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Evaluation of Adaptive Volt-VAR

to Mitigate PV Impacts

Joseph A. Azzolini and Matthew J. Reno
Sandia National Laboratories, Albuquerque, NM 87123, USA

Abstract—Distributed generation (DG) sources like photovoltaic (PV) systems with advanced inverters are able to
perform grid-support functions, like autonomous Volt-VAR that attempts to mitigate voltage issues by injecting or
consuming reactive power. However, the Volt-VAR function operates with VAR priority, meaning real power may be
curtailed to provide additional reactive power support. Since some locations on the grid may be more prone to higher
voltages than others, PV systems installed at those locations may be forced to curtail more power, adversely impacting
the value of that PV system. Adaptive Volt-VAR (AVV) could be implemented as an alternative, whereby the Volt-VAR
reference voltage changes over time, but this functionality has not been well-explored in the literature. In this work,
the potential benefits and grid impacts of AVV were investigated using yearlong quasi-static time-series (QSTS)
simulations. After testing a variety of allowable AVV settings, we found that even with aggressive settings AVV
resulted in <0.01% real power curtailment and significantly reduced the reactive power support required from the PV
inverter compared to conventional Volt-VAR but did not provide much mitigation for extreme voltage conditions. The
reactive power support provided by AVV was injected to oppose large deviations in voltage (in either direction),
indicating that it could be useful for other applications like reducing voltage flicker or minimizing interactions with
other voltage regulating devices.

Keywords—adaptive voltage reference, autonomous Volt-VAR, distributed generation (DG), high penetration
photovoltaics (PV), grid-support functions
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P I n t rO d u Ct I 0 n Q (Injection‘\over-excited)

Per the IEEE 1547 Standard [1], all new PV
inverters must be able to operate in a variety of
grid-support modes, including Volt-VAR (VV) mode

* InVV mode, inverter will inject reactive power to
boost low voltages and consume reactive power to
reduce high voltages, curtailing real power if
necessary (VAR-priority) v
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Volt-VAR mode, the amount of reactive power
support and curtailment depends in part on the
installation location on the feeder

Inverters connected near the substation or
voltage regulators often experience higher
voltages, even without the effects of PV voltage
rise, meaning curtailment risk is higher for those
inverters
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Background

- |EEE 1547 also requires that PV inverters are capable of autonomously adjusting their
reference voltage setting for VV mode

- This feature is referred to here as Volt-VAR with Adaptive V,,, or simply Adaptive Volt-VAR (AVV), as
opposed to conventional “Static” Volt-VAR

- For AVV mode, V¢ is autonomously set to the low-pass filtered measured voltage using a
time constant at least in the range of [300, 5000] seconds

 In this work, AVV was implemented in OpenDSS by autonomously adjusting V.. based on a moving
average of the terminal voltage using a window size in the same range [300, 5000] seconds

The DER shall be capable of autonomously adjusting reference voltage (Vrer) with Vrer being equal to the
low pass filtered measured voltage. The time constant shall be adjustable at least over the range of 300 s to
5000 s. The voltage-reactive power Volt-Var curve characteristic shall be adjusted autonomously as Vrer
changes. The approval of the Area EPS operator shall be required for the DER to autonomously adjust the

reference voltage. Implementation of the autonomous Vrer adjustability and the associated time constant
shall be specified by the Area EPS operator.




P Background

For Static Volt-VAR with Category B default
settings, reference voltage V, . never changes 050 | | —
(typically Vref =1 p.u.) 040 -

0.30 [

- For example, consider an inverter InvA:
- InvA is just outside the substation
« At 12:00 pm, V|4 =1.05 pu
* InvA must consume 0.22 kVARpu
« *High curtailment risk*

0.20 [
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« To reduce curtailment risk when using “static” 040 |
Volt-VAR, V¢ would have to be manually a0 - : - .
adjusted (perhaps more than once as grid | " Voltage (pu) |

conditions evolve)




P Background

In this scenario, AVV could be implemented

allowing for V., to adjust itself autonomously e ‘ .
0.40 - ’»“ ----- Dynamic Volt-VAR @ 12pm | |
 Revisiting the previous example, but with AVV 0.30

and an 1800s averaging window:
« At 12:00 pm, V,=1.00 p.u., V|,,a=1.05p.u.
InvA must consume 0.22 kVARpu

« By 12:30 pm (1800s later), V,,,» = 1.05 p.u., but
Vs =1.025 p.u.

Reactive Power (p.u.)
: o
(=]
o

InvA Q consumption reduced to 0.0367 kVARpu 030 -
- At 12:30, AWV required (0.22 - 0.0367) = 0.1833 | | |
kVARpu less consumption than Static VV "os 0.95 1 1.05 1.4

Voltage (p.u.)




