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Introduction

As the heaviest isotope of hydrogen, tritium (°H or T) is radiologically active
° Beta-decays to "He with a half-life of ~12 years

° Beta radiation does not penetrate skin, but beta radiation sources cause damage when internalized

Unlike protium (*H) or deuterium (*H or D), tritium is most hazardous to humans as water
° The human body metabolizes water, whereas T, does not appreciably penetrate skin (Mishima and Steele, 2002)

Tritium inventories at Sandia occur in small quantities stored at sub-atmospheric pressure
° Historical hydrogen (!H) safety studies focus on different scenatios (jetting fires, explosions)

° For tritium, the key to understanding the hazard is the final extent of reaction from trace releases

Typical facility storage
quantities for tritium are ~1
gram

Mishima, J. and Steele, C.M., 2002. Oxidation of Tritium Gas under Accident and Transport Conditions. Rapport du DOE. LA-UR-02-3803.



3 I Three Aspects of Computational Hazard Analysis for Tritium with Fire

Entities with trittum inventories (including Sandia and SRNL) are federally regulated for safety

° “The bounding value given a fire defaults to 100 percent oxidation for use in safety analyses, as a realistic,
less- conservative value has not been able to be identified” (DOE-STD- 1129-2015)

° This project aims to provide a technical basis to consider a more lenient trittum oxidation assumption than the

current approximation of 100% conversion in a facility fire

Because of the hazard and low tritium inventories, computational hazard analysis is ideal
> Problem #1 is that there are few sources for physical properties and fire performance for tritium
° Focus of this presentation Time: 5,000 sec.

> Problem #2 is that computational tools require verification and validation for credibility

° Subject of recent and ongoing experiments and computational comparisons at Sandia
> Problem #3 is that there are nearly infinite combinations of scenarios of potential interest

° Principal topic of presentation by Alex Brown




Need for Tritium Physical Properties

No previous CFD studies have attempted to distinguish

between the three isotopes of hydrogen interacting with a fire

o All properties available for protium and most for deuterium
° Very few trittum properties have been reported

° Properties influenced by isotope mass through interatomic potentials

Thermodynamic properties can atfect temperatures and
extents of reaction through

o Heats of reaction

> Heat capacities

° Chemical equilibrium
Transport properties primarily atfect diffusion rates

SIERRA/Fuego is Sandia’s unstructured low-Mach number
reacting flow code for simulating fires

o Utilizes Cantera-format specifications for properties of gases
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B. J. McBride, S. Gordon, and M. A. Reno, "Coefficients for calculating thermodynamic and transport properties of individual species,"

5 ‘ Thermodynamic Properties — Source Coefficients
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NASA TM-4513. John H. Glenn Research Center, 1993. httns:/ntrs.nasa.eov/citations/19940013151 NASA TP-2002-211556, John H. Glenn Research Center, 2002. https://www.grc.nasa.gov/WWW/CEAWeb/TP-2002-21556.htm
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6 ‘ T, Formation Enthalpy

Formation enthalpies defined as zero at 298.15 K for all pure molecular species

° Includes all three isotopes of H,

Chose to define T, formation enthalpy as identical to D,
° Max deviation between D, and H, limited to 3% at 3000 K

90000 0 T,at298.15K, 3000 K

° Max deviation between T, and D, should be smaller 70000
o BEffectively specifies T, heat capacity as equivalent to D, g
50000
o Parameters defining both H, and Cp are identical ey
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7 ‘ T,0 Formation Enthalpy Offset at 298 K

Dissociation enthalpies reported by Greenwood and Earnshaw (1997) allow atomic T enthalpy to be specified directly
° Leveraged ratios between H, D, and T bond formation to define water formation reaction enthalpy at 298.15 K

° Isotopic trends enforced (larger shift between H and D compared to between D and T)

° Subsequently backed out shift in T,O formation enthalpy with respect to D,O parameters
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N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. Boston: Butterworth-Heinemann, 1997.



8 ‘ T,0 Heat Capacity
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9 I Entropy for T,

Entropy is used for chemical equilibrium calculations
° Minimization of AG = AH-TAS

o Also used to define reverse reaction rates

In the absence of data, we assume the entropy trends

dertved for T,O are close to reality and applicable to T,

° Procedure similar to enthalpy analysis

° For completeness, repeat procedure for atomic T

Use D, coetficients for T,, adjust constant S offset

o Can’t justity changing heat capacity, since we already
decided to accept H from D, for T,

° Avoids adjusting multiple parameters for 1 objective
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10 I Summary for Tritium Thermodynamics

