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I. Executive Summary 

In this project, Clarkson University, in collaboration with Southern Methodist University 

and University of Pittsburgh, conducted the research to model, design, and implement a 

sophisticated generation and transmission co-optimization planning decision tool, called 

Multi-stage and Multi-timescale robust Co-Optimization Planning (MMCOP).  The 

MMCOP decision tool intends to facilitate generation and transmission co-optimization 

planning of emerging power systems, while mitigating risks and uncertainties in both 

short-term operation dynamics and long-term policy and technology changes. 

Long-term power system planning aims at optimizing asset utilization by investing in 

a proper mix of various generation technologies and transmission lines to supply the 

future load growth.  Indeed, concerns over environmental sustainability, energy reliability 

and efficiency, and economic well-being have been driving the transition by expanding 

existing electric power systems with an increasing deployment of environmentally friendly 

energy sources such as renewable generation.  In particular, the Clean Power Plan 

(CPP), which is designed to combat climate change and reduce carbon emissions by 

setting a national limit on carbon pollution from power plants, may dramatically change 

the landscape of the power industry by further promoting clean energy and phasing out 

emissions-intensive generation technologies [1].  However, a rapid deployment of 

variable and uncertain renewable energy sources as well as their geographical disparity 

bring new challenges across multiple time scales, both of which need to be reflected in 

the long-term reliable planning and the short-term secure grid operation to achieve a 

deeper penetration.  In addition, novel non-wire alternatives (e.g., demand response 

(DR), distributed generation (DG), energy efficiency (EE), and smart grid technologies) 

and the computational complexity for large-scale systems significantly complicate the 

system planning procedure even further. 

However, current state-of-the-art planning technologies [2-6] mostly evaluate 

decoupled generation and transmission expansions in a queue, and heuristically 

determine the contributions of renewable generations by subtracting their approximated 

capacity values from the system peak load or the non-sequential block load duration 

curve.  However, existing conventional planning approaches neglect short-term variability 

and uncertainty of renewable energy, hourly chronological operation details, and physical 

nonlinear characteristics of the alternating current (AC) transmission network.  In turn, the 

derived long-term plans may not yield a feasible and optimal short-term dispatch decision.  

As a result, existing conventional planning approaches may not work properly, and power 

systems reliability could be in jeopardy. 

In observing limitations of existing conventional planning approaches and addressing 

new challenges of emerging power systems, the main scope of this project is illustrated 

in Figure 1.  Specifically, in designing future power systems by upgrading the existing 

transmission network and planning new generation and transmission facilities, it is of 
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crucial importance to simultaneously examine the short-term variability and uncertainty, 

hourly chronological operation details, and nonlinear characteristics of AC transmission 

network within the co-optimization planning model.  With such a decision-making 

structure and the interdependence between generation and transmission planning, this 

project developed co-optimization planning models within a multi-stage and multi-

timescale framework.  In particular, random contingencies, key uncertainty factors, and 

AC power flows are included to derive expansion plans while considering both long-term 

reliability and short-term flexibility.  

 

 
Figure 1. The Multi-stage and Multi-timescale Co-Optimization Planning (MMCOP) 

framework 

 

Major accomplishments and findings of the project are summarized as follows: 

• The team has developed the MMCOP prototype, which integrates the modeling 

of risks and uncertainties related to the time, location, and type of additional 

generation technologies, hourly and annual variation of renewable energy 

sources, long-term reliable planning and short-term economic operation, AC 

transmission network, and various environmental considerations.  The 

prototype is also equipped with effective solution methodologies, including tight 

convex approximation and advanced decomposition approaches, to enhance 

computational efficiency for solving real-world large-scale long-term planning 

problems. 

• The proposed prototype has been extensively tested via several Institute of 

Electrical and Electronics Engineers (IEEE) benchmark systems and the 

practical Western Electricity Coordinating Council’s (WECC) system to 

illustrate its effectiveness and efficiency.  The tests have shown that: (i) By 

considering flexible resources especially those non-wire technologies on the 

demand side and capturing short-term operation status of the power system, 
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more economically efficient and reliable systems can be planned;  (ii) The 

hybrid stochastic and robust model adopted in the MMCOP prototype can 

accurately capture various discrete and continuous uncertainties in modern 

power grid, thus facilitating the long-term planning with significant renewables 

while ensuring cost effectiveness, reliability, and sustainability;  (iii) Extensive 

studies on the practical WECC system show that the proposed advanced 

solution approaches have the potential to enhance computational efficiency for 

solving real-world large-scale long-term planning problems. 

• The research findings have been disseminated to the community via our 8 

journal publications and 4 technical conference presentations.  The list of 

publications and presentations is detailed in Appendix A.  The project team has 

also interacted with multiple industry partners, seeking opportunities to 

customize the MMCOP models and computational tools based on their 

specifications and needs and to provide technical support for promoting co-

optimization in their system expansion planning. 

• Multiple undergraduate and graduate students at Clarkson University, 

University of Pittsburgh, and Southern Methodist University participated in this 

project, receiving training and professional development on areas of power and 

energy systems, mathematical optimization, and algorithms.  One Ph.D. Thesis 

“Multiple Timescale Power Systems Operation and Planning with Renewable 

Energy, Demand Side Resource, and Energy Storage” was completed in 

August 2018 at Clarkson University.  Some of the research findings have also 

been integrated into undergraduate and graduate courses offered at Clarkson 

University and University of Pittsburgh.  

 

The reminder of this report is organized as follows: 

• Section II describes objectives of this project, including the background 

information that supports the need for this research, the technical challenges 

addressed by the project, and the project goals; 

• Section III details technical approaches adopted in the project to support the 

generated results and findings; 

• Section IV summarizes accomplishments and conclusions out of the project, 

and recommends future work for the possible continuation of the initiative; 

• Appendix A provides the list of publications and presentations for information 

dissemination/sharing that occurred during the period of project.  
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II. Objectives 

 

II.1. Background  

Generation and transmission planning is the central piece of power system expansion 

to meet future electricity demand growth.  Current state-of-the-art power system 

planning approaches mostly generate and evaluate decoupled generation and 

transmission expansion decisions in a sequential fashion.  One major reason for the 

decoupled planning process has been the lack of capabilities to address computational 

challenges that arise if both generation and transmission expansion plans were done 

in an integrated way [2-6].  The actual power system under study can have thousands 

of generators and lines, which make the co-optimization planning problem very difficult 

to solve.  However, such decoupled strategies fail to reflect that generation and 

transmission assets are closely tied and mutually support each other for delivering 

electricity to customers.  As one can imagine, this artificially separated planning 

procedure cannot guarantee that the obtained expansion plan is globally optimal, as 

the coupled nature of power generation and transmission has been ignored.  Moreover, 

they typically neglect short-term hourly operation decisions, which indeed could have 

serious impacts on the long-term planning.  Note that system expansions are primarily 

driven by the reliability needs in unusual situations and at peak demands that just occur 

with very short durations.  Consequently, it is very likely that a sequential generation 

and transmission long-term plan while neglecting hourly chronological operational 

details is of a low quality, leading to expensive or even infeasible short-term operation 

decisions.  To this end, the increasingly interconnected power grid requires an 

integrated and coordinated expansion plan for generation and transmission sectors 

while effectively considering hourly chronological operational details.   

