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ABSTRACT
Atomically flat (111) interfaces between insulating perovskite oxides provide a landscape for new electronic phenomena. For exam-
ple, the graphene-like coordination between interfacial metallic ion layer pairs can lead to topologically protected states [Xiao et al.,
Nat. Commun. 2, 596 (2011) and A. Rüegg and G. A. Fiete, Phys. Rev. B 84, 201103 (2011)]. The metallic ion/metal oxide bilayers that
comprise the unit cell of the perovskite (111) heterostructures require the interface to be polar, generating an intrinsic polar discontinuity
[Chakhalian et al., Nat. Mater. 11, 92 (2012)]. Here, we investigate epitaxial heterostructures of (111)-oriented LaAlO3/SrTiO3 (LAO/STO).
We find that during heterostructure growth, the LAO overlayer eliminates the structural reconstruction of the STO (111) surface with an elec-
tronic reconstruction, which determines the properties of the resulting two-dimensional conducting gas. This is confirmed by transport mea-
surements, direct determination of the structure and atomic charge from coherent Bragg rod analysis, and theoretical calculations of electronic
and structural characteristics. Interfacial behaviors of the kind discussed here may lead to new growth control parameters useful for electronic
devices.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0067445

Advances in the fabrication of complex oxide materials, which
now can be grown with nearly atomic-scale precision, drive discov-
eries of novel and exciting phenomena, promising new functionali-
ties, and device concepts. Especially interesting are oxide interfaces
with unique electronic, magnetic, and transport properties.4–9 The
atomically smooth interfaces offer a degree of control over decisive
interfacial material characteristics, such as lattice constants, car-
rier concentration, exchange and correlation effects, and spin–orbit
coupling not easily attainable in other systems. The crystallo-
graphic orientation of this interface plays a surprisingly strategic
role, providing unexpected functionalities.10,11 Interfaces exhibiting
hexagonal point group symmetry, such as the (111) in pseudo-
cubic systems, can present entirely new phenomena. For instance, a

topologically protected state, which can be tuned by changing
dopant ions, substrates, and external gate voltages, has been
predicted to exist at (111) perovskite heterostructures.1–3

An additional degree of freedom is the polarity of the het-
erostructure, which must be screened through either atomic or
electronic reconstruction to avoid a polar catastrophe. Moving
beyond the [001] stacking direction brings new polarity consider-
ations. For example, (111) surfaces of all single-phase insulating
perovskite oxides are polar and so creating a (111) interface joins
two polar materials—a polar/polar interface. Polar/polar interfaces
bring greater flexibility in control over electronic, magnetic, and
structural reconstruction phenomena and hence novel properties
and functionalities.12
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The structural and charge transfer configuration in the [111]
direction is responsible for these characteristics. When stacked along
the [111] direction, an ABO3 perovskite unit cell consists of three
charge transfer bilayers, each containing one oxide AO3 plane and
one metallic B plane, with hexagonally coordinated A and B ions.
The bilayers are spaced by a/

√

3, where a is the lattice constant of
the (001) unit cell [Fig. 1(a)]. Three offset bilayers form the (111)
unit cell. As in (001) interfaces, charges transferred to the interface
reside in bands originating from the states on the B-site ions, e.g., Ti
in SrTiO3. These determine the charge distribution and electronic
properties of the interface as in [001]-oriented heterostructures,13–17

but there are significant differences. The hexagonal Ti coordination
within a (111) plane at the interface and the honeycomb-like struc-
ture of two neighboring Ti layers control the electronic structure for
two-dimensional carrier sheets confined to the interface. Figure 1(b)
shows the projected Ti ionic charge density derived from surface
x-ray diffraction and Coherent Bragg Rod Analysis (COBRA) mea-
surements (see the supplementary material for details of COBRA),
revealing the honeycomb basis of the Ti electronic structure (see the
supplementary material, Fig. S1).