P Background

Impact of VV Curve Deadband 0.50
. L Original VV
+ The deadband settings for the Cat. B Volt-VAR 40 Deadband = 0,03V,
curve reduce the VAR support required when 030 Deadband =0.02V,,
H — Deadband = 0.01V u
voltages are near nominal values g o207 Deadband - 000"
. . . o 010
- AW inherently provides a similar feature, so the %
including a deadband may be partially redundant 5 |
« Therefore, a variety of VV curves (shown on the ‘g 010
o -0.20 -

right) were investigated, starting with default
deadband of 0.04 Vpu (1.02 - 0.98 Vpu) and 0.30 |
stepping down to 0 in steps of 0.01 Vpu
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3 Methods

« All simulations conducted in OpenDSS on
Modified EPRI J1 test circuit:

« Based on an actual 12kV feeder w/ 3433 buses

1,354 residential customers, 30 commercial, w/
peak load of 6.3 MW

« 7 PVsystems (1.8 MW total, 28% of peak load)

*  Yearlong quasi-static time-series (QSTS)
simulations performed with 1-minute time steps

=R 2

Substation
LTC/VREG
Fixed Capacitor

Switching Capacitor

PV System
PV # Name (Phase) (l]()‘z) gg) lea/ t?f
1 3p existingsitel (ABC) 600.60 475.0 1.2644
2 3p_existingsite3 (ABC) 1562.00 1235.0 1.2648
3 c_existing2 (C) 14.08 11.10 1.2685
4 b_existing3 (B) 12.65 10.00 1.2650
5 c_existing5 (C) 25.30 20.00 1.2650
6 a_existing9 (A) 12.65 10.00 1.2650
7 c_existingl3 (C) 18.37 14.50 1.2669

*Settings common to all PV systems: tilt angle=40°, azimuth angle=180°, VV Curve=Category B
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 In this work, we evaluated the impact of Adaptive VV on
curtailment risk, VAR support, and voltage regulation

- Adaptive VV results compared to Static VV with the same
VV curves

- The simulations were then repeated for each
combination of the settings below:

- Avg. window lengths = [300, 600, 900, 1800, 3600, 5000,
10000] seconds (AVV only)

« VV curve deadband = [0.04, 0.03, 0.02, 0.01, 0.00] Vpu
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Results - Static Volt-VAR

As deadband increases, the same voltages require
less VARs from the inverters, so total reactive energy

and voltage regulation decreases

Curtailment was low (0.30%), but increased up to
nearly 0.80% as deadband decreased
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Curtailment was not a factor (<0.01% of annual energy) even with
worst case settings

Results - Adaptive Volt-VAR

* Increasing the averaging window increases VARhO

«  Shorter windows meant that V,.; and deadband tracked more closely
with real-time voltages

« Reducing deadband dramatically increases VARh
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Results: Static vs. Adaptive Volt-VAR

- Compared to Static VV, essentially zero curtailment was observed for Adaptive VV

- Adaptive VV also requires significantly less reactive power support from the inverter
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/ Results: Static vs. Adaptive Volt-VAR

When deadband = 0.00 Vpu for AVV, kVARh is reduced

by roughly an order of magnitude for the 5000s window
compared to Static VWV

«  When deadband = 0.01 Vpu, kVARh is reduced by roughly
2 orders of magnitude for the 5000s window

Deadband size impacts annual kVARh of Adaptive VV
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P Results: Static vs. Adaptive Volt-VAR

« Consider Adaptive VV results with no deadband and 5000s window,
which represents the most aggressive settings

- Some regulation of high voltages compared to unity PF case, but much
less than Static VV (even when deadband was 0.04 Vpu for Static VV)
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/ Adaptlve Volt-VAR
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/3 Discussion

« Since the V,. for Adaptive VV changes with the terminal
voltage, reactive power is only required when there is a
sudden voltage change in either direction

- Therefore, Adaptive VV is not as effective as Static VV in
reducing the presence or duration of extreme voltages

« Adaptive VV has very little curtailment risk and may be
useful for other applications, such as reducing voltage
flicker, dampening interactions between PV and voltage
regulation devices, or minimizing PV impacts during
conservation voltage reduction (CVR) events [2-4]

- Asimilar approach to AVV has been used to reduce voltage
flicker from inverter-interfaced wind generators [5]
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P Conclusion

- Adaptive VV requires much less reactive power support than Static VV, and
curtailment risk was shown to be negligible

- Reactive power support from Adaptive VV was mainly dependent on the deadband
setting of the VV curve, but also increased as the averaging window increased
 Static VV was significantly better at regulating extreme voltages

- However, Adaptive VV resisted sudden voltage changes in either direction, so it may
be more useful in applications that benefit from smaller/smoother voltage deviations
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