  In addition, in the long-term planning problem, scenario sampling is a commonly 

used technique to simulate uncertainty factors such as loads, fuel prices, hydroelectric 

conditions, and renewable generation penetration in the planning years.  However, 

usually only a very limited number of scenarios can be considered to investigate the 

reliability of the system under a particular expansion plan, and the expansion plan with 

the least cost and satisfactory reliability can be chosen.  For example, it can take power 

system planners a week to run the commercial production cost simulation model for 

calculating the operations of the Eastern Interconnection for a single year, considering 

only one future scenario [7].  This modeling and computational deficiency greatly limits 

the ability of system planners to explore other possible expansion alternatives and 

scenarios. 

  Furthermore, most existing planning models are based on (mixed-integer) linear 

approximations of nonconvex AC power flow formulations, which clearly bring a great 
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computational advantage.  However, such linear approximations may lead to solutions 

of poor quality or even outside acceptable operational ranges of the AC transmission 

system. 

  Various entities involved with power system planning in practice have realized that 

the above modeling and computational bottlenecks should be and can be overcome.  

For instance, the Eastern Interconnection States’ Planning Council (EISPC) that 

represents the 39 states, the District of Columbia, the City of New Orleans, and 8 

Canadian Provinces located within the Eastern Interconnection has published a white 

paper on co-optimization of transmission and other supply resources [8].  Although the 

white paper does not address the above-mentioned challenges in detail, it does point 

out the need for a coordinated plan.  An associated technical conference consisting of 

experts from academia and industry confirmed the benefits of conducting such a co-

optimization expansion plan.  However, related research has been confined to small 

unpractical systems and conceptual discussions [9-17].  Nevertheless, the need for 

developing stochastic models to address the increasing uncertainty and variability in 

power system planning has been identified in several government and industry reports 

including [17].  

 

II.2. The Technical Challenges and Project Goals 

This project is aimed at addressing the modeling challenges and computational 

difficulties associated with co-optimization of generation and transmission planning, 

and developing the MMCOP tool that can be used by various interested users.  At the 

same time, as the resulting model is a large-scale optimization problem with 

uncertainties, the required large-scale modeling and simulation capabilities also 

present a break-through in science and engineering.  

  Specifically, this project targets on addressing the following modeling challenges 

and computational difficulties associated with co-optimization of generation and 

transmission planning: 

• Co-optimization of Generation and Transmission Expansion While 

Considering Accurate AC Power Flow Modeling:  Co-optimization planning 

with AC power flow modeling is a significant contribution by itself.  Note that the 

majority of existing planning models are based on (mixed-integer) linear 

approximations of the nonconvex AC power flow model.  Although a clear 

computational efficiency can be obtained, weak linear approximations could 

lead to solutions of poor quality with expensive operational cost.  In MMCOP, 

through co-optimization with tighter convex approximations, especially those 

with the second-order cone programming (SOCP) representations and 

additional tight cutting planes, a more accurate optimal expansion plan can be 
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identified.  It could be far superior to the results calculated sequentially using 

traditional direct current (DC) power flow approximations. 

• Unprecedented Granularity:  Most of the existing models only consider typical 

load profiles or simplified load blocks in the planning procedure, while failing to 

capture temporal operation details of power systems as well as short-term 

variability from renewable generation resources such as wind power.  In 

MMCOP, we execute unit commitment with hourly time resolution for candidate 

expansion plans, and in turn accurately capture the system impacts of fast 

ramps from wind power and other uncertain generation resources. 

• Two-Stage Robust Co-optimization Planning Hedging against 

Uncertainties as well as N-1/2 and N-1-1 Contingencies:  The current 

industry practice does not consider multiple scenarios within a single 

optimization problem as it would be too computationally expensive.  

Accordingly, the solution obtained from a single scenario may be infeasible in 

other scenarios and very likely be suboptimal.  In comparison, MMCOP 

considers realistic uncertainty descriptions within a single optimization problem 

to ensure reliable co-optimization plans that are robust to critical randomness 

and N-1/2 contingencies under consideration.  We also define novel uncertainty 

descriptions to capture N-1-1 contingencies and design systems with 

guaranteed performance under consecutive outages.  

• Hybrid Robust and Stochastic Optimization:  By developing a hybrid robust 

and stochastic optimization framework that utilizes both historical data and 

include N-K considerations, the co-optimization plans obtained will be both 

robust and cost-effective.  Note that the proposed hybrid robust and stochastic 

optimization framework would eliminate unrealistic scenarios and reduce the 

conservativeness level as compared to pure robust optimization models.  We 

will particularly demonstrate the effectiveness of using this hybrid framework to 

design systems with desired resilience under different outage levels. 

• Fast Computational Methods to Support Industrial Scale Applications: 

Most existing computational methods cannot effectively address actual system 

needs.  Our research will lead to a set of practical computational tools using 

three powerful strategies, including approximation, decomposition, and 

distributed computation.  These tools can effectively calculate large-scale 

practical systems.  

 

  Targeting on addressing the above modeling challenges and computational 

difficulties associated with co-optimization of generation and transmission planning, 

the overall objective of this project is to develop a sophisticated decision-making tool 
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MMCOP for facilitating generation and transmission co-optimization planning of 

emerging power systems.  MMCOP will represent an efficient decision-making tool for 

augmenting the existing capabilities of power system planner and operators to support 

collaborative planning, analysis, and implementation of emerging power systems, and 

to effectively mitigate risks and uncertainties in both short-term operation dynamics 

and long-term policy/technology changes.  MMCOP integrates advanced features for 

the modeling and simulation of risks and uncertainties related to the time, location, and 

type of additional generation technologies via the hybrid robust and stochastic 

optimization framework, hourly and annual variation of renewable energy sources, 

integrated long-term reliable planning and short-term economic operation, AC 

transmission network, and various environmental considerations.  MMCOP explores 

innovative solutions via dynamic transmission network reduction, tighter convex 

approximation as compared to standard SOCP-based AC power flow convexification 

models, integrated decomposition approaches, and distributed computation methods.  

MMCOP will enhance reliable and sustainable operation of the existing grid with the 

most economic integration of additional generation and transmission assets. 

  The goals of the proposed project include:  

• Establishing the MMCOP prototype with the proposed comprehensive 

modeling features (including co-optimization of generation and transmission 

planning, generation sizing/sitting and line routing with the consideration of 

environmental impacts, integrated long-term reliability and short-term 

economics, full AC power flow, and hybrid robust and stochastic optimization 

for uncertainty simulation and risk mitigation) and advanced solution 

methodologies (including dynamic transmission network reduction, tight 

convex approximation, integrated decomposition approaches, and distributed 

computation methods); 

• Validating the technological viability and effectiveness of MMCOP via standard 

IEEE testing systems and practical systems, on mitigating risks and 

uncertainties in co-optimized generation and transmission planning while 

ensuring reliability, sustainability, and economic benefits;  

• Disseminating the research findings via journal publications, conference 

presentations, training courses, and collaboration and interactions with industry 

partners to create broader impacts. 
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III. Technical Approach 

The project involves three phases to achieve the project goals of developing the 

MMCOP for facilitating generation and transmission co-optimization planning of 

emerging power systems.  The objectives for individual phases are listed as follows: 

Phase I – Development of MMCOP framework and algorithms; 

Phase II – Validation and verification of MMCOP via standard testing systems 

and practical systems; 

Phase III – Dissemination of the results and final reporting.  