Investigations have revealed characteristics of oxide interfaces
unique to the [111] orientation of the LAO/STO interface includ-
ing those arising in superconductivity,18,19 in correlation effects,20,21

and in structural deformations.22–25 Direct visualization of the inter-
facial conducting layer26 by electron holography shows electrons at
the interface in both orientations, with an increased spatial extent

FIG. 1. Stacking sequence along the [111] direction. (a) Schematic diagram of the
stacking sequence of LAO and STO along the [111] direction in a ABO3 cubic per-
ovskite lattice. Yellow, blue, and red planes are the SrO3 layer of the three offset
bilayers. Ti atoms are located between these layers. (b) Ti charge density at the
(111) interface obtained by COBRA as viewed along the [111] direction. (c) and
(d) Schematic diagram of possible layer structures with charge densities, oscil-
lating internal electric field distribution, and resultant potential build-up involving
atomically reconstructed (c) and unreconstructed (d) interfaces.

of the (111) 2DEG compared to (001). Antiferroelastic and polar
distortions have been shown to interact differently in the [111]
orientation.27 However, the impact of polarity in the [111] orienta-
tion on interface structure and its evolution during heterostructure
growth, and on the resulting interfacial 2DEG, still holds surprises.
Our experimental and theoretical results indicate that the bilayer
interface evolves during growth to become different than the isolated
(111) SrTiO3 surface and that this affects the interfacial conducting
layer.

ABO3 cubic perovskites are intrinsically polar along the [111]
direction in which internal electric fields arise from the alternating
AO3 (−q) and B (+q) charged layers.28,29 In these and other materi-
als, surface structural reconstruction can occur.30 For instance, our
COBRA measurements of the layer-resolved charge density of the
bare (111) STO substrate (see the supplementary material) indicate
a reconstruction of the topmost two sets of those layers that provide
the needed depolarizing charge in this single-layer structure. Our
measurements of the (111) LAO/STO bilayer heterostructure indi-
cate a different scenario in which the growth of the LaAlO3 overlayer
alters the interface, providing instead a global electronic reconstruc-
tion across the entire heterostructure. As we now show, the interface
structure directly determines the properties of the interfacial con-
ducting gas, perhaps the most immediate being its electron or hole
nature.

Figures 1(c) and 1(d) schematically show how two polar per-
ovskites can meet along the [111] direction at a structurally recon-
structed [Fig. 1(c)] or non-reconstructed [Fig. 1(d)] interface. In
Fig. 1(c), this reconstructed non-polar STO (111) surface acts like
the charge neutral STO (001) surface,12 and the LAO polarity leads
to an equivalent interfacial charge density of −1.5e/

√

3a2. This
represents an average electric field pointing toward the LAO/STO
interface. In this case, p-type carriers at the interface are required to
oppose the electric field within the LAO layer. On the other hand, if
the interface is non-reconstructed as in Fig. 1(d), the polar discon-
tinuity at the interface is reduced, with an equivalent charge density
of +0.5e/

√

3a2. Opposite to that in Fig. 1(c), it produces an electric
field pointing away from the LAO/STO interface. n-type carriers are
required to alleviate the effects of this polarity. Thus, the nature of
the interface directly determines the charge density and sign of the
interfacial carriers.

We have fabricated epitaxial LAO/STO heterostructures by
growing LAO on atomically smooth STO (111) with atomic layer
controlled pulsed-laser-deposition as described in the supplemen-
tary material. The LAO thickness and crystallinity were monitored
by in situ reflection high-energy electron diffraction (RHEED) dur-
ing the growth. The intensity oscillation of the specular spot as a
function of time in Fig. 2(a), which has been obtained with the
electron propagation parallel to the STO [110] direction, confirms
the layer-by-layer growth of LAO films. Nearly constant amplitude
after the first few intensity oscillations reveals that the LAO (111)
film surface is smooth. The RHEED pattern in the inset of Fig. 2(b)
captured beyond the 20th oscillation indicates epitaxial and coher-
ent growth of LAO. Figure 2(b) shows the atomic force microscopy
(AFM) images of an STO substrate chemically and thermally treated
to result in Ti-termination31 and the LAO overlayer. Both STO and
LAO surfaces exhibit clear step and terrace structures with the step
height of 2.26 and 2.20 Å, respectively, as revealed by line-profiles
across the step edges. It is known that LAO films grow unit cell by
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FIG. 2. Atomically smooth epitaxial 20 bilayer LAO film on STO (111) surface. (a) The intensity oscillation of specula RHEED pattern with the electron beam parallel to [110]
direction. It indicates that LAO grows with layer-by-layer growth mode on STO (111) surface. The number of laser pulses, which is required to form one bilayer, is almost half
of the one for LAO/STO (001) heterostructure. (b) AFM images of the atomically smooth STO surface after chemical etching and thermal annealing (left) and LAO surface
after the growth (right). The inset shows the RHEED image taken along the [112] direction after obtaining 20 intensity oscillations. Surface line profiles along A–B for STO

