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.  Executive Summary

In this project, Clarkson University, in collaboration with Southern Methodist University
and University of Pittsburgh, conducted the research to model, design, and implement a
sophisticated generation and transmission co-optimization planning decision tool, called
Multi-stage and Multi-timescale robust Co-Optimization Planning (MMCOP). The
MMCOP decision tool intends to facilitate generation and transmission co-optimization
planning of emerging power systems, while mitigating risks and uncertainties in both
short-term operation dynamics and long-term policy and technology changes.

Long-term power system planning aims at optimizing asset utilization by investing in
a proper mix of various generation technologies and transmission lines to supply the
future load growth. Indeed, concerns over environmental sustainability, energy reliability
and efficiency, and economic well-being have been driving the transition by expanding
existing electric power systems with an increasing deployment of environmentally friendly
energy sources such as renewable generation. In particular, the Clean Power Plan
(CPP), which is designed to combat climate change and reduce carbon emissions by
setting a national limit on carbon pollution from power plants, may dramatically change
the landscape of the power industry by further promoting clean energy and phasing out
emissions-intensive generation technologies [1]. However, a rapid deployment of
variable and uncertain renewable energy sources as well as their geographical disparity
bring new challenges across multiple time scales, both of which need to be reflected in
the long-term reliable planning and the short-term secure grid operation to achieve a
deeper penetration. In addition, novel non-wire alternatives (e.g., demand response
(DR), distributed generation (DG), energy efficiency (EE), and smart grid technologies)
and the computational complexity for large-scale systems significantly complicate the
system planning procedure even further.

However, current state-of-the-art planning technologies [2-6] mostly evaluate
decoupled generation and transmission expansions in a queue, and heuristically
determine the contributions of renewable generations by subtracting their approximated
capacity values from the system peak load or the non-sequential block load duration
curve. However, existing conventional planning approaches neglect short-term variability
and uncertainty of renewable energy, hourly chronological operation details, and physical
nonlinear characteristics of the alternating current (AC) transmission network. In turn, the
derived long-term plans may not yield a feasible and optimal short-term dispatch decision.
As a result, existing conventional planning approaches may not work properly, and power
systems reliability could be in jeopardy.

In observing limitations of existing conventional planning approaches and addressing
new challenges of emerging power systems, the main scope of this project is illustrated
in Figure 1. Specifically, in designing future power systems by upgrading the existing
transmission network and planning new generation and transmission facilities, it is of
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crucial importance to simultaneously examine the short-term variability and uncertainty,
hourly chronological operation details, and nonlinear characteristics of AC transmission
network within the co-optimization planning model. With such a decision-making
structure and the interdependence between generation and transmission planning, this
project developed co-optimization planning models within a multi-stage and multi-
timescale framework. In particular, random contingencies, key uncertainty factors, and
AC power flows are included to derive expansion plans while considering both long-term
reliability and short-term flexibility.
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Figure 1. The Multi-stage and Multi-timescale Co-Optimization Planning (MMCOP)

framework

Major accomplishments and findings of the project are summarized as follows:

The team has developed the MMCOP prototype, which integrates the modeling
of risks and uncertainties related to the time, location, and type of additional
generation technologies, hourly and annual variation of renewable energy
sources, long-term reliable planning and short-term economic operation, AC
transmission network, and various environmental considerations. The
prototype is also equipped with effective solution methodologies, including tight
convex approximation and advanced decomposition approaches, to enhance
computational efficiency for solving real-world large-scale long-term planning
problems.

The proposed prototype has been extensively tested via several Institute of
Electrical and Electronics Engineers (IEEE) benchmark systems and the
practical Western Electricity Coordinating Council's (WECC) system to
illustrate its effectiveness and efficiency. The tests have shown that: (i) By
considering flexible resources especially those non-wire technologies on the
demand side and capturing short-term operation status of the power system,
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more economically efficient and reliable systems can be planned; (ii) The
hybrid stochastic and robust model adopted in the MMCOP prototype can
accurately capture various discrete and continuous uncertainties in modern
power grid, thus facilitating the long-term planning with significant renewables
while ensuring cost effectiveness, reliability, and sustainability; (iii) Extensive
studies on the practical WECC system show that the proposed advanced
solution approaches have the potential to enhance computational efficiency for
solving real-world large-scale long-term planning problems.

The research findings have been disseminated to the community via our 8
journal publications and 4 technical conference presentations. The list of
publications and presentations is detailed in Appendix A. The project team has
also interacted with multiple industry partners, seeking opportunities to
customize the MMCOP models and computational tools based on their
specifications and needs and to provide technical support for promoting co-
optimization in their system expansion planning.

Multiple undergraduate and graduate students at Clarkson University,
University of Pittsburgh, and Southern Methodist University participated in this
project, receiving training and professional development on areas of power and
energy systems, mathematical optimization, and algorithms. One Ph.D. Thesis
“‘Multiple Timescale Power Systems Operation and Planning with Renewable
Energy, Demand Side Resource, and Energy Storage” was completed in
August 2018 at Clarkson University. Some of the research findings have also
been integrated into undergraduate and graduate courses offered at Clarkson
University and University of Pittsburgh.

The reminder of this report is organized as follows:

Section Il describes objectives of this project, including the background
information that supports the need for this research, the technical challenges
addressed by the project, and the project goals;

Section Il details technical approaches adopted in the project to support the
generated results and findings;

Section IV summarizes accomplishments and conclusions out of the project,
and recommends future work for the possible continuation of the initiative;

Appendix A provides the list of publications and presentations for information
dissemination/sharing that occurred during the period of project.



Objectives

[I.1. Background

Generation and transmission planning is the central piece of power system expansion
to meet future electricity demand growth. Current state-of-the-art power system
planning approaches mostly generate and evaluate decoupled generation and
transmission expansion decisions in a sequential fashion. One major reason for the
decoupled planning process has been the lack of capabilities to address computational
challenges that arise if both generation and transmission expansion plans were done
in an integrated way [2-6]. The actual power system under study can have thousands
of generators and lines, which make the co-optimization planning problem very difficult
to solve. However, such decoupled strategies fail to reflect that generation and
transmission assets are closely tied and mutually support each other for delivering
electricity to customers. As one can imagine, this artificially separated planning
procedure cannot guarantee that the obtained expansion plan is globally optimal, as
the coupled nature of power generation and transmission has been ignored. Moreover,
they typically neglect short-term hourly operation decisions, which indeed could have
serious impacts on the long-term planning. Note that system expansions are primarily
driven by the reliability needs in unusual situations and at peak demands that just occur
with very short durations. Consequently, it is very likely that a sequential generation
and transmission long-term plan while neglecting hourly chronological operational
details is of a low quality, leading to expensive or even infeasible short-term operation
decisions. To this end, the increasingly interconnected power grid requires an
integrated and coordinated expansion plan for generation and transmission sectors
while effectively considering hourly chronological operational details.

In addition, in the long-term planning problem, scenario sampling is a commonly
used technique to simulate uncertainty factors such as loads, fuel prices, hydroelectric
conditions, and renewable generation penetration in the planning years. However,
usually only a very limited number of scenarios can be considered to investigate the
reliability of the system under a particular expansion plan, and the expansion plan with
the least cost and satisfactory reliability can be chosen. For example, it can take power
system planners a week to run the commercial production cost simulation model for
calculating the operations of the Eastern Interconnection for a single year, considering
only one future scenario [7]. This modeling and computational deficiency greatly limits
the ability of system planners to explore other possible expansion alternatives and
scenarios.

Furthermore, most existing planning models are based on (mixed-integer) linear
approximations of nonconvex AC power flow formulations, which clearly bring a great
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computational advantage. However, such linear approximations may lead to solutions
of poor quality or even outside acceptable operational ranges of the AC transmission
system.

Various entities involved with power system planning in practice have realized that
the above modeling and computational bottlenecks should be and can be overcome.
For instance, the Eastern Interconnection States’ Planning Council (EISPC) that
represents the 39 states, the District of Columbia, the City of New Orleans, and 8
Canadian Provinces located within the Eastern Interconnection has published a white
paper on co-optimization of transmission and other supply resources [8]. Although the
white paper does not address the above-mentioned challenges in detail, it does point
out the need for a coordinated plan. An associated technical conference consisting of
experts from academia and industry confirmed the benefits of conducting such a co-
optimization expansion plan. However, related research has been confined to small
unpractical systems and conceptual discussions [9-17]. Nevertheless, the need for
developing stochastic models to address the increasing uncertainty and variability in
power system planning has been identified in several government and industry reports
including [17].

[I.2. The Technical Challenges and Project Goals

This project is aimed at addressing the modeling challenges and computational
difficulties associated with co-optimization of generation and transmission planning,
and developing the MMCOP tool that can be used by various interested users. At the
same time, as the resulting model is a large-scale optimization problem with
uncertainties, the required large-scale modeling and simulation capabilities also
present a break-through in science and engineering.