  Technical details adopted in individual phases to achieve the targeted objectives 

are discussed below in details. 

 

III.1. Phase I. Development of MMCOP Framework and Algorithms 

• Generation and Transmission Co-optimization Planning with AC Power Flows 

This project investigates the comprehensive deterministic multi-stage and 

multi-timescale generation and transmission co-optimization planning model, 

which explores financially viable and physically feasible planning decisions to 

ensure sufficient electricity resources and delivery capacities to meet 

electricity loads.  The co-optimization planning model simultaneously studies 

electricity network configurations along with the detailed characterization of 

their functionalities (including supply, demand, storage, and transmission 

constraints), while integrating long-term reliability, short-term flexibility, and 

hourly chronological operation details in a single analytical framework.  The 

basic framework of the deterministic multi-stage and multi-timescale 

generation and transmission co-optimization planning model is highlighted as 

followed, while the full modeling details can be referred to from the team’s 

publication [18] out of this project. 

  The proposed co-optimization planning model determines when (which 

year), where (which bus and route), and what (which type) generators and 

transmission lines will be built for minimizing the total system cost throughout 

the planning horizon, as shown in (1).  Function 𝐶  quantifies the annual 

investment cost associated with new generators and transmission lines, and 

function 𝐹 calculates the hourly costs for electricity production and unserved 

demand;  𝑰𝑮𝑦  and 𝑰𝑻𝑦  are binary investment variables for generators and 

transmission lines in year y;  𝑁𝑤  is the number of weeks that can be 

represented by a typical week 𝑤 in a year;  𝑰𝑡 and 𝑷𝑡 are unit commitment 

and generation dispatch related operation decisions in hour 𝑡.  Typical weeks 
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in each month/season are considered to reflect the impact of distinct temporal 

operation characteristics of electricity systems.  

𝑚𝑖𝑛
𝑰𝑮𝑦,𝑰𝑻𝑦,𝑰𝑡,𝑷𝑡

∑ [𝐶(𝑰𝑮𝑦, 𝑰𝑻𝑦) + ∑ 𝑁𝑤 ∙ ∑ 𝐹(𝑰𝑡, 𝑷𝑡)𝑡∈𝑤𝑤∈𝑦 ]𝑦  (1) 

  The proposed co-optimization planning model includes the following 

typical constraints: (i) Long-term planning constraints describe site 

availability, types and capacities of candidate units and transmission lines at 

each site, as well as commissioning and construction time requirements.  

Additional constraints would include Renewable Portfolio Standards (RPS) in 

terms of emission limits and renewable penetration levels for addressing 

various socio-environmental obstacles;  (ii) Short-term operation constraints 

include electricity load balance, system reserve requirements, operation limits 

of traditional units and renewable resources (including capacity, ramp 

up/down rate, minimum ON/OFF time limits, etc.), and transmission 

constraints (power flow limits, etc.);  (iii) Different types of generators, 

including regular thermal units, combined-cycle gas-fired units, hydro units, 

renewable energy, and energy storage devices, will be rigorously 

represented;  (iv) Network evaluations for normal and pre-selected 

contingency cases will be included.  Power system operators not only enforce 

network constraints in the normal situation, but also evaluate the performance 

in pre-selected (i.e., the most credible) contingency cases to guarantee 

network security;  (v) Coupling constraints between long-term planning and 

short-term operation describe linkages of installation statuses and 

commitment decisions of units, and installation statuses and power flows of 

lines. 

  The proposed co-optimization planning model also includes advanced 

features to address unique characteristics and special needs of the long-term 

co-optimization planning for emerging power systems, including: (i) 

Incorporating AC power flow formulations:  One essential operating 

characteristic is the nonlinear behavior of AC power flow, which reflects the 

nonconvex relationship between nodal voltages and net power injections.  

Nevertheless, the majority of planning tools use (mixed-integer) linear 

formulations to approximate the AC power flow behavior, e.g., linear 

programming based DC power flow equations.  Although computational 

efficiency can be realized, such (mixed-integer) linear approximations may 

lead to transmission expansion plans of a poor quality.  To accurately capture 

the impact of AC power flow in the system planning, our co-optimization 

framework will incorporate strong convex approximations of AC power flow to 

produce better cost-effective co-optimization plans.  Specifically, SOCP 

approximation will be adopted in the MMCOP framework, along with novel 
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cutting planes, to achieve a trade-off between computational expense and 

solution quality;  (ii) Co-optimization planning with topology control for 

flexibility:  It is often observed that switching off some transmission lines in 

certain practical scenarios for scheduling maintenance and mitigating a 

destructive contingency could lead to a better power delivery capability.  

MMCOP will include necessary modeling components, e.g., binary variables 

for switching decisions in 𝐹(𝑰𝑡, 𝑷𝑡), to incorporate this feature in our planning 

solution, especially for newly planned transmission assets.  The detailed 

models on the SOCP-based AC power flow constraints and topology control 

can be referred to from the team’s publications [19, 20, 22-25] out of this 

project. 

 

• Co-optimization Planning Considering Complicated Environmental Impacts 

Investment costs of planning projects, especially the transmission network 

planning, largely depend on environmental factors such as terrain and 

climate.  In addition, the construction certificate of transmission lines has 

become even tougher to obtain due to the environmental protection goal.  

However, traditional transmission network planning approaches usually 

assume routes of candidate lines are given, which may bring unbearable 

errors especially in large regions under a variant environment.  Indeed, 

transmission line route design is an important and complex component of the 

transmission network planning. 

  The MMCOP incorporates the spatial transmission network planning 

into the proposed co-optimization planning model.  Based on the raster map 

in geographic information systems (GIS), the model would derive more 

economical and flexible solutions by exploring routes of candidate lines 

according to environmental factors and power system reliability requirements.  

The proposed co-optimization planning model minimizes the investment and 

operation cost (1) while simultaneously ensuring the feasibility of line paths 

and the reliability of power systems.  Specifically, the investment cost function 

𝐶 in (1) is evaluated while considering environment and altitude information.  

As shown in Figure 2, the original GIS image map Figure 2.a can be 

rasterized into an environmental map (shown in Figure 2.b) and an altitude 

map (shown in Figure 2.c).  In turn, associated with different costs for 

individual cells, the rasterized environmental and altitude maps can 

accurately reflect the impact of variant environments and altitudes on the 

optimal line routes.  In Figure 2.b and Figure 2.c, the darker the cell, the higher 

the cost.  The optimal route (i.e., the solid line) in Figure 2.d crosses the 

regions with the lowest cost by considering both environmental and altitude 
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information of each cell.  In comparison, the dash line route crosses some 

high cost areas, if such information of individual sites is neglected.  The 

detailed models on the spatial power network planning considering 

complicated environments can be referred to from the team’s publication [21]. 

 

 
(a) The original 

GIS image map 

(b) The rasterized 

environmental map 

(c) The rasterized 

altitude map 

(d) Optimal route 

on the GIS map 

Figure 2. Map rasterizing 

 

• Co-optimization Model Considering Risks and Uncertainties 

As the reliable electricity delivery is of the core value in the entire power 

industry, the MMCOP framework adopts a hybrid robust and stochastic co-

optimization planning model to address various contingencies and 

uncertainties.  Specifically, as load and renewable energy are clearly 

uncertain, the impact of these uncertainty factors on the co-optimization 

planning is fundamentally important.  Indeed, when the wind level reaches a 

critical value, the dependency of power systems on wind availability would 

inevitably result in supply risks.  The basic framework of the hybrid robust and 

stochastic co-optimization planning model is highlighted as followed, while 

the modeling details can be referred to from the team’s publications [18, 22-

25] out of this project. 

