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Abstract—Conservation voltage reduction (CVR) is a common technique used by utilities to strategically reduce
demand during peak periods. As penetration levels of distributed generation (DG) continue to rise and advanced
inverter capabilities become more common, it is unclear how the effectiveness of CVR will be impacted and how CVR
interacts with advanced inverter functions. In this work, we investigated the mutual impacts of CVR and DG from
photovoltaic (PV) systems (with and without autonomous Volt-VAR enabled). The analysis was conducted on an
actual utility dataset, including a feeder model, measurement data from smart meters and intelligent reclosers, and
metadata for more than 30 CVR events triggered by the utility over the year. The installed capacity of the modeled PV
systems represented 66% of peak load, but reached instantaneous penetrations reached up to 2.5x the load
consumption over the year. While the objectives of CVR and autonomous Volt-VAR are opposed to one another, this
study found that their interactions were mostly inconsequential since the CVR events occurred when total PV output
was low.

Keywords—advanced inverter, advanced metering infrastructure (AMI), autonomous Volt-VAR, conservation voltage
reduction (CVR), distributed generation (DG), high penetration photovoltaics (PV)
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P Introduction

Conservation Voltage Reduction, or CVR, is a strategy used by distribution system
operators in which the voltage is intentionally lowered to reduce energy demands

- Voltage is often reduced by a few percent to operate closer to the lower limits of the ANSI
utilization voltage range

- CVR events are often used as a way to reduce demand charges, i.e., fees that are charged
based on peak demand over a given time frame

- The effectiveness of a CVR event can vary from feeder to feeder based on many factors,
like network topology, conductor parameters, and load compositions

- However, as more distributed energy resources (DERs) are interconnected with the grid,
CVR events may become less effective and/or predictable

- This is particularly true for variable generators like distributed solar photovoltaic (PV) systems

- PVinverters must now be capable of operating in a variety of grid-support modes [1], further
complicating their impacts on CVR events
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P Test Circuit and Input Data

Test circuit represents an actual utility
distribution feeder that we will call “Feeder A"

P, Q,V @ 15-min resolution from intelligent
reclosers throughout the feeder

Advanced Metering Infrastructure (AMI) real
power data @ 15-min resolution for all
customers

- Per-phase reactive power allocation performed
for each time point to generate Q profiles for
each load

Timing and duration of all CVR events for a
full year was provided by the utility
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/7 Test Circuit and Input Data
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The 3 large PV systems were added to the e
feeder to determine how the CVR events would 1-Axis Tracking |
be impacted under a high PV penetration
scenario (66% of peak load, max. instantaneous
penetration = 2.5x load consumption)

« All PV systems had a DC/AC ratio of 1.4 N N s,

- PV generation profiles were derived using open-
sourced irradiance and temperature data
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7~ CVR Modeling - Circuit Implementation
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Overview of Analysis Procedure
Compile the “Feeder A” Test Circuit in OpenDSS
Load in time points for CVR events
Apply CVR factors to all loads
Set all PV systems to operate with PF=1

Run QSTS simulation, modifying LTC and
Voltage Regulator controls during CVR events

Enable autonomous Volt-VAR on all PVs
Re-run QSTS simulation

Calculate PV curtailment
(Total PF=1 output - Total Volt-VAR output) mEp

Analyze impacts of CVR on curtailment and
impacts of Volt-VAR on CVR
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/ Results - Impact of Volt-VAR on CVR

/ « For the unity PF case (PF=1), CVR resulted in an average reduction in power of 166 kW

« To determine the impact of Volt-VAR on CVR, we compared difference between the change
in native load during CVR for the PF=1 case (AP, ) and the Volt-VAR case (APyc.yar)

« Average value of |APpr_; - APy ivar| = 4.5 KW, or in other words (4.5 kW / 166 kW) = 2.7% difference on average
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/d Discussion

Utilities typically implement CVR to reduce loading during times of high demand (e.g.,
morning and afternoon peaks), as was the case in this dataset (shown below in red)

PV curtailment is most likely to occur during peak production hours (around midday as
shown below) when the inverters are operating near full capacity and/or when loading

conditions are low

Given these characteristics, it follows that interactions between CVR on PV output

would be expected to be marginal, if any
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Conclusion

PV inverters with Volt-VAR typically absorb VARs to compensate for voltage
rise associated with real power injections

« During CVR, PV inverters inject VARs to boost voltage

CVR events did not overlap with peak PV production hours and did not cause
any real power curtailment when Volt-VAR was enabled

Implementing Volt-VAR did not have a significant impact on CVR, even with a
high PV penetration (~66% of peak load)

« On average, CVR reduced the feeder power by 166 kW
« On average, volt-VAR changed that value by 4.5 kW (2.7%)
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