Specifically, this project targets on addressing the following modeling challenges
and computational difficulties associated with co-optimization of generation and
transmission planning:

e Co-optimization of Generation and Transmission Expansion While
Considering Accurate AC Power Flow Modeling: Co-optimization planning
with AC power flow modeling is a significant contribution by itself. Note that the
majority of existing planning models are based on (mixed-integer) linear
approximations of the nonconvex AC power flow model. Although a clear
computational efficiency can be obtained, weak linear approximations could
lead to solutions of poor quality with expensive operational cost. In MMCOP,
through co-optimization with tighter convex approximations, especially those
with the second-order cone programming (SOCP) representations and
additional tight cutting planes, a more accurate optimal expansion plan can be
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identified. It could be far superior to the results calculated sequentially using
traditional direct current (DC) power flow approximations.

e Unprecedented Granularity: Most of the existing models only consider typical
load profiles or simplified load blocks in the planning procedure, while failing to
capture temporal operation details of power systems as well as short-term
variability from renewable generation resources such as wind power. In
MMCOP, we execute unit commitment with hourly time resolution for candidate
expansion plans, and in turn accurately capture the system impacts of fast
ramps from wind power and other uncertain generation resources.

e Two-Stage Robust Co-optimization Planning Hedging against
Uncertainties as well as N-1/2 and N-1-1 Contingencies: The current
industry practice does not consider multiple scenarios within a single
optimization problem as it would be too computationally expensive.
Accordingly, the solution obtained from a single scenario may be infeasible in
other scenarios and very likely be suboptimal. In comparison, MMCOP
considers realistic uncertainty descriptions within a single optimization problem
to ensure reliable co-optimization plans that are robust to critical randomness
and N-1/2 contingencies under consideration. We also define novel uncertainty
descriptions to capture N-1-1 contingencies and design systems with
guaranteed performance under consecutive outages.

e Hybrid Robust and Stochastic Optimization: By developing a hybrid robust
and stochastic optimization framework that utilizes both historical data and
include N-K considerations, the co-optimization plans obtained will be both
robust and cost-effective. Note that the proposed hybrid robust and stochastic
optimization framework would eliminate unrealistic scenarios and reduce the
conservativeness level as compared to pure robust optimization models. We
will particularly demonstrate the effectiveness of using this hybrid framework to
design systems with desired resilience under different outage levels.

e Fast Computational Methods to Support Industrial Scale Applications:
Most existing computational methods cannot effectively address actual system
needs. Our research will lead to a set of practical computational tools using
three powerful strategies, including approximation, decomposition, and
distributed computation. These tools can effectively calculate large-scale
practical systems.

Targeting on addressing the above modeling challenges and computational
difficulties associated with co-optimization of generation and transmission planning,
the overall objective of this project is to develop a sophisticated decision-making tool
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MMCOP for facilitating generation and transmission co-optimization planning of
emerging power systems. MMCOP will represent an efficient decision-making tool for
augmenting the existing capabilities of power system planner and operators to support
collaborative planning, analysis, and implementation of emerging power systems, and
to effectively mitigate risks and uncertainties in both short-term operation dynamics
and long-term policy/technology changes. MMCOP integrates advanced features for
the modeling and simulation of risks and uncertainties related to the time, location, and
type of additional generation technologies via the hybrid robust and stochastic
optimization framework, hourly and annual variation of renewable energy sources,
integrated long-term reliable planning and short-term economic operation, AC
transmission network, and various environmental considerations. MMCOP explores
innovative solutions via dynamic transmission network reduction, tighter convex
approximation as compared to standard SOCP-based AC power flow convexification
models, integrated decomposition approaches, and distributed computation methods.
MMCOP will enhance reliable and sustainable operation of the existing grid with the
most economic integration of additional generation and transmission assets.

The goals of the proposed project include:

e Establishing the MMCOP prototype with the proposed comprehensive
modeling features (including co-optimization of generation and transmission
planning, generation sizing/sitting and line routing with the consideration of
environmental impacts, integrated long-term reliability and short-term
economics, full AC power flow, and hybrid robust and stochastic optimization
for uncertainty simulation and risk mitigation) and advanced solution
methodologies (including dynamic transmission network reduction, tight
convex approximation, integrated decomposition approaches, and distributed
computation methods);

e Validating the technological viability and effectiveness of MMCOP via standard
IEEE testing systems and practical systems, on mitigating risks and
uncertainties in co-optimized generation and transmission planning while
ensuring reliability, sustainability, and economic benefits;

e Disseminating the research findings via journal publications, conference
presentations, training courses, and collaboration and interactions with industry
partners to create broader impacts.
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Technical Approach

The project involves three phases to achieve the project goals of developing the
MMCOP for facilitating generation and transmission co-optimization planning of
emerging power systems. The objectives for individual phases are listed as follows:

Phase | — Development of MMCOP framework and algorithms;

Phase Il — Validation and verification of MMCOP via standard testing systems

and practical systems;

Phase Il — Dissemination of the results and final reporting.

Technical details adopted in individual phases to achieve the targeted objectives
are discussed below in detalils.

[ll.1. Phase I. Development of MMCOP Framework and Algorithms

Generation and Transmission Co-optimization Planning with AC Power Flows

This project investigates the comprehensive deterministic multi-stage and
multi-timescale generation and transmission co-optimization planning model,
which explores financially viable and physically feasible planning decisions to
ensure sufficient electricity resources and delivery capacities to meet
electricity loads. The co-optimization planning model simultaneously studies
electricity network configurations along with the detailed characterization of
their functionalities (including supply, demand, storage, and transmission
constraints), while integrating long-term reliability, short-term flexibility, and
hourly chronological operation details in a single analytical framework. The
basic framework of the deterministic multi-stage and multi-timescale
generation and transmission co-optimization planning model is highlighted as
followed, while the full modeling details can be referred to from the team’s
publication [18] out of this project.

The proposed co-optimization planning model determines when (which
year), where (which bus and route), and what (which type) generators and
transmission lines will be built for minimizing the total system cost throughout
the planning horizon, as shown in (1). Function C quantifies the annual
investment cost associated with new generators and transmission lines, and
function F calculates the hourly costs for electricity production and unserved
demand; IG, and IT, are binary investment variables for generators and
transmission lines in year y; N,, is the number of weeks that can be
represented by a typical week w in a year; I, and P; are unit commitment
and generation dispatch related operation decisions in hour t. Typical weeks
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in each month/season are considered to reflect the impact of distinct temporal
operation characteristics of electricity systems.

16 YITTl'lnII p Zy[C(IGyr ITy) +Zwey Nw 'ZtewF(Itth)] (1)
y ATy It.Pt

The proposed co-optimization planning model includes the following
typical constraints: (i) Long-term planning constraints describe site
availability, types and capacities of candidate units and transmission lines at
each site, as well as commissioning and construction time requirements.
Additional constraints would include Renewable Portfolio Standards (RPS) in
terms of emission limits and renewable penetration levels for addressing
various socio-environmental obstacles; (ii) Short-term operation constraints
include electricity load balance, system reserve requirements, operation limits
of traditional units and renewable resources (including capacity, ramp
up/down rate, minimum ON/OFF time limits, etc.), and transmission
constraints (power flow limits, etc.); (iii) Different types of generators,
including regular thermal units, combined-cycle gas-fired units, hydro units,
renewable energy, and energy storage devices, will be rigorously
represented;  (iv) Network evaluations for normal and pre-selected
contingency cases will be included. Power system operators not only enforce
network constraints in the normal situation, but also evaluate the performance
in pre-selected (i.e., the most credible) contingency cases to guarantee
network security; (v) Coupling constraints between long-term planning and
short-term operation describe linkages of installation statuses and
commitment decisions of units, and installation statuses and power flows of
lines.

The proposed co-optimization planning model also includes advanced
features to address unigue characteristics and special needs of the long-term
co-optimization planning for emerging power systems, including: (i)
Incorporating AC power flow formulations: One essential operating
characteristic is the nonlinear behavior of AC power flow, which reflects the
nonconvex relationship between nodal voltages and net power injections.
Nevertheless, the majority of planning tools use (mixed-integer) linear
formulations to approximate the AC power flow behavior, e.g., linear
programming based DC power flow equations. Although computational
efficiency can be realized, such (mixed-integer) linear approximations may
lead to transmission expansion plans of a poor quality. To accurately capture
the impact of AC power flow in the system planning, our co-optimization
framework will incorporate strong convex approximations of AC power flow to
produce better cost-effective co-optimization plans. Specifically, SOCP
approximation will be adopted in the MMCOP framework, along with novel
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cutting planes, to achieve a trade-off between computational expense and
solution quality; (i) Co-optimization planning with topology control for
flexibility: It is often observed that switching off some transmission lines in
certain practical scenarios for scheduling maintenance and mitigating a
destructive contingency could lead to a better power delivery capability.
MMCOP will include necessary modeling components, e.g., binary variables
for switching decisions in F (I, P,), to incorporate this feature in our planning
solution, especially for newly planned transmission assets. The detailed
models on the SOCP-based AC power flow constraints and topology control
can be referred to from the team’s publications [19, 20, 22-25] out of this
project.