  The N-K reliability criterion (with K=1 or 2) is typically adopted by system 

operators for mitigating supply risks.  Indeed, the N-K criterion perfectly fits 

the concept of robust optimization, which seeks for solutions that protect the 

system against any N-K joint contingency of generation and transmission 

assets.  On the other hand, on many occasions, plenty of historical load or 

renewable energy data is available, which may either carry generic patterns 

and probabilistic information or provide a basis to generate more simulation 

data.  Hence, it would be reasonable to take advantage of available historical 

data and adopt the scenario-based approach to describe random loads and 

renewable generations.  In turn, together with the uncertainty set 𝑨  (2) 

defining N-K contingencies and the scenario set 𝑺 representing random loads 
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and renewable generations, a hybrid robust and stochastic co-optimization 

planning model can be derived as in (3), which minimizes the total investment 

costs, plus the expected costs for electricity production and unserved demand 

in the worst N-K contingency throughout the planning horizon.  Note in (2) 

that 𝐴𝐺𝑖𝑡 /𝐴𝐿𝑙𝑡 equals to one if the corresponding generator/transmission line 

is on outage at hour t, 𝑁𝐺 ,  𝑁𝐿 , and 𝑁𝑇  are the numbers of generators, 

transmission lines, and hours, 𝐾𝐺 and 𝐾𝐿 are the numbers of generators and 

lines that are simultaneously on outage.  

𝑨 ≔ {
𝐴𝐺𝑖𝑡 ∈ {0,1}

𝑁𝐺×𝑁𝑇 , 𝐴𝐿𝑙𝑡 ∈ {0,1}
𝑁𝐿×𝑁𝑇;

∑ 𝐴𝐺𝑖𝑡𝑖 ≤ 𝐾𝐺 , ∀𝑡; ∑ 𝐴𝐿𝑙𝑡𝑙 ≤ 𝐾𝐿 , ∀𝑡 
} (2) 

𝑚𝑖𝑛
𝑰𝑮,𝑰𝑻

{𝐶(𝑰𝑮, 𝑰𝑻) + 𝑚𝑎𝑥
𝑨𝑮,𝑨𝑳∈𝑨

𝐸
𝒔∈𝑺
[𝑚𝑖𝑛
𝑰𝑠,𝑷𝑠

𝐹(𝑰𝑠, 𝑷𝑠, 𝑨𝑮, 𝑨𝑳|𝑫 = 𝑫𝑠)]} (3) 

 

• Multi-Area Coordinated Planning under Uncertainty 

In a multi-area power system, the growing interconnection of regional 

electricity networks and the large-scale integration of renewable energy 

require a coordinated multi-area plan to achieve the overall reliability and 

economic efficiency.  Under such a background, we further study the multi-

area coordinated planning model as in (4), which minimizes the total 

investment costs plus the worst case costs for electricity production and 

unserved load over all areas. 𝑎 and 𝑏 are indices of areas.  We point out that 

in addition to investment and operation constraints for individual areas, 

equality constraint (5) represents that on any transmission tie-line, power flow 

exchange 𝑷𝑳𝑎→𝑏 from area 𝑎 to area 𝑏 is negative to 𝑷𝑳𝑏→𝑎. 

𝑚𝑖𝑛
𝑰𝑮𝑎,𝑰𝑻𝑎,𝑷𝑳𝑎

∑ {𝐶(𝑰𝑮𝑎, 𝑰𝑻𝑎, 𝑷𝑳𝑎) + 𝑚𝑎𝑥
𝑨𝑮𝑎,𝑨𝑳𝑎∈𝑨

𝑚𝑖𝑛
𝑰𝑎,𝑷𝑎

𝐹(𝑰𝑎, 𝑷𝑎, 𝑨𝑮𝑎, 𝑨𝑳𝑎)}𝑎  (4) 

𝑷𝑳𝑎→𝑏 = −𝑷𝑳𝑏→𝑎 (5) 

  Note that to compute (4)-(5) as a single optimization model would 

require data across multiple areas, which may not be readily accessible 

because of limitations on information privacy and difficulties in complicated 

models.  To this end, we adopt alternating direction method of multipliers 

(ADMM) based distributed algorithms to relax (5), which will separate (4) into 

two disjoint formulations that can be computed independent of each other.  

As a result, by just exchanging the pricing value of that tie-line flow, i.e., the 

Lagrangian multiplier, we will be able to achieve coordinated transmission 

planning without sharing private information inside each area.  The detailed 

procedure of using ADMM to solve (4)-(5) can be referred to from the team’s 

publication [26] out of this project. 
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• Enhancement of Computational Methods for Practical Instances 

The MMCOP includes efficient computation methods to effectively solve 

complicated models discussed above.  Specifically, three strategies of 

approximation, decomposition, and distributed computation are explored to 

address the complexities in co-optimization planning models, including: (i) 

SOCP approach for AC power flow calculation is incorporated into MMCOP 

to simulate physical Kirchhoff laws that regulate power flows more accurately 

than a DC power flow model;  (ii) The structurally complicated formulations 

related to the lengthy planning horizon and temporal correlations in load, 

generation, and transmission aspects will be effectively computed by column-

and-constraint generation (CCG) method;  (iii) The scale of practical network 

and spatial correlations will be tackles by decomposition and distributed 

computation approaches such as ADMM.  Technical details of the SOCP 

based approach, the CCG method, and the ADMM implementation can be 

referred to from the team’s publications [18-26] out of this project. 

 

   The entire MMCOP modeling and algorithm is detailed as follows: 

• Mathematical Model Description 

The system state model with the detailed formulations on operation costs and 

constraints used in the MMCOP is first presented, followed by the two-stage 

robust generation-transmission expansion planning model while considering 

various uncertainties in the planning horizon. 

o System State Model:  Load duration curve has been extensively applied 

in existing planning studies, which is usually modelled via a limited 

number of load blocks in practice.  However, because individual load 

blocks are regarded as mutually time independent, temporal operation 

characters, such as correlations of load and wind profiles, cannot be 

effectively handled.  More importantly, temporal operation characters of 

generating units, such as start-up and shut down costs, minimum on/off 

time limits, and ramping constraints, cannot be modelled.  To this end, the 

system state model together with a transition matrix is adopted to recover 

certain chronological operation information (i.e., unit start-up/shut down 

cost) within the long-term planning problem. That is, with additional binary 

variables to indicate unit commitment status and transitions among 

different states, start-up/ shut-down actions along the planning horizon 

can be reasonably captured, and in turn provide a model with better 

accuracy. 

  The system state model-based optimal operation of power systems 
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with demand-side resources (DSR) programs for each year 𝑡 within the 

long-term planning horizon is described as in (6)-(19).  The objective 

function (6) is to minimize the total operation cost of generating units, 

including variable production cost, fixed no-load cost, start-up cost, and 

shut-down cost, in addition to load reduction payments of DSR programs 

and penalty costs of unserved loads.  Constraints (7)-(10) represent limits 

of thermal units, wind farms, DSRs, and line power flows.  Nodal power 

balance is expressed as in (11).  Constraint (12) represents the relation 

between start-up/shut-down decisions and unit commitment statuses in 

each state.  DC power flow is expressed as a function of voltage phase 

angles (13), where phase angles are limited in (14).  The DSR deployment 

limit in each year 𝑡  is formulated as in (15), reflecting functionality 

requirements of physical demands and consumers’ non-appreciation on 

over-discomfort.  Constraints (16)-(19) describe boundaries of decision 

variables.  AC constraints could be similarly considered via convex 

relaxation approaches, which can help enhance the computational 

performance.  

