of PVs

1 233 122

2 167 89

3 199 95

4 780 395

Total 1379 701
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• 5 different reactive power modeling 
scenarios were explored

• For all scenarios, real power consumption is 
based on 15-minute AMI data

• Each scenario represents a different spatial 
and/or temporal resolution of Q modeling

Scenario 1 (Baseline)

• P and Q both modeled with 15-minute AMI 
data for all 1379 loads

• Each load has a unique P, Q, and PF at each 
time point of the year (i.e., 1379 Q profiles)

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Zone 1

Zone 2

Zone 3

Zone 4
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Scenario 2: Q-Allocation Per-Phase, Per-Zone

• Reactive power measurements from the 
substation and 3 grid sensors are allocated to 
the loads in their respective zones at each 
time step

• Q allocation applies an iterative power flow 
simulation that adjusts the magnitude of the 
load reactive power to account for circuit 
losses until the simulated value matches the 
measured value at the sensor

• Additional details provided on next slide

• Ultimately, each load ends up with unique P 
and Q profiles, but always shares a PF with 
loads in the same Zone and Phase

• 12 types of Q profiles (4 Zones x 3 Phases)

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Zone 1

Zone 2

Zone 3

Zone 4
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Q-Allocation Procedure Overview

1. Run a baseline QSTS simulation (Scenario 1), record Q 
measurements at each sensor and substation to represent the 
“measured” values

2. Reset the simulation and remove Q profiles from the loads

Zone 1

Zone 2

Zone 3

Zone 4

3. Set t=1, solve initial power flow

4. For Zone 1, take per-phase “measured” Q from Sensor 1 and subtract the “simulated” per-phase 
Q values from the power flow solution

5. Allocate that reactive power difference to any 3-phase loads based on their share of the total 
real power of all loads in that zone (sum of AMI P for all Zone 1 loads)

6. Allocate the remaining Phase 1 reactive power to the Phase 1 loads in that zone based on their 
share of the total Phase 1 real power (sum of AMI P for Phase 1 loads)

7. Solve the power flow again and compare “simulated” and “measured” values. Repeat Steps 4-6 
adjusting allocated Q as needed until convergence (below some pre-defined error threshold)

8. Repeat Steps 4-7 until all Zones have converged, then repeat Steps 4-8 for all remaining time 
points
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Scenario 3: Q-Allocation Per-Phase

• Reactive power measurements from the 
substation only are allocated to the loads 
at each time step

• Same procedure as Scenario 2 but now all 
loads are essentially in the same zone

• Ultimately, each load ends up with unique P 
and Q profiles, but always shares a PF with 
loads in the same Phase

• 3 types of Q profiles (1 Zone x 3 Phases)

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Zone 1

Zone 2

Zone 3

Zone 4
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Scenario 4: Constant PF (Peak Load, Per-Phase)

• All loads on the same phase are assigned a 
constant PF as measured at the substation 
during peak load conditions

• PF does not change, there no time-series Q profiles 
applied to the loads

• Utilities use peak load measurements for a 
variety of applications, so the input data for this 
scenario is very common

• The measurements would first have to be adjusted 
for known reactive power injections (e.g., from 
capacitor banks) but no such sources were present 
in this case

Scenario 5: Constant PF (Peak Load, 3P avg.)

• Same as Scenario 4, but assumes only 3-phase 
total measurements are available, meaning the 
peak load PF represents the average across all 3 
phases

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Zone 1

Zone 2

Zone 3

Zone 4
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To compare the results 
of all customers, we 
will calculate the mean 
absolute error (MAE) 
by taking the average 
of these yearly time-
series V error plots for 
every customer

All PV at PF=1: Voltage Comparison to Baseline Scenario 1 for a Single Customer (#918)

Scen. MAE (Vpu)

2 0.298 e-3

3 0.312 e-3

4 2.304 e-3

5 2.556 e-3

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Cust. #918
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Scen. MAE 
(kVAR)

2 0.2495

3 0.2551

4 0.2876

5 0.2885

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Cust. #918
To compare the results 
of all customers, we 
will calculate the mean 
absolute error (MAE) 
by taking the average 
of these yearly time-
series Q error plots for 
every customer

All PV at PF=1: Reactive Power Comparison to Baseline Scenario 1 for a Single Customer (#918)



Results – Customer Voltage and Reactive Power Accuracy

All PV at PF=1: Comparison to Baseline Scenario 1 for All Customers

• Impacts were more pronounced on customer voltages

• Using estimated reactive power profiles was better than using 
constant power factors, median error was 6x lower

• Q estimation algorithm could provide more accurate synthetic 
voltages when AMI Q data is unavailable

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Zone 1

Zone 2

Zone 3

Zone 4

Each Customer Q Error Through the Year Each Customer V Error Through the Year
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Results – Volt-VAR Curtailment Accuracy

Baseline Curtailment Evaluation

• The curtailment evaluation results are shown below for the 
baseline Scenario 1, representing the real energy difference 
when Volt-VAR was enabled

• Since load reactive power modeling impacts customer voltages, 
it will also impact the performance of the PV inverters when 
Volt-VAR is enabled

Zone 1

Zone 2

Zone 3

Zone 4

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

15
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Results – Volt-VAR Curtailment Accuracy

Curtailment Error Percentiles (kWh)

Scenario 5th 25th 50th 75th 95th

2 -1.75 -0.52 -0.13 0.26 1.77

3 -1.70 -0.57 -0.12 0.31 1.84

4 -24.02 -12.71 -7.51 -4.24 -2.33

5 -24.92 -12.98 -7.58 -4.24 -2.36

• Compared to Scenario 1, Scenarios 2 and 3 were the most accurate while Scenarios 4 
and 5 were both significantly less accurate

• For Scenarios 2 and 3, curtailment errors were normally distributed around 0

• For Scenarios 4 and 5, curtailment errors were always negative

16
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• For Scenarios 4 and 5, the substation PFs are significantly lower 
during peak load conditions than they are the rest of the year

• With low inductive PFs at all the loads, the Volt-VAR controllers did 
not need to absorb as much reactive power, meaning these scenarios 
consistently underrepresented the conditions for curtailment

• The substation per-phase PFs provide a fairly reasonable 
approximation for avg. customer PFs 

• The Q-allocation in Scenarios 2 and 3 uses these measurements as 
the starting point then estimates individual customer contributions

• On average, those estimates are accurate and capture individual 
variability but the prediction for any specific customer may be noisy

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Substation

Peak Load
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Estimating Customer Voltages:

• The estimated reactive power load profiles provided ~6x 
more accurate customer voltages than the constant PF 
methods

• Slight advantage when additional feeder sensors are 
included in the estimation algorithm (Scenario 2 vs 3), but 
not very noticeable

• The constant PFs used in Scenarios 4 and 5 led to an 
underestimation of voltages throughout the feeder

Analyzing PV System Performance:

• PV inverters perform grid-support functions (like Volt-VAR) 
and change their output based on grid conditions

• Estimating Q profiles for load modeling at each time step 
(Scenarios 2, 3) enabled the PV system performance to be 
accurately captured

• Modeling loads with constant PFs does not capture enough 
temporal or spatial variability at the customer locations 
where the PV systems are installed

Scenario # of Q Profiles Q Methods

1 1379 AMI

2 12 Allocated Per-Phase, Per-Zone

3 3 Allocated Per-Phase

4 0
Constant PF, Per-Phase from peak load

= [0.9540, 0.9539, 0.9568]

5 0
Constant PF, Avg. from peak load

= [0.9549] applied to all customers

Zone 1

Zone 2

Zone 3

Zone 4
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