Co-optimization Planning Considering Complicated Environmental Impacts

Investment costs of planning projects, especially the transmission network
planning, largely depend on environmental factors such as terrain and
climate. In addition, the construction certificate of transmission lines has
become even tougher to obtain due to the environmental protection goal.
However, traditional transmission network planning approaches usually
assume routes of candidate lines are given, which may bring unbearable
errors especially in large regions under a variant environment. Indeed,
transmission line route design is an important and complex component of the
transmission network planning.

The MMCOP incorporates the spatial transmission network planning
into the proposed co-optimization planning model. Based on the raster map
in geographic information systems (GIS), the model would derive more
economical and flexible solutions by exploring routes of candidate lines
according to environmental factors and power system reliability requirements.
The proposed co-optimization planning model minimizes the investment and
operation cost (1) while simultaneously ensuring the feasibility of line paths
and the reliability of power systems. Specifically, the investment cost function
C in (1) is evaluated while considering environment and altitude information.
As shown in Figure 2, the original GIS image map Figure 2.a can be
rasterized into an environmental map (shown in Figure 2.b) and an altitude
map (shown in Figure 2.c). In turn, associated with different costs for
individual cells, the rasterized environmental and altitude maps can
accurately reflect the impact of variant environments and altitudes on the
optimal line routes. In Figure 2.b and Figure 2.c, the darker the cell, the higher
the cost. The optimal route (i.e., the solid line) in Figure 2.d crosses the
regions with the lowest cost by considering both environmental and altitude
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information of each cell. In comparison, the dash line route crosses some
high cost areas, if such information of individual sites is neglected. The
detailed models on the spatial power network planning considering
complicated environments can be referred to from the team’s publication [21].

(@) The original  (b) The rasterized (c) The rasterized (d) Optimal route
GIS image map environmental map altitude map on the GIS map

Figure 2. Map rasterizing

Co-optimization Model Considering Risks and Uncertainties

As the reliable electricity delivery is of the core value in the entire power
industry, the MMCOP framework adopts a hybrid robust and stochastic co-
optimization planning model to address various contingencies and
uncertainties.  Specifically, as load and renewable energy are clearly
uncertain, the impact of these uncertainty factors on the co-optimization
planning is fundamentally important. Indeed, when the wind level reaches a
critical value, the dependency of power systems on wind availability would
inevitably result in supply risks. The basic framework of the hybrid robust and
stochastic co-optimization planning model is highlighted as followed, while
the modeling details can be referred to from the team’s publications [18, 22-
25] out of this project.

The N-K reliability criterion (with K=1 or 2) is typically adopted by system
operators for mitigating supply risks. Indeed, the N-K criterion perfectly fits
the concept of robust optimization, which seeks for solutions that protect the
system against any N-K joint contingency of generation and transmission
assets. On the other hand, on many occasions, plenty of historical load or
renewable energy data is available, which may either carry generic patterns
and probabilistic information or provide a basis to generate more simulation
data. Hence, it would be reasonable to take advantage of available historical
data and adopt the scenario-based approach to describe random loads and
renewable generations. In turn, together with the uncertainty set A (2)
defining N-K contingencies and the scenario set S representing random loads
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and renewable generations, a hybrid robust and stochastic co-optimization
planning model can be derived as in (3), which minimizes the total investment
costs, plus the expected costs for electricity production and unserved demand
in the worst N-K contingency throughout the planning horizon. Note in (2)
that AG;; /AL;; equals to one if the corresponding generator/transmission line
is on outage at hour t, NG, NL, and NT are the numbers of generators,
transmission lines, and hours, K¢ and K* are the numbers of generators and
lines that are simultaneously on outage.

A= {AGit € {Oll}NGXNT’ Ath € {Oll}NLXNT;} (2)
"l X,A4G, < K6, vt; 3, AL, < KL vt
S S S
min {cuem + max E [;rszgsl F(I°, P*,AG,ALID = D®)|} ©)

Multi-Area Coordinated Planning under Uncertainty

In a multi-area power system, the growing interconnection of regional
electricity networks and the large-scale integration of renewable energy
require a coordinated multi-area plan to achieve the overall reliability and
economic efficiency. Under such a background, we further study the multi-
area coordinated planning model as in (4), which minimizes the total
investment costs plus the worst case costs for electricity production and
unserved load over all areas. a and b are indices of areas. We point out that
in addition to investment and operation constraints for individual areas,
equality constraint (5) represents that on any transmission tie-line, power flow
exchange PL,_,, from area a to area b is negative to PL;,_,,.

za{C(ma,ITa,PLaH max mmF(la,Pa,AGa,ALa)} (4)

IGa ITa PL, AGo,ALg€A14,P,

PLy ., = —PLy,, (%)

Note that to compute (4)-(5) as a single optimization model would
require data across multiple areas, which may not be readily accessible
because of limitations on information privacy and difficulties in complicated
models. To this end, we adopt alternating direction method of multipliers
(ADMM) based distributed algorithms to relax (5), which will separate (4) into
two disjoint formulations that can be computed independent of each other.
As a result, by just exchanging the pricing value of that tie-line flow, i.e., the
Lagrangian multiplier, we will be able to achieve coordinated transmission
planning without sharing private information inside each area. The detailed
procedure of using ADMM to solve (4)-(5) can be referred to from the team’s
publication [26] out of this project.
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Enhancement of Computational Methods for Practical Instances

The MMCORP includes efficient computation methods to effectively solve
complicated models discussed above. Specifically, three strategies of
approximation, decomposition, and distributed computation are explored to
address the complexities in co-optimization planning models, including: (i)
SOCP approach for AC power flow calculation is incorporated into MMCOP
to simulate physical Kirchhoff laws that regulate power flows more accurately
than a DC power flow model; (ii) The structurally complicated formulations
related to the lengthy planning horizon and temporal correlations in load,
generation, and transmission aspects will be effectively computed by column-
and-constraint generation (CCG) method; (iii) The scale of practical network
and spatial correlations will be tackles by decomposition and distributed
computation approaches such as ADMM. Technical details of the SOCP
based approach, the CCG method, and the ADMM implementation can be
referred to from the team’s publications [18-26] out of this project.

The entire MMCOP modeling and algorithm is detailed as follows:

Mathematical Model Description

The system state model with the detailed formulations on operation costs and
constraints used in the MMCORP is first presented, followed by the two-stage
robust generation-transmission expansion planning model while considering
various uncertainties in the planning horizon.

o System State Model: Load duration curve has been extensively applied
in existing planning studies, which is usually modelled via a limited
number of load blocks in practice. However, because individual load
blocks are regarded as mutually time independent, temporal operation
characters, such as correlations of load and wind profiles, cannot be
effectively handled. More importantly, temporal operation characters of
generating units, such as start-up and shut down costs, minimum on/off
time limits, and ramping constraints, cannot be modelled. To this end, the
system state model together with a transition matrix is adopted to recover
certain chronological operation information (i.e., unit start-up/shut down
cost) within the long-term planning problem. That is, with additional binary
variables to indicate unit commitment status and transitions among
different states, start-up/ shut-down actions along the planning horizon
can be reasonably captured, and in turn provide a model with better
accuracy.

The system state model-based optimal operation of power systems
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with demand-side resources (DSR) programs for each year t within the
long-term planning horizon is described as in (6)-(19). The objective
function (6) is to minimize the total operation cost of generating units,
including variable production cost, fixed no-load cost, start-up cost, and
shut-down cost, in addition to load reduction payments of DSR programs
and penalty costs of unserved loads. Constraints (7)-(10) represent limits
of thermal units, wind farms, DSRs, and line power flows. Nodal power
balance is expressed as in (11). Constraint (12) represents the relation
between start-up/shut-down decisions and unit commitment statuses in
each state. DC power flow is expressed as a function of voltage phase
angles (13), where phase angles are limited in (14). The DSR deployment
limit in each year t is formulated as in (15), reflecting functionality
requirements of physical demands and consumers’ non-appreciation on
over-discomfort. Constraints (16)-(19) describe boundaries of decision
variables. AC constraints could be similarly considered via convex
relaxation approaches, which can help enhance the computational
performance.