                    𝑂𝐶𝑡 = 𝑚𝑖𝑛  {
∑ [

𝑇𝑡,𝑠 ∙ (𝑉𝐶𝑔 ∙ 𝑝𝑔,𝑡,𝑠 + 𝐹𝐶𝑔 ∙ 𝑦𝑔,𝑡,𝑠) +

∑ 𝑁𝑡,𝑠,𝑠′ ∙ (𝐶𝑔
𝑢𝑝 ∙ 𝑠𝑢𝑔,𝑡,𝑠,𝑠′ + 𝐶𝑔

𝑑𝑛 ∙ 𝑠𝑑𝑔,𝑡,𝑠,𝑠′)𝑠′
]𝑠,𝑔∈𝐺

+∑ 𝑇𝑡,𝑠 ∙ 𝐸𝐶𝑡,𝑠𝑠,𝑑 ∙ 𝑑𝑟𝑑,𝑡,𝑠 + 𝑃𝐶𝑡 ∙ ∑ 𝑇𝑡,𝑠 ∙ 𝑣𝑖,𝑡,𝑠𝑠,𝑖

}            (6) 

                    s.t.   𝑃𝑔
𝑚𝑖𝑛 ∙ 𝑦𝑔,𝑡,𝑠 ≤ 𝑝𝑔,𝑡,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥 ∙ 𝑦𝑔,𝑡,𝑠                                   ∀𝑔, 𝑠         (7) 

                           0 ≤ 𝑝𝑤,𝑡,𝑠 ≤ 𝑃 𝑤,𝑡,𝑠                                                              ∀𝑤, 𝑠         (8) 

                           0 ≤ 𝑑𝑟𝑑,𝑡,𝑠 ≤ 𝐷𝑅𝑑,𝑡
𝑚𝑎𝑥 ∙ 𝑦𝑑,𝑡,𝑠                                               ∀𝑑, 𝑠         (9) 

                           −𝑃𝑙
𝑚𝑎𝑥 ≤ 𝑝𝑙,𝑡,𝑠 ≤ 𝑃𝑙

𝑚𝑎𝑥                                                     ∀𝑙, 𝑠        (10) 

                           ∑ 𝑝𝑔,𝑡,𝑠𝐺∈𝐵𝑔(𝑖) +∑ 𝑝𝑙,𝑡,𝑠𝑙∈𝑅(𝑖) − ∑ 𝑝𝑙,𝑡,𝑠𝑙∈𝑆(𝑖) + 𝑣𝐼,𝑡,𝑠 + 

                                           ∑ 𝑝𝑤,𝑡,𝑠𝑤∈𝐵𝑤(𝑖) = ∑ (𝑃𝑑,𝑡,𝑠 − 𝑑𝑟𝑑,𝑡,𝑠)𝑑∈𝐵𝑑(𝑖)            ∀𝑖, 𝑠           (11) 

                          𝑦𝑔,𝑡,𝑠′ − 𝑦𝑔,𝑡,𝑠 = 𝑠𝑢𝑔,𝑡,𝑠,𝑠′ − 𝑠𝑑𝑔,𝑡,𝑠,𝑠′                                     ∀𝑔, 𝑠, 𝑠
′   (12) 

                          𝐵𝑙 ∙ (𝜃𝑠(𝑙),𝑡,𝑠 − 𝜃𝑟(𝑙),𝑡,𝑠) − 𝑝𝑙,𝑡,𝑠 = 0                                      ∀𝑙, 𝑠        (13) 

                         −𝜃𝑖
𝑚𝑎𝑥 ≤ 𝜃𝑖,𝑡,𝑠 ≤ 𝜃𝑖

𝑚𝑎𝑥;     𝜃𝑟𝑒𝑓,𝑡,𝑠 = 0                                 ∀𝑖, 𝑠         (14) 

                          ∑ 𝑇𝑡,𝑠 ∙ 𝑦𝑑,𝑡,𝑠𝑠 ≤ 𝐷𝑅𝑑,𝑡
𝑐                                                         ∀𝑑           (15) 

                          𝑦𝑔,𝑡,𝑠 ∈ {0,1}                                                                         ∀𝑔, 𝑠         (16) 

                          𝑦𝑑,𝑡,𝑠 ∈ {0,1}                                                                      ∀𝑑, 𝑠        (17) 

                          0 ≤ 𝑠𝑢𝑔,𝑡,𝑠,𝑠′ , 𝑠𝑑𝑔,𝑡,𝑠,𝑠′ ≤ 1                                                  ∀𝑔, 𝑠, 𝑠′   (18) 
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                         𝑣𝑖,𝑡,𝑠 ≥ 0                                                                            ∀𝑖, 𝑠         (19) 

  In the system state model (6)-(19), 𝑑, 𝑙, 𝑔, 𝑤, and 𝑡 are indices of 

DSR programs, transmission lines, thermal units, renewable units, and 

years;  𝑖  and 𝑗 are indices of buses;  𝑠 and 𝑠′ are indices of system states;  

𝑠(𝑙) and 𝑟(𝑙) are indices of sending and receiving buses of line 𝑙.  𝑑𝑟𝑑,𝑡,𝑠 

is demand reduction of DSR 𝑑 in state 𝑠 of year 𝑡;  𝑝𝑙,𝑡,𝑠 is power flow of 

line 𝑙 in state 𝑠 of year 𝑡;  𝑝𝑔,𝑡,𝑠 and 𝑝𝑤,𝑡,𝑠 are power outputs of thermal unit 

𝑔  and renewable unit 𝑤  in state 𝑠  of year 𝑡 ;  𝑠𝑑𝑔,𝑡,𝑠,𝑠′  and 𝑠𝑢𝑔,𝑡,𝑠,𝑠′  are 

shutdown and startup indicators of unit 𝑔 from state 𝑠 to state 𝑠′ in year 𝑡;  