and C–D for LAO are provided. (c) High-resolution dark field STEM image of the coherent interface with [110] zone axis. Green, blue, red, yellow, and black circles are Sr,
La, Ti, Al, and O, respectively. The dashed line is the guide for the interface. The average bilayer spacing is 2.15 Å. (d) Charge density map of a plane slice of a three bilayer
LAO/STO heterostructure in the same crystallographic direction as (c), constructed by 3D COBRA. Note that the location of oxygen atoms is distinguishable by the electron
density distribution from COBRA contrary to the projected STEM image. STEM images are background filtered.

unit cell on STO (001) and one RHEED intensity oscillation cor-
responds to one unit cell (uc) of LAO (3.792 Å) along the [001]
direction.32 However, as revealed by the step height in AFM, this
is likely not the case for [111] growth. Figure 2(c) shows the high-
resolution dark field STEM image of an epitaxial LAO film grown on
STO (111) surface with 20 RHEED intensity oscillations. The bright
spots are heavy La atoms, which form 20 rows above the STO sub-
strate, indicating that one RHEED intensity oscillation corresponds
to one bilayer of (LaO3)3− and Al3+ with the thickness of 2.19 Å. We
consider the LaO3–Al bilayer as a basic unit and discuss our results
in terms of the number of these bilayers. Note that in the same sense,
the LaO–AlO2 bilayer can also be regarded as a basic unit for [001]
orientation. In this [001] orientation, the unit cell consists of a single
LaO–AlO2 bilayer, so the number of unit cells matches the number
of bilayers.

Both [111]- and [001]-oriented heterostructures were evalu-
ated with variable temperature magnetotransport measurements.
Hall measurements, using wire-bonded van der Pauw configura-
tions and also patterned Hall bar configurations, gave consistent
results, showing n-type mobile carriers above the LAO critical thick-
ness. The critical thickness and other transport properties were

determined by temperature-dependent transport measurements
with varying LAO overlayer thicknesses. The (111) heterostructure
with 20 LAO bilayers has a conducting interface with a sheet resis-
tance comparable to LAO/STO (001) heterostructures. For compar-
ison, we also measured the transport of LAO/STO (001) interface
and evaluated in terms of the number of bilayers along the [001]
direction.

The (111) interface is insulating below six bilayers and com-
pletely conducting above 15 bilayers [see Figs. S3(a) and S3(b)].
The two-dimensional sheet carrier concentration [ns, Fig. S3(b)]
in the conducting region is higher than that of similarly prepared
LAO/STO (001); however, both Rs and ns have a transition between
the insulating and conducting state broader compared to LAO/STO
(001) [see Fig. S3(b)] that has a sharp transition near four bilayers of
the LAO overlayer.33 The room temperature mobility is comparable
but smaller than that of LAO/STO (001) interface. Brinks et al. have
shown that the LAO/STO (001) interfacial 2DEG shows in-plane
transport anisotropy.34 However, our measurements of Hall bar pat-
terned samples show no anisotropy of the LAO/STO (111) 2DEG
between in-plane (100) and (010). Previous temperature-dependent
measurements found anisotropy in (111) heterostructures only at
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low temperature.35 Variable temperature transport characteristics
[Figs. S3(c) and S3(d)] show that the mobility of LAO/STO (001) at
low temperatures is higher than that of LAO/STO (111), with similar
interfacial carrier concentrations.