Tt,s ) (VCg *Pyt,s + FCg 'yg,t,s) +

OC; = min ZS'QEG Xs' Niss - (C;p " SUgts,s' T an ' Sdg,t,s,s’) (6)
+2saTts ECrs drars + PCr XsiTes * Vigs

St P ygs S Dgrs < B Vg Vg,s @)

0=<Puwts=<Puwrs Yw, s (8)

0<drges < DRI " Yars vd,s 9)

—P" < ppps < P Vi s (10)

YgeBy(i)Pgts t Lier() Puts — Ziesi) Put,s + Vres +

Ywes, () Pwis = 2aesy@)(Pacs — ATars) Vi, s (11)

Vgits' — Ygts = SUgtss — Sdg,t,s,s' vg,s,s’ (12)
By (Osy,t,s — Or),t,s) — Pis =0 vis (13)
=0 < 0,15 SO Oreprs =0 Vi, s (14)
2sTts Yars < DRg, vd (15)
Yo.t.s € {0,1} Vg,s (16)
Yats € {0,1} vd,s (17)
0 <sugge,Sdgrss <1 vg,s,s' (18)
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Vies =0 Vi, s (29)

In the system state model (6)-(19), d, [, g, w, and t are indices of
DSR programs, transmission lines, thermal units, renewable units, and
years; i and j areindices of buses; s and s’ are indices of system states;
s(l) and r(l) are indices of sending and receiving buses of line [. dry
is demand reduction of DSR d in state s of year t; p;.s is power flow of
line [ in state s of year t; py.s and py, . are power outputs of thermal unit
g and renewable unit w in state s of year t; sd;.,s and su,, o are
shutdown and startup indicators of unit g from state s to state s’ in year t;
V¢ IS Unserved load on bus i in state s of year t; x4, x4, and x;, are
binary indicators describing whether DSR program d, unit g, and line L is
deployed in year t; y,.s iS binary indicator describing whether DSR
program d is called in state s of year ¢; y, . is commitment status of unit
g in state s of year t; &% and 6~ are binary indicators describing if an
uncertainty term reaches its positive and negative bounds; 6; ; s is voltage
phase angle of bus i in state s of year t; (-)“ is decision variables in
response to uncertainties. B; is susceptance of transmission line [; C;”
and C/" are startup and shutdown costs of unit g; DR§, is annual
maximum number of hours that load reduction of DSR d is allowed at year
t; DR7™ is load reduction capacity of DSR d in year t; EC, is incentive
payment to DSRs in state s of year t; FC, and V(, are fixed and variable
production costs of unit g; IC;is annualized investment cost of DSR
program d; IC, and IC; are annualized investment costs of unit g and line
[; Mis a very large positive number; NT and NS are numbers of years
and states in each year;, N, is number of transitions from state s to s’
inyear t; 0OC; and PC; are system operation cost and penalty cost in year
t; Py.sand P, . are demand and renewable energy forecasts in state s
of year t; T, is duration of state s in year t; A is devaluation rate; A is
budget level of uncertainty variables; (-)™*/™n is maximum/minimum
value of a quantity; (%) indicates solution to a variable; (-)* and (-)~ are
positive and negative deviations of an uncertainty factor. B,(i) and B,, (i)
are sets of thermal and renewable units at bus i; B,(i) is set of demands
connected to bus i; D, G, and L are sets of existing DSR programs, units,
and lines; D¢, G¢, and L are sets of candidate DSR programs, units, and
lines; F(s) and T(s) are sets of system states transited from and to state
s, R(i) and S(i) are sets of transmission lines ending and starting at bus
L.
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o Robust Generation and Transmission Expansion Planning Model
with DSRs: The multi-period robust generation and transmission
expansion planning problem is formulated as in (20)-(31). The robust
counterpart (20) is expressed in a two-stage structure, in which
investment decisions x are determined in the first stage. After x are
revealed, the most economically inefficient scenarios under uncertainties
are detected in the second stage and fed back to the first stage for
adjusting planning decisions, where y and z respectively represent binary
and continuous variables in the second stage.

The objective function (20) is to minimize the total cost, including
investment cost (21) of candidate assets and total operation cost (22) of
multiple years within the planning horizon. Investment cost (21) contains
construction costs of new generators and lines, and deployment costs of
new DSR programs. Deployment costs of DSRs can be in the form of
installation and upgrade costs of demand side infrastructure and
associated technological equipment (such as direct load control devices,
smart meters, in-home displays, and communication facilities), acquisition
costs, and incentives for enrolment. Other one-time expenses that usually
occur once instead of repeatedly in each year, such as deploying IT
systems for settlement and conducting market research for program
design, could also be included as part of investment cost. In addition,
complicated environment could be reflected via investment costs of
generators/ transmission lines in (21) and/or modeled as forbidden zones
in (23), i.e., by setting certain x 4, and x;, as zero.

Feasible region of investment decision variables is denoted as in
(23), in which investment variables of existing assets are fixed to 1 while
those of candidate assets will be optimized. Uncertainties from load/wind
forecasts are formulated as a polyhedral uncertainty set (24), which is
associated with the operation problem. In (24), uncertainty budget levels
A; and A, control ranges of uncertainties considered in the robust
optimization model. Thatis, a larger value of uncertainty budget indicates
that a more severe uncertainty situation with a larger fluctuation will be
considered. Specifically, when uncertainty budget is 0, the uncertainty set
is reduced to singleton without any uncertainty being considered; While
the maximum budget value of NT X NS corresponds to the entire
hypercube, in which all uncertainties in all time intervals are considered.

Feasible set of the operation problem is shown as in (25)-(31), in
which uncertain wind and load deviate from their forecast values as
indicated in (26) and (29). Capacity limits of candidate assets are
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restricted by their investment decisions, which are formulated as coupling
constraints (25), (27)-(28), and (30) that link planning and operation
decisions.

min {I C(x) + max min 0c (y, Z)} (20)
1
1) = Y {ormr [Bgece 1o Xgr + Tiere 16 -1 + BaepeICa Xa ]} (22)
0C(y,z) =Y,1/(1+ a)t - 0C, (22)
Xgt X0 Xqr € {0,1}, Vg € G, VI € L°,Vd € D¢;
X=<xixg: =X =%xq; =1 VgE€EGVIELVdED; (23)

Xgt-1 =< Xg,t0 X1,t-1 S X Xar-1 < Xae VL G, l,d
u u NTXNS g+ + NTXNS
( Pd,t,s' wits € R ’ 6d,t,s' 6w,t,s € {0,1} )
[ — + . pt+ - . pB-
Pd,t,S - Pd,t,S + 6d,t,5 Pd,t,s + Sd,t,s Pd,t,s’
u — + . Dt — . B-
Yts(Baes T 0ars) <Da0aest0aes <1,
+ - + _
Zt:S(é‘W;t;S + 6W.t,$) S AW! 6W,t’5 + 6W,t,$ S 1,
\ vd,w,t,s )
N(x,u) ={

Pgmin YVors Xgi < Pyt < pgmax “Voits Xgt Vt,s,Vg € G U G¢ (25)

0<Puwes < Pyis Vw,t, s (26)
0< drd't's < DRg,Ltax ' xd't “Yd,ts Vt,s, vdeDU DC (27)
—P" e x S s S P g, Vt,s,VIELULS (28)

ZgEBg(i) pg,t,s + ZZER(i) Pits — Zles(i) Pits + Vits + ZWEBw(i) Pw,t,s

= Zdesd(i)(ng,t,s - de,t,s) Vi, t,s (29)

—M - (1 =x¢) < By (65,5 — Orn,es) — Puts
<M-(1-x) Vt,s,VI € LU LS (30)
Constraints (12) and (14)-(19) (31)}

In addition, nonlinear terms in (25) and (27) can be equivalently
linearized to facilitate calculation. For instance, the nonlinear term
Ygts " Xg, IN (25) can be equivalently represented as a linear form (32)-

(34) with an extra binary variable q .

Agts < Ygts (32)
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Agts < Xgt (33)

qg,t,s = Yg,t,s + Xg,t -1 (34)

Solution Methodology

An extended column-and-constraint-generation (ECCG) algorithm is
developed to solve the proposed two-stage robust optimization problem, by
decomposing the original problem into one planning master problem and one
operation sub-problem. The ECCG algorithm can effectively solve the
proposed robust problem with mixed-integer recourse, while mitigating the
issue of traditional CCG approach that relies on time-consuming enumeration
of integer variables and might be inefficient for practical applications.

o

Investment Master Problem and Operation Sub-problem: The
proposed model is a two-stage robust optimization problem with mixed-
integer recourse, with each stage representing a multi-period decision-
making process. That is, in the first stage, annual investment decisions
of generation and transmission assets and DSR programs are
determined, and operational decisions for each state in each year are then
made in the second stage. ECCG algorithm is deployed to decompose
the original problem into one master problem and one sub-problem.
Specifically, in each iteration, master problem determines investment
decisions with one augmented scenario, i.e., new variables and
constraints corresponding to the new scenario obtained from sub-
problem. Sub-problem detects the worst scenario within the constructed
uncertainty set. With x and n representing decision variables in the
master problem, as well as y" and z" being binary and continuous
variables related to the worst case identified in sub-problem at iteration r,
the master problem is shown as in (35).

min IC(x) +n
xn

st. xeX
n=0CWy,z"), y,z" € Q(x,u"), vr
y" €{0,1}, z" = 0,Vr (35)

With revealed decisions x* from the master problem, the worst-case
scenario is identified in the sub-problem (36).

V(x*) = R RO L 0C (y,2) (36)
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o Approximate Technique to Solve Sub-problem: Sub-problem (36) is a
bi-level max-min problem with binary variables in the inner level. This type
of problems can be solved by traditional CCG, in which inner-level binary
variables are handled by an inner CCG algorithm relying on enumeration.
However, traditional CCG is shown to be computationally inefficient for
practical-size problems. An ECCG strategy described as follows is used
to efficiently solve the bi-level max-min sub-problem.