𝑣𝑖,𝑡,𝑠 is unserved load on bus 𝑖 in state 𝑠 of year 𝑡;  𝑥𝑑,𝑡, 𝑥𝑔,𝑡, and 𝑥𝑙,𝑡 are 

binary indicators describing whether DSR program 𝑑, unit 𝑔, and line 𝑙 is 

deployed in year 𝑡 ;  𝑦𝑑,𝑡,𝑠  is binary indicator describing whether DSR 

program 𝑑 is called in state 𝑠 of year 𝑡;  𝑦𝑔,𝑡,𝑠 is commitment status of unit 

𝑔 in state 𝑠 of year 𝑡;  𝛿+ and 𝛿− are binary indicators describing if an 

uncertainty term reaches its positive and negative bounds; 𝜃𝑖,𝑡,𝑠 is voltage 

phase angle of bus 𝑖  in state 𝑠 of year 𝑡 ;  (∙)𝑢  is decision variables in 

response to uncertainties.  𝐵𝑙 is susceptance of transmission line 𝑙; 𝐶𝑔
𝑢𝑝

 

and 𝐶𝑔
𝑑𝑛  are startup and shutdown costs of unit 𝑔 ;  𝐷𝑅𝑑,𝑡

𝑐  is annual 

maximum number of hours that load reduction of DSR 𝑑 is allowed at year 

𝑡;  𝐷𝑅𝑑,𝑡
𝑚𝑎𝑥 is load reduction capacity of DSR 𝑑 in year 𝑡;  𝐸𝐶𝑡,𝑠 is incentive 

payment to DSRs in state 𝑠 of year 𝑡;  𝐹𝐶𝑔 and 𝑉𝐶𝑔 are fixed and variable 

production costs of unit 𝑔 ;  𝐼𝐶𝑑 is annualized investment cost of DSR 

program 𝑑;  𝐼𝐶𝑔 and 𝐼𝐶𝑙 are annualized investment costs of unit 𝑔 and line 

𝑙;  𝑀 is a very large positive number;  𝑁𝑇 and 𝑁𝑆 are numbers of years 

and states in each year;  𝑁𝑡,𝑠,𝑠′ is number of transitions from state 𝑠 to 𝑠′ 

in year 𝑡;  𝑂𝐶𝑡 and 𝑃𝐶𝑡 are system operation cost and penalty cost in year 

𝑡;  𝑃𝑑,𝑡,𝑠 and 𝑃𝑤,𝑡,𝑠 are demand and renewable energy forecasts in state 𝑠 

of year 𝑡;  𝑇𝑡,𝑠 is duration of state 𝑠 in year 𝑡;  𝛢 is devaluation rate;  ∆ is 

budget level of uncertainty variables;  (∙)𝑚𝑎𝑥/𝑚𝑖𝑛  is maximum/minimum 

value of a quantity;  (∙)̂ indicates solution to a variable;  (∙)+ and (∙)− are 

positive and negative deviations of an uncertainty factor.  𝑩𝑔(𝑖) and 𝑩𝑤(𝑖) 

are sets of thermal and renewable units at bus 𝑖;  𝑩𝑑(𝑖) is set of demands 

connected to bus 𝑖;  𝑫,𝑮, and 𝑳 are sets of existing DSR programs, units, 

and lines;  𝑫𝐶 , 𝑮𝐶, and 𝑳𝐶 are sets of candidate DSR programs, units, and 

lines;  𝑭(𝑠) and 𝑻(𝑠) are sets of system states transited from and to state 

𝑠,  𝑹(𝑖) and 𝑺(𝑖) are sets of transmission lines ending and starting at bus 

𝑖. 
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o Robust Generation and Transmission Expansion Planning Model 

with DSRs: The multi-period robust generation and transmission 

expansion planning problem is formulated as in (20)-(31).  The robust 

counterpart (20) is expressed in a two-stage structure, in which 

investment decisions 𝑥  are determined in the first stage.  After 𝑥  are 

revealed, the most economically inefficient scenarios under uncertainties 

are detected in the second stage and fed back to the first stage for 

adjusting planning decisions, where 𝑦 and 𝑧 respectively represent binary 

and continuous variables in the second stage.   

  The objective function (20) is to minimize the total cost, including 

investment cost (21) of candidate assets and total operation cost (22) of 

multiple years within the planning horizon.  Investment cost (21) contains 

construction costs of new generators and lines, and deployment costs of 

new DSR programs.  Deployment costs of DSRs can be in the form of 

installation and upgrade costs of demand side infrastructure and 

associated technological equipment (such as direct load control devices, 

smart meters, in-home displays, and communication facilities), acquisition 

costs, and incentives for enrolment.  Other one-time expenses that usually 

occur once instead of repeatedly in each year, such as deploying IT 

systems for settlement and conducting market research for program 

design, could also be included as part of investment cost.  In addition, 

complicated environment could be reflected via investment costs of 

generators/ transmission lines in (21) and/or modeled as forbidden zones 

in (23), i.e., by setting certain 𝒙𝒈,𝒕 and 𝒙𝒍,𝒕 as zero. 

  Feasible region of investment decision variables is denoted as in 

(23), in which investment variables of existing assets are fixed to 1 while 

those of candidate assets will be optimized.  Uncertainties from load/wind 

forecasts are formulated as a polyhedral uncertainty set (24), which is 

associated with the operation problem.  In (24), uncertainty budget levels 

∆𝑑  and ∆𝑤  control ranges of uncertainties considered in the robust 

optimization model.  That is, a larger value of uncertainty budget indicates 

that a more severe uncertainty situation with a larger fluctuation will be 

considered.  Specifically, when uncertainty budget is 0, the uncertainty set 

is reduced to singleton without any uncertainty being considered;  While 

the maximum budget value of 𝑁𝑇 × 𝑁𝑆  corresponds to the entire 

hypercube, in which all uncertainties in all time intervals are considered.  

  Feasible set of the operation problem is shown as in (25)-(31), in 

which uncertain wind and load deviate from their forecast values as 

indicated in (26) and (29).  Capacity limits of candidate assets are 
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restricted by their investment decisions, which are formulated as coupling 

constraints (25), (27)-(28), and (30) that link planning and operation 

decisions. 

𝑚𝑖𝑛
𝒙∈𝑋

{𝐼𝐶(𝒙) + 𝑚𝑎𝑥
𝒖∈𝑈

𝑚𝑖𝑛
𝒚,𝒛∈𝛺(𝒙,𝒖)

𝑂𝐶 (𝒚, 𝒛)}                                                    (20) 

𝐼𝐶(𝒙) = ∑ {
1

(1+𝛼)𝑡
∙ [∑ 𝐼𝐶𝑔 ∙ 𝑥𝑔,𝑡𝑔∈𝐺𝐶 + ∑ 𝐼𝐶𝑙 ∙𝑙∈𝐿𝐶 𝑥𝑙,𝑡 + ∑ 𝐼𝐶𝑑 ∙ 𝑥𝑑,𝑡𝑑∈𝐷𝐶 ]}𝑡  (21) 

𝑂𝐶(𝒚, 𝒛) = ∑ 1 (1 + 𝛼)𝑡⁄ ∙ 𝑂𝐶𝑡𝑡                                         (22) 

𝑿 = {𝒙:

𝑥𝑔,𝑡, 𝑥𝑙,𝑡, 𝑥𝑑,𝑡 ∈ {0,1},   ∀𝑔 ∈ 𝐺
𝑐, ∀𝑙 ∈ 𝐿𝑐 , ∀𝑑 ∈ 𝐷𝑐;

𝑥𝑔,𝑡 = 𝑥𝑙,𝑡 = 𝑥𝑑,𝑡 = 1,      ∀𝑔 ∈ 𝐺, ∀𝑙 ∈ 𝐿, ∀𝑑 ∈ 𝐷;

 𝑥𝑔,𝑡−1 ≤ 𝑥𝑔,𝑡, 𝑥𝑙,𝑡−1 ≤ 𝑥𝑙,𝑡, 𝑥𝑑,𝑡−1 ≤ 𝑥𝑑,𝑡, ∀𝑡, 𝑔, 𝑙, 𝑑

}                     (23) 

𝑼 =

{
 
 
 

 
 
 

𝒖:

  𝑃𝑑,𝑡,𝑠
𝑢 , 𝑃 𝑤,𝑡,𝑠

𝑢 ∈ ℝ𝑁𝑇×𝑁𝑆, 𝛿𝑑,𝑡,𝑠
± , 𝛿𝑤,𝑡,𝑠

± ∈ {0,1}𝑁𝑇×𝑁𝑆,

𝑃𝑑,𝑡,𝑠
𝑢 = 𝑃𝑑,𝑡,𝑠 + 𝛿𝑑,𝑡,𝑠

+ ∙ 𝑃̃𝑑,𝑡,𝑠
+ + 𝛿𝑑,𝑡,𝑠

− ∙ 𝑃̃𝑑,𝑡,𝑠
− ,

𝑃𝑤,𝑡,𝑠
𝑢 = 𝑃𝑤,𝑡,𝑠 + 𝛿𝑤,𝑡,𝑠

+ ∙ 𝑃̃𝑤,𝑡,𝑠
+ + 𝛿𝑤,𝑡,𝑠

− ∙ 𝑃̃𝑤,𝑡,𝑠
− ,

∑ (𝛿𝑑,𝑡,𝑠
+

𝑡,𝑠 + 𝛿𝑑,𝑡,𝑠
− ) ≤ ∆𝑑, 𝛿𝑑,𝑡,𝑠

+ + 𝛿𝑑,𝑡,𝑠
− ≤ 1,

∑ (𝛿𝑤,𝑡,𝑠
+

𝑡,𝑠 + 𝛿𝑤,𝑡,𝑠
− ) ≤ ∆𝑤, 𝛿𝑤,𝑡,𝑠

+ + 𝛿𝑤,𝑡,𝑠
− ≤ 1,

∀𝑑, 𝑤, 𝑡, 𝑠 }
 
 
 

 
 
 

                    (24) 

𝛺(𝒙, 𝒖) ={  

𝑃𝑔
𝑚𝑖𝑛 ∙ 𝑦𝑔,𝑡,𝑠 ∙ 𝑥𝑔,𝑡 ≤ 𝑝𝑔,𝑡,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥 ∙ 𝑦𝑔,𝑡,𝑠 ∙ 𝑥𝑔,𝑡      ∀𝑡, 𝑠, ∀𝑔 ∈ 𝐺 ∪ 𝐺
𝐶   (25) 

0 ≤ 𝑝𝑤,𝑡,𝑠 ≤ 𝑃𝑤,𝑡,𝑠
𝑢                           ∀𝑤, 𝑡, 𝑠                       (26) 

0 ≤ 𝑑𝑟𝑑,𝑡,𝑠 ≤ 𝐷𝑅𝑑,𝑡
𝑚𝑎𝑥 ∙ 𝑥𝑑,𝑡 ∙ 𝑦𝑑,𝑡,𝑠                       ∀𝑡, 𝑠, ∀𝑑 ∈ 𝐷 ∪ 𝐷

𝐶    (27) 

−𝑃𝑙
𝑚𝑎𝑥 ∙ 𝑥𝑙,𝑡 ≤ 𝑝𝑙,𝑡,𝑠 ≤ 𝑃𝑙

𝑚𝑎𝑥 ∙ 𝑥𝑙,𝑡                       ∀𝑡, 𝑠, ∀𝑙 ∈ 𝐿 ∪ 𝐿
𝐶      (28) 

∑ 𝑝𝑔,𝑡,𝑠𝑔∈𝐵𝑔(𝑖) + ∑ 𝑝𝑙,𝑡,𝑠𝑙∈𝑅(𝑖) − ∑ 𝑝𝑙,𝑡,𝑠𝑙∈𝑆(𝑖) + 𝑣𝑖,𝑡,𝑠 +     ∑ 𝑝𝑤,𝑡,𝑠𝑤∈𝐵𝑤(𝑖)   

                 = ∑ (𝑃𝑑,𝑡,𝑠
𝑢 − 𝑑𝑟𝑑,𝑡,𝑠)𝑑∈𝐵𝑑(𝑖)                   ∀𝑖, 𝑡, 𝑠                       (29) 

−𝑀 ∙ (1 − 𝑥𝑙,𝑡) ≤ 𝐵𝑙 ∙ (𝜃𝑠(𝑙),𝑡,𝑠 − 𝜃𝑟(𝑙),𝑡,𝑠) − 𝑝𝑙,𝑡,𝑠  

                        ≤ 𝑀 ∙ (1 − 𝑥𝑙,𝑡)                         ∀𝑡, 𝑠, ∀𝑙 ∈ 𝐿 ∪ 𝐿
𝐶        (30) 

Constraints (12) and (14)-(19)                                                       (31)} 

  In addition, nonlinear terms in (25) and (27) can be equivalently 

linearized to facilitate calculation.  For instance, the nonlinear term 

𝑦𝑔,𝑡,𝑠 ∙ 𝑥𝑔,𝑡 in (25) can be equivalently represented as a linear form (32)-

(34) with an extra binary variable 𝑞𝑔,𝑡,𝑠. 

𝑞𝑔,𝑡,𝑠 ≤ 𝑦𝑔,𝑡,𝑠                                         (32) 
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𝑞𝑔,𝑡,𝑠 ≤ 𝑥𝑔,𝑡                                                    (33) 

𝐪𝐠,𝐭,𝐬 ≥ 𝐲𝐠,𝐭,𝐬 + 𝐱𝐠,𝐭 − 𝟏                                                  (34) 

 

• Solution Methodology  

An extended column-and-constraint-generation (ECCG) algorithm is 

developed to solve the proposed two-stage robust optimization problem, by 

decomposing the original problem into one planning master problem and one 

operation sub-problem.  The ECCG algorithm can effectively solve the 

proposed robust problem with mixed-integer recourse, while mitigating the 

issue of traditional CCG approach that relies on time-consuming enumeration 

of integer variables and might be inefficient for practical applications. 

o Investment Master Problem and Operation Sub-problem:  The 

proposed model is a two-stage robust optimization problem with mixed-

integer recourse, with each stage representing a multi-period decision-

making process.  That is, in the first stage, annual investment decisions 

of generation and transmission assets and DSR programs are 

determined, and operational decisions for each state in each year are then 

made in the second stage.  ECCG algorithm is deployed to decompose 

the original problem into one master problem and one sub-problem.  

Specifically, in each iteration, master problem determines investment 

decisions with one augmented scenario, i.e., new variables and 

constraints corresponding to the new scenario obtained from sub-

problem.  Sub-problem detects the worst scenario within the constructed 

uncertainty set.  With  𝒙  and 𝜂  representing decision variables in the 

master problem, as well as  𝒚𝑟  and 𝒛𝑟  being binary and continuous 

variables related to the worst case identified in sub-problem at iteration 𝑟, 

the master problem is shown as in (35). 

𝑚𝑖𝑛
𝒙,𝜂

  𝐼𝐶(𝒙) + 𝜂 

s.t.  𝒙 ∈ 𝑿 

𝜂 ≥  𝑂𝐶(𝒚𝑟, 𝒛𝑟);   𝒚𝑟 , 𝒛𝑟 ∈  𝛺(𝒙, 𝒖𝑟), ∀𝑟 

𝒚𝑟 ∈ {0,1}，𝒛𝑟 ≥ 𝟎, ∀𝑟                                                           (35) 

  With revealed decisions 𝒙∗ from the master problem, the worst-case 

scenario is identified in the sub-problem (36).  