These magnetotransport measurements indicate that the
LAO/STO (111) heterointerface has a non-reconstructed polar
interface as suggested in Fig. 1(d). This modified interface charge
density and the electric field as discussed earlier also affect the LAO
critical thickness. Due to the reduced internal field represented by
the equivalent interface and surface charge densities, the critical
thickness in the electronic reconstruction scenario36 is increased by
a factor of

√

3 as compared to LAO/STO (001). The bilayer spac-
ing is

√

3 times smaller in the [111] orientation as compared to the
bilayer spacing in the [001] so that the critical thickness in a number
of bilayers is expected to be three times greater in the [111] orien-
tation. A critical thickness of 3 uc (3 [001] bilayers) for LAO/STO
(001) results in the prediction of nine bilayers of the critical thickness
along the [111] direction.

This interpretation is verified by density functional theory
(DFT) calculations (see the supplementary material for details). The
layer-resolved density of states calculation in Fig. 3 shows the tran-
sition from insulating to conducting. The LAO/STO heterointerface
is insulating when six bilayers are deposited, while it becomes metal-
lic as the thickness increases up to eight bilayers. This is evident
from the Fermi energy lying in the bandgap for the six bilayer het-
erostructure [Fig. 3(a)] and in the Ti 3d conduction band for the
eight bilayer heterostructure [Fig. 3(b)]. The dashed line showing the
AO3 valence band edge is indicative of the average internal electric
field of the LAO layer and of zero electric field in the STO layers.

As described previously, n-type carriers at the (111) LAO/STO
interface would arise in response to an LAO internal electric field

pointing away from the interface.37,38 Our direct structural evidence
confirms this direction of the internal E-field. Three-dimensional
atomic positions above and below the (111) LAO/STO interface
were determined by synchrotron x-ray diffraction at the Advanced
Photon Source. L-scans along seven symmetry non-equivalent crys-
tal truncation rods (CTRs) were performed for both an insulating
interface with three bilayers and a conducting interface with 20
bilayers (see the supplementary material). The total film thickness
and the average bilayer thickness of the 20 bilayer LAO film are cal-
culated from the thickness fringes to be 43.8 and 2.19 Å, respectively,
consistent with values determined from the TEM analysis. COBRA
allows us to determine atomic positions from the three-dimensional
charge density and to estimate layer occupancy and stoichiometry
from layer-integrated electron densities.

Figure 2(d) shows a slice through the three-dimensional charge
density perpendicular to the LAO/STO interface of the three bilayer
LAO film. The positively charged Al layer in the LAO is not cen-
tered between the negatively charged LaO3 layers but has an offset
in the direction away from the interface. This offset can be under-
stood as an atomic rumpling to depolarize the electric field, which
is induced by the polar nature of the LAO film. For LAO/STO (100)
heterostructures, buckling in AO and BO2 planes plays this role.38–41

This is quantified in Fig. 4(a), where a positive B-site off-center dis-
placement corresponds to displacement away from the center of the
adjacent two A-site cations. The 20 bilayer conducting film shows
small, mixed B-site off center displacements above the interface
[Fig. 4(b)], implying a suppressed electric field inside the LAO layers.
This is because the heterostructure no longer requires depolariza-
tion by rumpling once the LAO thickness exceeds the critical value
for 2DEG formation. DFT calculations as discussed above were also
completed for 3 and 20 bilayer LAO heterostructures. The calculated

FIG. 3. DFT calculations. Bilayer-resolved
density of states for six bilayer (a) and
eight bilayer (b) LAO films. The solid
black line at zero in the x axis indi-
cates the Fermi energy. The red dashed
arrows indicate the electrostatic potential
in LAO films. The eight bilayer LAO pro-
duces electronic reconstruction by trans-
ferring an electron charge from the LAO
surface to STO, as is evident from the
Fermi energy lying above the conduction
band minimum of STO.
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FIG. 4. Determination of the detailed layer structure by COBRA. B-site off-center relative displacement of the insulating three bilayer LAO (a) and the conducting 20 bilayer
LAO films (b). Bilayer spacing of the insulating three bilayer LAO (c) and the conducting 20 bilayer LAO films (d). Values from the DFT calculations are overlaid.

B-site off-center displacements are shown in the figure, consistent
with the experimental results.