(i) With respect to the master problem solution x*, binary variables in the
recourse sub-problem are relaxed as continuous, and the
corresponding linear programing (LP) relaxation problem is calculated
to derive a solution u*. This is done by converting the bi-level max-
min into a single-level maximization problem via duality theory, and
further linearizing bilinear terms via outer approximation. Detailed
formulations of the LP relaxed bi-level sub-problem and its single-level
equivalence are provided as follows. Symbols bracketed in the end
are dual variables of corresponding constraints.

2 Tt,s ’ (VCg "Pyt,s + FCg 'yg,t,s)

. S,J€G up d

M + s Negor (Cg “SUgrss T Cg Sdg.t.s,s')
+ Zs,d Tt,s ’ ECt,s ' drd,t,s + PC; - Zs,i Tt,s "Vits

S.t. Pgmin “Vgts® fg,t < Pg.t,s < Rgmax “Vgts® fg,t (H;g,y Héz,g,s)
0< Pw,t,s < P\}vl,t,s (.u&i)t,s; M\E:,)t,s)
0 < dryes < DRIE* - R4 Yaus (6525 1$))
=P X S pues < PRy (Hl(,?s;lll(i)s)

ZgEBg(i) pg,t,s + ZlER(i) Pits — Zles(i) Pits + ZWEBW(D Pwit,s + Vits
9
= Zdesd(i)(ng,t,s - de,t,s) ('ui(,t?s)

—M - (1 - fl,t) <B- (Hs(l),t,s - er(l),t,s) —Dits = M - (1 - fl,t)
(k2 18i?)

— = Su —sd ( e )
yg,t,s’ yg.t,s - g:t'S'S, g’t’S'S, Mg,t’s,S,
13 14
—0"* < 05 < 0", Orefts =0 ('ui(,t,s)'lii(.f.s))
15
2sTes " Vars < DRcCi,t (#E ))
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0< Ygts Ydt,s Sug,t,s,s"Sdg.t.s,s’ <1

(16) 17) (@@8) (19  (20) (21) (22) (23)
(‘u.g,t,s Bt Md,t.S’Md.t.S’l'Lg,t,s,s" ag.tss' Fgtss'’ Pgts,s’'

vi,t,s = 0 (.“E,zt,?)

Its single level equivalent formulation is detailed as follows. Symbols
bracketed in the end are original primal variables of corresponding
constraints.

17) (21 (23) (4)
( Zg [:ug,t,s + 2 ('ug,t,s,s’ + 'ug,t,s,s’)] + 2w Pues Hw,t,s )
15 19
+DRGe - "™ + Laues

max Y 3 . . 8 . 10 1\ (
uet + Zl [leax Xyt (:ul(,t,)s + Hl(,t,)s) +M- (1 - xl.t) ) (:ul(,t,s) + 'ul(,t,s))]
13 14 9
L +Y; [9’”‘” : (.ul-(_t_s) + Hi(_t_s)) + (ZdeBd(i) P¥is) 'Hi(,t?s )
1 2 9 .
st =+ U+ < T VC,, g € By(D) (Pg.is)

o i 1 2 (12)
R (Pgmm . ﬂ;,g,s — pmax “225) + Y Hotss

12 16 17
—Xs l{élt;sf - .ué,t,z + ,ué't; =< Tt,s ) FCg (YQ,C,S)

—H s s+ s < 0, w € By, (i) (Pwts)
U+ U A U S Ty ECes, d € By(D) (dra.s)
—DRIE* - Ry - uGh + Tes 1y — u§er + uGer < 0 (Vars)
—U s = B s F ) s T HirY — My =0 (Pres)
g ast ~ Hong FHinas < Niger w CoP (sugess')
H g(;tz,z,s’ - Mg(ftz,g,s' + 'u‘g(;t?,’s)',s’ S Negs Cg " (Sdg,t,s,s’)
By (_'ul(égzi),t,s + 'ul(é;zi),t,s) + B ('ul(ég)(i),t,s - 'ul(éll?)(i),t,s)

—uie? A =0 (Bhes)
lli(,?s - Hi(,ztfq) STis- PCe (Vi,t,s)

(i) With revealed u” from (i) and x* from the master problem, the inner
single-level deterministic mixed-integer linear programming (MILP)
problem is calculated to derive solutions y* and z*.
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(i) Fixing binary recourse variables y = y*, the bi-level sub-problem is
converted into a max-min LP problem, which is re-computed to obtain
final solutions u® and V(x*). Detailed formulations of the bi-level sub-
problem with fixed y* and its single-level equivalence are provided as
follows:

, {Zs,geG Tt,s ’ (VCg ’ pg,t,s) + Zs,d Tt,s ' ECt,s ’ drd,t,s}
max min
uevu +PCt ' Zs,i Tt,s “Vits
in -~ ~ ~ o @ (2)
S.t. Pgmm “Vgts  Xgt < Pg,t,s < Pgmax "Vgts " Xgt (r’g,t,s' Ug,t,s)
u 3 (€))]
0 <pwts=<Puyes (T’W,t,s' nw,t,s)
max , o o ) (6
0 <drges <DRge™ *Xar Jats (nd,t,s'nd,t,s)
max . o max . o @ .3
=P Xy S Pes S P Xy (nl,t,s'nl,t,s)

ZgEBg(i) pg,t,s + ZlER(i) Pits — Zles(i) Pits + ZWEBW(D Pwit,s + Vits
9
= ZdeBd(i)(Pél,t,s - drd,t,s) (ni(,t?s)

—M - (1 - k\l,t) <B- (95(1),t,s - er(l),t,s) —Dits = M - (1 - fl,t)

(nied ey
—0™ < 015 < O™, Grops = 0 Ureind
Vits 20 (Ul(lt?)
Its single level equivalent formulation is as follows.
( Yo Pats gt (_ pmin . U_E;?t),s + pmax . 7732,5) n \

u o, . (4) max . s .5 ... (6)
Xw wit,s nw,t,s‘i'ZdDRd,t Xa,t " Vdts Nats

B s e (12 2) (1 20 (120 4082
L A Xi[ome e (D +niey) + (Bacsa Phes) i, )
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~Mts + Mts + Mirs < 0, w € By (D) (Pw,e.s)
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10 11 10 11
B, - (_nl(eszi),t,s + ’h(eszi),t,s) + B+ (nl(eR)(i),t,s _nl(eR)(i),t,s)

12 13
_ni(,t,s) + 77( ) = 0 (ei,t,s)

its

9 14
771'(,1;,)5 - Ui(,t,s) < T PC; (vi,t,s)

The ECCG algorithm is summarized as follows.

Step 1: Initialize data, set lower bound LB = —co, upper bound UB =
+o00, and iteration counter r = 1.

Step 2: Solve the master problem and obtain the optimal
solution(x”,n"), set LB = I1C(x") +n".

Step 3: Solve the sub-problem, obtain u® and corresponding solution
7 (x"), update UB = min{UB,IC(x") + V(x")}.

Step 4: If (UB—LB)/LB < ¢, the algorithm terminates and the final
solution is x7; Otherwise, set u™! =u®% and r =r + 1 in the
master problem, and then go to Step 2. That is, the newly
identified worst scenario u® from Step 3 is added into the
master problem, for seeking new investment solutions to
mitigate such worst case operation situations.

[1l.2. Phase Il. Validation and Verification of MMCOP via Standard Testing
Systems and Practical Systems

Three main activities are involved to validate and verify the MMCOP framework.
First, the MMCOP is implemented through General Algebraic Modeling System
(GAMS), which is a high-level modeling system with linkages to many nonlinear
and mixed-integer solvers; Second, effectiveness of the developed MMCORP is
verified via standard testing systems that have been widely used as benchmark
in many power system studies, including the IEEE 24-bus (RTS) system, the
IEEE 30-bus system, and the IEEE 118-bus system; Third, the developed
MMCORP is further validated via the practical WECC Transmission Expansion
Planning Dataset to illustrate its performance on practical large-scale systems in
terms of the computational time and the solution optimality. Numerical case
studies illustrate effectiveness of the developed MMCOP as compared to
traditional generation and/or transmission planning approaches, by analyzing the
impacts on annual planning and hourly operation, long-term reliability and short-
term flexibility, AC power flows, as well as risk and uncertainty accommodations.
Some result highlights are shown below, while the detailed testing results and
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the analysis can be referred to from the team’s publications [18, 22-24] out of this
project.

Table 1 shows the 10-year generation and transmission planning results on
the modified IEEE 24-bus (RTS) system with different penetration levels of
DSRs. The original RTS system contains 33 units, 40 branches, and 17 loads.
4 wind farms are added to buses 3, 10, 14, and 19 in this study. 10 candidate
units from 3 different generation technologies, i.e., combustion turbine, coal
steam turbine, and oil steam turbine, are considered. In addition, 8 candidate
transmission lines are considered, some increase available transfer capacities of
existing lines while others are planned in new corridors. DSR-0 denotes the case
without DSRs, in which only generation and transmission candidates are
considered, while capacities of candidate DSRs on individual buses in DSR-2
are twice of those in DSR-1. With a second subscript representing installation
year of candidate assets, results of deterministic cases are shown in Table 1.