Molecule Change in a; ot b, Change in a; or b, Change in a; or by
Offsets added to coefficients for analogous D species — (linear C, offset) (H offset) (S offset)
0.15563196 -466.8959 0
7-Coefficient Model (1993) 0 0 133114976
cg %) 2 3 ) 0 213.48221 0.80489184
R =a0+a1T+a2T +C13T +H4T
0 -235 5.0%
h™(T) a, a; as ay as -
=ag+=T+T*+—T*+=T*+ '~
RT 2 3 4‘ 5 T -240 ™~ 4.0%
Q
0 - %]
S (T) az ﬂ3 a4 > c
— 2 3 4 v
- =
2 o
9-Coefficient Model (2002) < 250 20% €
0 :u §
D) T2 4 by T2 4+ by + bsT + byT? + bsT* + bgT* 5 9
— Yo 1 2 3 4 5 6 B 10% B
i
hO(T) ) In(T) by b, bs be b, "
RT =—buT 2 'b‘l T +b2+ET+?Tz+TT3+ET‘1+? -260 0.0%
0 500 1000 1500 2000 2500 3000
sUT b b b b Temperature (K
é)=—7"?-2—bl'r-1+bzln('r)+b3T+§T2+§T3+fT*+bB P (K)

e Protium (H2) e===Deuterium (D2) =——Tritium (T2) = <% Diff D2-H2 = - % Diff T2 - H2



11 I Transport Properties for H,

T‘
Cantera transport property formats are patterned

after TRANLIB in CHEMKIN and are based on 5* =
Chapman-Enskog theory
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£
‘ oG, Ty (L + L
L LT S
53 “ T 16moZ0?  p, =
EL Oy I 16 PHJZ (1.1)’

M, (¢/mo) N TS

Property coefficients can be used to compute
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N S 200 -
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"DIPPR Project 801: Evaluated Standard Thermophysical Property Values," Design Institute for Physical Properties, AIChE, 2010. https:/dippr.aiche.org/
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2 ‘ Diffusivities for Isotopologues of H,

Binary Diffusivity (cm?/s)
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sas HI=50%5c=0.21 wrveaD2 = 50% 5c= 029

Schmidt number approximation for mixture diffusivity 1s a
common default in SIERRA /Fuego and other CFD codes

o Comparisons to binary diffusivity in N, at right demonstrates that
the Schmidt number should increase with the mass of the hydrogen

isotope

° The Schmidt number should increase with large increases in the
concentration of molecular hydrogen

° Variation between Schmidt-derived diffusivities for the different
isotopologues is small, but increases with increasing concentration
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‘ Transport Parameters for H,O and Isotopologues

Various correlations with different forms yield good agreement with

water vapor viscosity measurements Z: .
° TRANLIB H,O parameters are good in the most common range Z acc " f:'{ -
° Maximum deviation of 7.3% from data, 2.8% on average E - ) :f‘.’: -
° 3% average deviation above 700 K, 1% average below 700 K ::“Dmu :‘_Jﬂr}!"
> Upper-range Matsunaga (1983, >1100 K) uses Cantera/TRANLIB form % .., ﬂ;ﬁﬁ'
> 1% average deviation above 700 K, 4% deviation extrapolated below 700 K -‘% 200 ) f,r?f
> NASA refit the dual-range Matsunaga correlation with their own form E 150 ’1«”
° Maximum deviation from data is 1.8%, 0.3% on average 100 ﬁf
° Forms for NASA and Matsunaga below 1100 K incompatible with Cantera 50
200 400 G00 00 1000 1200
Upper-range Matsunaga (1983) selected for D,O and T,0 e temperatre (O

o TRANLIB parameters better for H,O below 700 K

Molecule e/ %, [ Z,.. (298 K)
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for the Evaluation of Gas-Phase, Multicomponent Transport Properties," Sandia National Laboratories,
Livermore, California, SAND86-8246, December 1986.
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14 | Diffusivities for Isotopologues of H,O

The use of unique Lennard-Jones for distinct 1sotopologues reduces predicted differences in diffusivities
> H,O diftusivities comparable for TRANLIB and upper-range Matsunaga parameters

Schmidt number form has less curvature, overestimates low-temperature diffusivity
° Lacks polarity terms
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15 I Summary and Conclusions

A suite of thermodynamic and transport properties for isotopologues of hydrogen and water
has been assembled
> Enables CFD-based safety assessments of tritium in fire scenarios

> Forms compatible with NASA-CEA thermodynamics and Cantera/TRANLIB transport properties

Thermodynamic properties for trittum species based on NASA coefficients for D, D, and D,O
° Leveraged reported bond strengths for H,, D,, and T, to quantify isotopic trends for tritium estimates

° Adjusted minimal number of coetficients to enforce trends observed for H, Cp, and S

° Results applicable to either 7-parameter or 9-parameter model

Reviewed literature of transport properties for isotopologues of H, and H,O
> Explicit molecular weight dependence in Cantera/TRANLIB forms sufficient for nonpolar H,
> Unmodified TRANLIB parameters recommended for H,, D,, and T,
> Moditfied parameters from literature identified for polar isotopologues of water
° Viscosity data for H, and H,O compared favorably with computed values

° Schmidt numbers for mixture diffusivities estimated from binary diffusivities of H, and H,O 1sotopologues



16 I Thank You

All coefficients for tritium species properties are found in the associated paper for this conference,
which will be archived at www.osti.gov under document number SAND2021-4040 C
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