As shown in Figs. 4(c) and 4(d), the bilayer lattice spacing of
the insulating three bilayer LAO film is not in the elastic limit and is
significantly larger than the value predicted based on pure elasticity
of the LAO film even though it is under tensile strain. In contrast, the
conducting 20 bilayer LAO film shows a gradual decrease of the LAO
bilayer lattice spacing approaching the elastic limit determined by
the Poisson ratio of LAO, 0.24.42 The average value is close to 2.19 Å.
The significant difference of the lattice spacing of the two LAO films
also points to a large change of electric field inside the LAO layer
as it undergoes a transition from insulating to conducting state, and
the electrostriction by the different polarity between LAO and STO
should induce the large lattice spacing at thin LAO films.31,43 The
DFT calculation supports this result as indicated by the calculated
bilayer spacings shown.

Our experimental COBRA evidence [Figs. 5(c) and 5(d)] indi-
cates that LAO/STO (111) preserves AO3/B layer stacking without
atomic reconstruction at the interface, while a bare STO (111) sur-
face exhibits surface reconstruction and off-stoichiometry [Figs.
5(a) and 5(b)] as in TEM analysis.44 The bare STO (111) surface
shows non-trivial CTR intensity variations [significant bumps in
Fig. S2(a)] between Bragg peaks, which should not appear with-
out surface reconstruction. Figure 5(a) shows the electron density
profile of this bare STO (111) surface determined from the CTR
and the COBRA method, with electron density variation near the

surface layers indicative of surface modifications. The significant
change in stoichiometry of subsurface SrO3 and Ti layers and small
lattice distortions effectively compensates the diverging surface elec-
trostatic energy [Fig. 5(b)]. The 80% layer occupancy of the first
Ti layer could indicate a 3 × 3 surface reconstruction observed by
both TEM and STM studies.30 Figures 5(c) and 5(d) indicate that the
LAO/STO (111) heterostructures have no structural reconstruction
at the LAO/STO interface. One possible explanation is that the high
energy particles in the laser-ablation plume diffuse into the substrate
and elevate the original reconstructed surface structure, allowing an
unreconstructed interface to form. Interfacial intermixing or oxy-
gen point defects would not affect this interfacial process, although
the somewhat higher saturated carrier concentration of LAO/STO
(111) as compared to LAO/STO (100) in Fig. S3(b) is indicative
of a surface with higher propensity toward atomic defects that
could supply electrons to the interface. This type of floating surface
reconstruction has been investigated by STM studies of homoepi-
taxial STO layers on Nb-doped STO substrates.45 In situ surface
x-ray scattering combined with the LAO film growth could eluci-
date this phenomenon in the (111) orientation, as recently reported
for (001).46

We have reported a global electronic reconstruction in
LAO/STO (111) heterostructures not found in other crystallo-
graphic orientations, supported by detailed x-ray structural determi-
nation, electrical transport characterization, and theoretical calcula-
tions. This work can be expanded to the study of artificial stacking
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FIG. 5. (a) Experimentally determined electron density profile of the treated bare SrTiO3 (111) surface. (b) The diagram of the charge distribution and electrostatic potential
near the surface of SrTiO3 (111). Possible surface reconstruction (top Ti layer) and subsurface off-stoichiometry (SrO3 and Ti layer deficiency) alleviate a polar catastrophe
in the bare substrate, as illustrated by the dashed line, of the intrinsically polar (111) system. Electron density profiles of the three bilayers (c) and 20 bilayers of LAO (d) as
a function of z height, showing an interface with no structural reconstruction. Intensity drops near the top surface of LAO films suggest incomplete coverage.

of general polar surfaces including non-oxide materials, such as
graphene on (111) cubic lattice planes and topologically protected
edge states47,48 at the interface of oxide materials with enhanced
spin–orbit coupling. These are expected to stimulate new direc-
tions and features in condensed-matter physics and to provide new
opportunities in manipulation of layered perovskites. In addition,
the understanding of the important building block of the (111)
heterointerface will allow for the design and development of new
interfacial multifunctionalities.

See the supplementary material for methods of heterostruc-
ture fabrication, transport measurements, theoretical modeling, and
COBRA analysis of x-ray surface diffraction.
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