Table 1 shows that total costs are reduced when the DSR penetration level
increases. Indeed, an increased deployment in DSRs could help enhance social
welfare by economically reducing peak loads, which would consequently
postpone expansion of expensive generation and/or transmission assets and
improve economic efficiency in the operation stage. Specifically, G7 and T1 are
postponed when the system faces with a higher DSR penetration level, which
reflect benefits of enhanced DSR participation. In fact, as Independent System
Operators (ISO) can effectively schedule DSRs in the operation stage to meet
practical system needs based on system status, benefits from DSRs could be
more significant when significant supply shortage occurs due to unexpected
contingencies. These studies clearly show effectiveness of the proposed
MMCOP model, i.e., with the technology advancement such as the integration of
DSRs, more economically efficient systems can be planned by system operators.
Expensive generation and transmission investments in the planning stage could
be effectively postponed or even avoided, and economic efficiency in the
operation stage can also be improved.

The modified IEEE 24-bus (RTS) system is further studied while considering
uncertainties. Comparing with the deterministic results in Table 1, both total
costs and investment costs in Table 2 are increased, because generators are
invested more extensively (i.e., generators are constructed more extensively
and/or earlier) and/or turned on more proactively to protect system against
uncertainties.
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Table 1. Deterministic planning results against different penetration levels of demand
side resources

Total Cost Investment Generation Transmission
($10%9) Cost ($10°) Investment Investment
DSR-0 2.291 3.206 G3,1G45G7,4 T1,4T21T31T41T71Ts
DSR-1 2.203 3.178 G3,1G4,5G7,4 T15T21T31T41T71Ts1
DSR-2 2.123 3.146 G3,1G45G7,6 T15T21T31T41T71Ts1

Table 2. Planning results when considering uncertainties

Total Cost Investment Generation Transmission
($10%9) Cost ($10°) Investment Investment
DSR-0 3.080 3.426 G3,1G4,3G7,3Gs,10  T1,2T21T31T41T510T7,1Ts1
DSR-1 2.990 3.784 G3,1G4,4G73Gs10  T1,2T21T31T41Ts8T7,1Ts1
DSR-2 2.905 3.545 G31G4,4G7,4Gg10  T14T21T31T41Ts59T7,1Ts1

The impacts of different load uncertainty levels on the optimal planning
results are further studied. As indicated in Table 3, with an increase in the
uncertainty level, the total cost increases because power system assets are
constructed more extensively or much earlier for accommodating uncertainties.
Specifically, deployment of G4, G7, Gs, T1, Ts, D1, and D2 are brought forward
when uncertainty level is high. However, considering that certain assets could
be regarded as alternative feasible system expansion options, installation time
of some assets may not follow the same trend. For instance, T1is constructed
in year 4 with uncertainty level of 0.75 as compared to year 3 with uncertainty
level of 0.5. This could be explained as that Tz is an alternative expansion option
of D7 in year 4, whose construction in year 4 with uncertainty level of 0.5 is
switched to year 1 when the uncertainty level is 0.75.

In order to further illustrate the impact of solution robustness against
different uncertainty levels and facilitate system planners with a better choice,
Monte Carlo simulation with 1,000 scenarios is conducted to compare the
expected total costs (i.e., investment cost and expected operation cost of the
1,000 scenarios) of individual investment solutions in Table 3. Scenarios are
generated from normal distributions with mean values of P, and P, ., and
standard deviations of P;,./1.95 and P}, /1.95. Results in Table 4 show a

trade-off between investment cost and expected operation cost. That s, a higher
uncertainty level would derive a more expensive expansion plan to immunize
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against more significant worst cases, which would lead to a lower expected
operation cost of scenarios. Indeed, uncertainty level of around 0.75 would be
the best choice in this case, which achieves the smallest expected total cost.

Table 3. Planning results against different uncertainty levels

Uncertainty Total cost Increase in Generation Transmission
level ($10%) total cost (%) investment investment
0 2.203 0 G3,1G45G7,4 T15T21T31T41T7,1Ts1
0.25 2.642 19.9 G3,1G4,4G7,4 T1,4T21T31T41T7,1Ts1
0.5 2.800 27.1 G31G4,4G7,4Gg 10  T1,3T21T31T41T510T7,1Ts1
0.75 2.933 33.1 G31G4,4G7,3Gg10  T14T21T31T41T58T7,1Ts 1
1 2.990 35.7 G3,1G44G73Gs10  T1,2T21T31T41Ts8T7,1Ts1

Table 4. Monte Carlo simulation results
Budget 0] 0.25 0.5 0.75 1
Investment cost ($10°) 3.178 3.294 3.496 3.547 3.784
Expected operation cost ($10%°)  1.909 1.894 1.868 1.861 1.840
Expected total cost ($10°) 2.227 2.223 2.218 2.216 2.218

Computational effort of the MMCOP could be quite expensive due to a large
number of binary variables related to unit commitment status in the operation
model, as well as time coupling constraints of investment decisions throughout
the long-term planning horizon. Indeed, significant computational effort comes
mainly from the master problem of the proposed ECCG based decomposition
approach, while the well-recognized computational burden from the mixed-
integer recourse problem has been successfully handled by the proposed ECCG
approach. Figure 3 shows computational time on the modified IEEE 24-bus
(RTS) system study. It clearly shows that computational effort from the sub-
problem only takes a small portion of total calculation time, which greatly relieves
computational burden of the traditional CCG decomposition algorithm for solving
mixed-integer recourse sub-problems.

Computational performance of the proposed ECCG is further compared
with the traditional CCG approach, as shown in Table 5. In Table 5, “***”
indicates that the computational time limit is reached while no solution satisfying
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the predefined mixed-integer programming (MIP) gap threshold is found, and
“OOM’ represents that the test is out of memory before reaching the time limit
while no solution satisfying the predefined MIP gap threshold is found. As shown
in Table 5, the proposed ECCG algorithm takes less time than the traditional
CCG approach algorithm to derive final solutions. Specifically, compared with
the proposed ECCG algorithm, traditional CCG approach algorithm could not find
feasible solutions for most cases within time or memory limit, showing that
traditional CCG approach algorithm might be poor to handle certain practical
instances. While for the instances that can be solved by traditional CCG
approach, solutions derived by the proposed ECCG are the same as those of
traditional CCG approach, which verifies the exactness of solutions derived by
the proposed ECCG algorithm. As all the instances are solved within the
required MIP gap via the proposed ECCG, optimality of the solution is indeed
guaranteed and solution quality is not sacrificed for the studied instances.
Therefore, these studies clearly demonstrate the effectiveness and practicality of
the proposed ECCG algorithm, as well as its superiority over the traditional CCG
approach algorithm.

10000 Time (s) 9264
8000 = Master problem = Sub-problem

6000 5731

4093

4000 3678
2000 1350 I 1308 1656 I 1334
0
0.25 0.5 1

0.75
Uncertainty level

Figure 3. Computational time of master and sub-problem

Table 5. Results comparison between the proposed ECCG and traditional CCG
approaches

Uncertainty

level Obj ($10%%)  Time (h) Obj ($1010)
0.25 2.687 1.87 2.687 22.74
0.5 2.805 2.35 bl ok
0.75 2.941 7.88 OOoM OOM
1 3.000 2.70 3.000 10.49
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For real-world tests and scalability validations, the MMCORP is further tested
on the modify WECC 243-bus system for a 5-year planning study. The WECC
243-bus system is a real-world test case originally designed for unit commitment
(UC) problems, which includes 451 existing transmission lines. 58 potential
locations are considered to install new coal-fired generators, combustion
generators, as well as wind and solar farms. As for the transmission network,
we consider that no new corridors are allowed, while new lines can be built
following existing corridors to enhance transmission capabilities. Notably, we
simulate a case with the annual capacity phasing-out rate of 25% for
conventional generations, and evaluate whether it is feasible to reach a 100%
renewable penetration environment in a 5-year planning process. Both regional
N-1 contingencies and hourly operation characteristics are considered within the
long-term planning horizon. Figure 4 depicts the scheduled installed capacity for
each generation technology and transmission line, which shows that the
investment on solar and wind generators grows sharply in the first year and
keeps increasing. Particularly, aiming at investigating the 100% renewable
penetration scenario, the test results show that the investment in solar and wind
generators grows sharply in the first year and keeps increasing, due to the 25%
annual phasing-out rate of conventional generators. The computational time of
the WECC simulation is 27 hours, which is comparably reasonable concerning
the scale of the multi-year stochastic and robust planning problem.

900 W

500 - —

- 0
700 _ -
= -
- -—
oo e—
— 000 F -7 —+— Wind
] — - Solar
£, 500 - (e e Clpal-fired
= === Combustion
: 400 1 N =—0= Demand
= [ Line Expansion
@
Z 300 -
200 1
o -E mp
-
_‘__t—_.__
D 1 1 1 -?-
Year 1 Year 2 Year 3 Year 4 Year 5

Planning Year

Figure 4. Planning results of the WECC system
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[11.3. Phase Ill. Dissemination of The Results and The Final Reporting

The research findings of this project have been disseminated to the community
via 8 journal publications and 4 technical conference presentations. APPENDIX
A: Product or Technology Production provides the full list of these publications
and presentations out of this project.

The project team has also interacted with multiple industry partners, seeking
potential opportunities to customize the MMCOP models and computational tools
according to their specifications and needs and to provide technical support for
promoting co-optimization in their system expansion planning practice.
Specifically, (i) Pl Wu presented the proposed MMCOP framework as well as the
preliminary results to New York Independent System Operator (NYISO) on
September 2017; (i) Pl Wu visited MISO in April 2018, discussing about the
potential applicability of the MMCOP framework to address their challenges of
integrating a high penetration of distributed resources and utility-scale energy
storage assets in the MISO market. As MISO currently uses PLEXOS for its
planning studies, the team conducted a preliminary survey on PLEXOS about
how heterogeneous assets of the MISO system are modelled in PLEXOS and
the long-term planning is calculated via PLEXOS, and evaluated the potential
possibility in incorporating some of the proposed approaches to solve the MISO
system planning problem.

Multiple undergraduate and graduate students at Clarkson University,
University of Pittsburgh, and Southern Methodist University have participated in
this project, receiving training and professional development on areas of power
and energy systems, mathematical optimization, and algorithms. Specifically, (i)
The Ph.D. thesis “Multiple Timescale Power Systems Operation and Planning
with Renewable Energy, Demand Side Resource, and Energy Storage” was
completed in August 2018 at Clarkson University; (ii) One undergraduate
student of Industrial Engineering at University of Pittsburgh, graduated in
December 2018, was motivated by this research project and worked on an
undergraduate research project about capacity expansion considering both wind
and nuclear generations in a stochastic environment; (iii) Some of the developed
mathematical models and computational algorithms, i.e., stochastic
programming and robust optimization models as well as ECCG based
decomposition approach for energy system planning, have been supplemented
and presented in multiple undergraduate and graduate courses offered at
Clarkson University and University of Pittsburgh. For instance, the development
of computational algorithms, i.e., the bilinear Benders decomposition for chance
constrained system planning, has been supplemented and presented in Dr.
Zeng’'s graduate course, “computational optimization” in Fall 2017, as a
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demonstration for large-scale system optimization. Moreover, in Dr. Wu’'s
course, EE452/552 “Optimization Techniques in Engineering” in Spring 2018,
these developed mathematical models and computational algorithms were used
as a demonstration for large-scale system optimization. In Spring 2018, 5
undergraduate students and 11 graduate students enrolled in this class, from
both engineering and business schools.
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IV.  Accomplishments and Conclusions

IV.1.

Major Accomplishments

During the project period, the team has developed the MMCOP prototype, which
integrates the modeling and algorithm features as detailed in Section IlI of this
report. The MMCOP prototype has been tested via several IEEE benchmark
systems and the practical WECC system to illustrate its effectiveness and
efficiency. The detailed modeling and solution techniques, as well as research
findings of this project have been disseminated to the community via 8 journal
publications and 4 technical conference presentations. APPENDIX A: Product
or Technology Production provides the full list of publications and presentations
out of this project.

Table 6 lists the milestones of the project and the related completion
information.

Table 6. List of milestones of the project

Milestone  Completion Date Detailed Completion Information

1

Presentation, 9/30/2017 9/30/2017
Year 1

2

Publication, 9/30/2017 9/30/2017

Planned Actual

Invited presentation in the 2017 INFORMs Meeting.
L. Wu and B. Zeng, “Integrating Demand Side
Resources into Multi-Stage and Multi-Timescale
Robust Generation and Transmission Expansion
Planning,” INFORMS Annual Meeting, Houston, TX,
Oct. 2017.

By 9/30/2017, two journal papers related to this
project have been published.

Z. Bao, Q. Zhou, L. Wu, Z. Yang, and J. Zhang,
“Optimal Capacity Planning of MG with Multi-energy
Coordinated Scheduling under Uncertainties
Considered,” IET Generation, Transmission &
Distribution, vol. 11, no. 17, pp. 4146-4157, Jan.

Year 1 2017,
A. Bagheri, J. Wang, and C. Zhao, “Data-Driven
Stochastic Transmission Expansion Planning,” IEEE
Transactions on Power Systems, vol. 32, no. 5, pp.
3461-3470, Sept. 2017.
3. A MMCOP prototype has been built.

Completion The documentation that describes the basic

of MMCOP 3/31/2018 3/31/2018 functionalities of the MMCOP prototype has been

prototype submitted to DOE.
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https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8128691

4. Validate
MMCOP via
standard
|IEEE testing
systems

5

Presentation,

Year 2

6.
Publication,
Year 2

7. Test
MMCORP via
practical
systems

9/30/2018 9/30/2018

9/30/2018 9/30/2018

9/30/2018 9/30/2018

6/30/2020 6/30/2020

Test results of MMCOP via standard IEEE testing
systems (including a modified IEEE 24-bus system
and a modified IEEE 118-bus system) have been
reported in a Ph.D. Thesis and a journal paper.
Ph.D. Thesis, C. Dai, Multiple Timescale Power
Systems Operation and Planning with Renewable
Energy, Demand Side Resource, and Energy
Storage, Clarkson University, August 2018.

A paper “A System State Model Based Multi-Period
Robust Generation, Transmission, and Demand
Side Resource Co-Optimization Planning” has been
submitted to IET Generation, Transmission &
Distribution for review.

B. Zeng, “A Study on Generalized Security Games
in Power Systems,” in 2018 INFORMS Optimization
Conference, Denver, CO, March 23-25, 2018.

By 9/30/2018, one journal paper related to this
project has been published.

Y. Wang, L. Wu, and J. Li, “A Fully-Distributed
Asynchronous Approach for Multi-Area Coordinated
Network-Constrained Unit Commitment,”
Optimization and Engineering, pp. 1-34, DOI:
https://doi.org/10.1007/s11081-018-9375-8,
February 2018.

Due to the change of Pl and the delay on renewing
of subawards with the two subcontracts, the project
progress falls behind what was originally proposed.
On June 13, 2019, the PI of this project was officially
changed to Jie Li.

On June 29, 2020, Clarkson updated the PO for the
Southern Methodist University subaward to reflect
the new end date 9/30/2020 after non-cost
extension.

The team was planning to include Stevens Institute
of Technology as a new subaward of this project
(where the original PI Lei Wu moved to). However,
Clarkson was unable to complete this in time. Asthe
current team members had no active data usage
agreement with the targeted industry partners (Lei
Wu has an active agreement with MISO, but cannot
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use that to conduct this project as he is not part of
the project team without the subaward being set up),
additional testing on practical system has stalled.
S. Yin and J. Wang, “Generation and Transmission
Expansion Planning Towards a 100% Renewable
Future,” ECE Seminar, Southern Methodist
University, March 2019.
By 9/30/2019, three journal papers related to this
project have been published.
C. Dai, L. Wu, B. Zeng, and C. Liu, “A System State
Model Based Multi-Period Robust Generation,
Transmission, and Demand Side Resource Co-
Optimization Planning,” IET Generation,
Transmission & Distribution, DOI:10.1049/iet-
gtd.2018.5936, November 2018.
X. Cao, J. Wang, and B. Zeng, “Networked
Microgrids Planning Through Chance Constrained
Stochastic Conic Programming,” IEEE Transactions
on Smart Grid, vol. 10, no. 6, pp. 6619-6628, April
2019.
X. Cao, J. Wang, J. Wang, and B. Zeng, “A Risk-
Averse Conic Model for Networked Microgrids
Planning with Reconfiguration and Reorgani-
zations,” DOI:10.1109/TSG.2019.2927833, IEEE
Transactions on Smart Grid, July 2019
Ph.D. Thesis, Chenxi Dai, Multiple Timescale Power
10. Ph.D. Systems Operation and Planning with Renewable
Award SR AVAY BN Energy, Demand Side Resource, and Energy
Storage, Clarkson University, August 2018.

8.
Presentation, 9/30/2019 9/30/2019
Year 3

9.
Publication, 19/30/2019 9/30/2019
Year 3

This project is highly in line with the objective of DE-FOA-0001493
“Addressing Risk and Uncertainty in the Future Power System”. Specifically,

e The MMCOP prototype co-optimizes generation and transmission planning,
which adequately addresses “uncertainty in the location and type of future
generation”;

e The MMCOP prototype optimizes spatial transmission network based on the
raster map in GIS while considering physical nonlinear AC power flow
characteristics, which effectively accounts for “environmental and other public
policies simultaneously with electrical engineering considerations”;
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Modeling Capability

e The MMCOP prototype adopts tighter convex formulations of non-linear AC
power flows, which presents an effective approach “for dealing realistically
with alternating current (AC) networks”;

e The MMCOP prototype integrates long-term reliability, short-term flexibility,
and hourly operation details in a single analytical framework, which effectively
addresses “both engineering considerations and economic realities of
perhaps integrated system planning and operations”;

e The MMCOP prototype adopts the hybrid robust and stochastic optimization
model to systematically evaluate the impacts of spatial and temporal
variability as well as uncertainty correlations on planning and operation
decisions, which effectively quantifies “the uncertainty that has become
ubiquitous in electric power systems planning and operation” and provides
good ‘“tradeoffs between economics and reliability”.

The MMCOP prototype presents fundamental and transformative changes
beyond existing generation and transmission planning practices. A clear
comparison between the existing planning approaches and the MMCOP
prototype is conducted in Table 7, which shows the innovative and significant
contribution of the MMCOP prototype in a number of areas.

Table 7. Comparison between existing planning approaches and the MMCOP
prototype

Modeling Capability

Generation and transmission planning + Generation and transmission co-

in a queue; optimization;

A set of predefined generation and + Network topology, line routing,

configurations; topology control capacity, and
generation sizing and sitting are co-
optimized;

Static or dynamic expansion plan that + Multi-stage and multi-timescale

only considers the most stressful hours
while neglecting operation details or
the production cost minimization;

Deterministic  derated  generation
capacity, without possibilities of
generator or line outages;
Uncertainties and risks
economic, policy, and

in future
technology
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planning, while accurately evaluating
broader reliability, sustainability, and
economic benefits;

Robust optimization model to fully
consider N-1, N-2, and N-1-1 reliability
criteria,

Hybrid robust and  stochastic
optimization model to systematically



conditions are either neglected or
evaluated by a limited number of
independent scenarios;

(Successive) Linear approximations
of AC transmission network;

System aggregation based on static
similarity of loads and/or generations.

Solution Methodology

Weak approximation (e.g., LP, or rule-
based approximations) and computa-
tionally heavy decomposition methods
(e.g., successive LP and traditional

evaluate spatial and temporal
variability —and correlations on
planning and operation decisions, and
to ensure resilience under different
disruptions;

Full non-linear AC power flow via tight
convex formulation using SOCP and
cutting planes;

Dynamic system aggregation based
on actual system operation status.

Solution Methodology

+

Integrated decomposition techniques,
e.g., Benders decomposition and
ECCG generation integration;

Benders decomposition);

Centralized computational approaches +
without
implementation.

Distributed computational methods,
e.g., ADMM, to handle complexities
and multi-area coordination.

considering distributed

IV.2. Major Conclusions

By comparing with existing long-term generation and/or transmission planning
approaches in literature, the following conclusions are observed via extensive
studies on standard IEEE testing systems and the practical WECC Transmission
Expansion Planning Dataset:

()

(ii)

(iii)

By considering flexible resources, especially those non-wire technologies
on the demand side, and capturing short-term operation status of the power
systems, more economically efficient and reliable systems can be planned.

The hybrid stochastic and robust model used in the MMCOP prototype can
accurately capture various discrete and continuous uncertainties in modern
power grid, thus facilitating the long-term planning with significant
renewables while ensuring cost effectiveness, reliability, and sustainability.

Extensive studies also show that the proposed advanced solution
approaches have the potential to enhance computational efficiency for
solving real-world large-scale long-term planning problems.

Indeed, extensive studies show that the developed MMCOP prototype
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V.3.

could help enhance the energy reliability and sustainability of the existing grid
with the most economic integration of additional generation and transmission
assets. Specifically, it can help electricity grid planners and operators better plan
additional resources, manage available resources, achieve higher reliability
standards, and increase renewable energy penetration, which otherwise may not
have been explored due to the lack of analytical tools for simultaneously
addressing co-optimization of generation and transmission assets under
uncertain environments. The developed MMCOP prototype can also assist
market participants including generation and transmission companies,
renewable energy developers, independent system operators, power system
planners and operators in vertically integrated utilities, and regulatory agencies
to analyze economics, reliability, and sustainability of various options for
transmission upgrades and the planning of new generation and transmission
facilities. The developed MMCOP prototype can also be conveniently customized
to regulatory requirements such as RPS standards and other state mandates. It
can also be used by industry for teaching and training next-generation power
system planners and operators for analyzing renewable energy integration
uncertainties, identifying critical spots in power system operation, analyzing
power system vulnerabilities, and providing credible decisions for examining
operation and planning options.

Recommendations for Future Work

The framework and algorithms of the MMCOP prototype are applicable to most
of the organized wholesale electricity markets in the North American grid, as the
underlying modeling assumptions and principles are generic to the industry
practice regardless of the differences in regional resource and transmission
topology. Although the industry participants of this project (e.g., MISO,
Pennsylvania-New Jersey-Maryland Interconnection (PJM), and ISO New
England (ISO-NE)) provided technical advice and assistance on industry power
system expansion planning practice, the MMCOP prototype was not tested via
real data of Regional Transmission Organization (RTO) systems. The MMCOP
prototype could be further tested on RTO systems using their actual data, and
comparing the performance with their existing planning tools. For instance,
MISO currently uses PLEXOS for their long-term planning studies. The team did
a preliminary study on PLEXOS about how different types of assets in the MISO
system are modelled and how the long-term planning is calculated in PLEXOS.
It would be interesting to compare the developed MMCOP prototype and
PLEXOS against multiple MISO instances, evaluating their performance in terms
of computational performance and solution quality (i.e., cost effectiveness,
reliability, and sustainability). It would also be interesting to explore if certain
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models and solutions approaches developed under the MMCOP prototype could
be integrated in the PLEXOS to potentially improve its modeling and
computational performance.
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APPENDIX A: Product or Technology Production

The project team has delivered 9 peer-reviewed journal papers and 4 technical
presentations to disseminate research findings during the period of performance.

Peer-reviewed Publications

[J1]

[J2]

[J3]

[J4]

[J5]

[J6]

[J7]

[J8]

[39]

Z. Bao, Q. Zhou, L. Wu, Z. Yang, and J. Zhang, “Optimal Capacity Planning of
MG with Multi-energy Coordinated Scheduling under Uncertainties
Considered,” IET Generation, Transmission & Distribution, vol. 11, no. 17, pp.
4146-4157, January 2017.

A. Bagheri, J. Wang, and C. Zhao, “Data-Driven Stochastic Transmission
Expansion Planning,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp.
3461-3470, September 2017.

Y. Wang, L. Wu, and J. Li, “A Fully-Distributed Asynchronous Approach for
Multi-Area Coordinated Network-Constrained Unit Commitment,” Optimization
and Engineering, pp. 1-34, DOI: https://doi.org/10.1007/s11081-018-9375-8,
February 2018.

C. He, L. Wu, T. Liu, and Z. Bie, “Robust Co-Optimization Planning of
Interdependent Electricity and Natural Gas Systems With a Joint N-1 and
Probabilistic Reliability Criterion,” IEEE Transactions on Power Systems, vol.
33, no. 2, pp. 2140-2154, March 2018.

X. Cao, J. Wang, and B. Zeng. “A Chance Constrained Information-Gap
Decision Model for Multi-Period Microgrid Planning.” IEEE Transactions on
Power Systems, vo. 33, no. 3, pp. 2684-2695, May 2018.

C. Dai, L. Wu, B. Zeng, and C. Liu, “System State Model Based Multi-Period
Robust Generation, Transmission, and Demand Side Resource Co-
Optimization Planning,” IET Generation, Transmission & Distribution, vol. 13,
no. 3, pp. 345-354, February 2019.

X. Cao, J. Wang, and B. Zeng, “Networked Microgrids Planning Through
Chance Constrained Stochastic Conic Programming,” IEEE Transactions on
Smart Grid, vol. 10, no. 6, pp. 6619-6628, April 2019.

X. Cao, J. Wang, J. Wang, and B. Zeng, “A Risk-Averse Conic Model for
Networked Microgrids Planning with Reconfiguration and Reorganizations,”
IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 696-709, January 2020.

S. Yin and J. Wang, “Generation and Transmission Expansion Planning
Towards a 100% Renewable Future,” IEEE Transactions on Power Systems,
accepted, September 2020.
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Invited Presentations

[P1]

[P2]

[P3]

[P4]

L. Wu and B. Zeng, “Integrating Demand Side Resources into Multi-Stage and
Multi-Timescale Robust Generation and Transmission Expansion Planning,”
INFORMS Annual Meeting, Houston, TX, October 2017.

C. He, T. Liu, and L. Wu, “Robust Co-optimization Planning of Electricity and
Natural Gas Systems,” in the 1st IEEE Conference on Energy Internet and
Energy System Integration, Beijing China, November 2017.

B. Zeng, “A Study on Generalized Security Games in Power Systems,” in 2018
INFORMS Optimization Conference, Denver, CO, March 23-25, 2018.

S. Yin and J. Wang, “Generation and Transmission Expansion Planning
Towards a 100% Renewable Future,” ECE Seminar, Southern Methodist
University, March 2019.
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