𝑉(𝒙∗) = 𝑚𝑎𝑥
𝒖∈𝑼/{𝒖𝟏,…,𝒖𝒓}

𝑚𝑖𝑛
𝒚,𝒛∈𝛺(𝒙∗,𝒖)

𝑂𝐶 (𝒚, 𝒛)                                                                (36) 
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o Approximate Technique to Solve Sub-problem:  Sub-problem (36) is a 

bi-level max-min problem with binary variables in the inner level.  This type 

of problems can be solved by traditional CCG, in which inner-level binary 

variables are handled by an inner CCG algorithm relying on enumeration.  

However, traditional CCG is shown to be computationally inefficient for 

practical-size problems.  An ECCG strategy described as follows is used 

to efficiently solve the bi-level max-min sub-problem. 

(i) With respect to the master problem solution 𝒙∗, binary variables in the 

recourse sub-problem are relaxed as continuous, and the 

corresponding linear programing (LP) relaxation problem is calculated 

to derive a solution 𝒖∗.  This is done by converting the bi-level max-

min into a single-level maximization problem via duality theory, and 

further linearizing bilinear terms via outer approximation.  Detailed 

formulations of the LP relaxed bi-level sub-problem and its single-level 

equivalence are provided as follows.  Symbols bracketed in the end 

are dual variables of corresponding constraints. 

𝑚𝑎𝑥
𝒖∈𝑼

𝑚𝑖𝑛{
∑ [

𝑇𝑡,𝑠 ∙ (𝑉𝐶𝑔 ∙ 𝑝𝑔,𝑡,𝑠 + 𝐹𝐶𝑔 ∙ 𝑦𝑔,𝑡,𝑠)

+∑ 𝑁𝑡,𝑠,𝑠′ ∙ (𝐶𝑔
𝑢𝑝 ∙ 𝑠𝑢𝑔,𝑡,𝑠,𝑠′ + 𝐶𝑔

𝑑𝑛 ∙ 𝑠𝑑𝑔,𝑡,𝑠,𝑠′)𝑠′
]𝑠,𝑔∈𝐺

+∑ 𝑇𝑡,𝑠 ∙ 𝐸𝐶𝑡,𝑠𝑠,𝑑 ∙ 𝑑𝑟𝑑,𝑡,𝑠 + 𝑃𝐶𝑡 ∙ ∑ 𝑇𝑡,𝑠 ∙ 𝑣𝑖,𝑡,𝑠𝑠,𝑖

}  

s.t. 𝑃𝑔
𝑚𝑖𝑛 ∙ 𝑦𝑔,𝑡,𝑠 ∙ 𝑥̂𝑔,𝑡 ≤ 𝑝𝑔,𝑡,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥 ∙ 𝑦𝑔,𝑡,𝑠 ∙ 𝑥̂𝑔,𝑡                         (𝜇𝑔,𝑡,𝑠
(1)

, 𝜇𝑔,𝑡,𝑠
(2)

) 

0 ≤ 𝑝𝑤,𝑡,𝑠 ≤ 𝑃𝑤,𝑡,𝑠
𝑢                                                         (𝜇𝑤,𝑡,𝑠

(3)
, 𝜇𝑤,𝑡,𝑠
(4)

) 

0 ≤ 𝑑𝑟𝑑,𝑡,𝑠 ≤ 𝐷𝑅𝑑,𝑡
𝑚𝑎𝑥 ∙ 𝑥̂𝑑,𝑡 ∙ 𝑦𝑑,𝑡,𝑠                                         (𝜇𝑑,𝑡,𝑠

(5)
 , 𝜇𝑑,𝑡,𝑠

(6)
) 

−𝑃𝑙
𝑚𝑎𝑥 ∙ 𝑥̂𝑙,𝑡 ≤ 𝑝𝑙,𝑡,𝑠 ≤ 𝑃𝑙

𝑚𝑎𝑥 ∙ 𝑥̂𝑙,𝑡                                    (𝜇𝑙,𝑡,𝑠
(7)
, 𝜇𝑙,𝑡,𝑠
(8)
) 

∑ 𝑝𝑔,𝑡,𝑠𝑔∈𝐵𝑔(𝑖) + ∑ 𝑝𝑙,𝑡,𝑠𝑙∈𝑅(𝑖) − ∑ 𝑝𝑙,𝑡,𝑠𝑙∈𝑆(𝑖) +      ∑ 𝑝𝑤,𝑡,𝑠𝑤∈𝐵𝑤(𝑖) + 𝑣𝑖,𝑡,𝑠  

= ∑ (𝑃𝑑,𝑡,𝑠
𝑢 − 𝑑𝑟𝑑,𝑡,𝑠)𝑑∈𝐵𝑑(𝑖)                                  (𝜇𝑖,𝑡,𝑠

(9)
) 

−𝑀 ∙ (1 − 𝑥̂𝑙,𝑡) ≤ 𝐵𝑙 ∙ (𝜃𝑠(𝑙),𝑡,𝑠 − 𝜃𝑟(𝑙),𝑡,𝑠) − 𝑝𝑙,𝑡,𝑠 ≤ 𝑀 ∙ (1 − 𝑥̂𝑙,𝑡)   

(𝜇𝑙,𝑡,𝑠
(10)

, 𝜇𝑙,𝑡,𝑠
(11)

) 

𝑦𝑔,𝑡,𝑠′ − 𝑦𝑔,𝑡,𝑠 = 𝑠𝑢𝑔,𝑡,𝑠,𝑠′ − 𝑠𝑑𝑔,𝑡,𝑠,𝑠′                                                 (𝜇𝑔,𝑡,𝑠,𝑠′
(12)

) 

−𝜃𝑖
𝑚𝑎𝑥 ≤ 𝜃𝑖,𝑡,𝑠 ≤ 𝜃𝑖

𝑚𝑎𝑥 ,    𝜃𝑟𝑒𝑓,𝑡,𝑠 = 0                        (𝜇𝑖,𝑡,𝑠
(13)

, 𝜇𝑖,𝑡,𝑠
(14)

) 

∑ 𝑇𝑡,𝑠 ∙ 𝑦𝑑,𝑡,𝑠𝑠 ≤ 𝐷𝑅𝑑,𝑡
𝑐                                                                  (𝜇𝑡

(15)
) 
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0 ≤ 𝑦𝑔,𝑡,𝑠, 𝑦𝑑,𝑡,𝑠, 𝑠𝑢𝑔,𝑡,𝑠,𝑠′ , 𝑠𝑑𝑔,𝑡,𝑠,𝑠′ ≤ 1    

(𝜇𝑔,𝑡,𝑠
(16)

 , 𝜇𝑔,𝑡,𝑠
(17)

, 𝜇𝑑,𝑡,𝑠
(18)

, 𝜇𝑑,𝑡,𝑠
(19)

, 𝜇
𝑔,𝑡,𝑠,𝑠′
(20)

, 𝜇
𝑔,𝑡,𝑠,𝑠′
(21)

, 𝜇
𝑔,𝑡,𝑠,𝑠′
(22)

, 𝜇
𝑔,𝑡,𝑠,𝑠′
(23)

) 

𝑣𝑖,𝑡,𝑠 ≥ 0                                                                            (𝜇𝑖,𝑡,𝑠
(24)) 

  Its single level equivalent formulation is detailed as follows.  Symbols 

bracketed in the end are original primal variables of corresponding 

constraints. 

𝑚𝑎𝑥
𝒖∈𝑼

∑

{
  
 

  
 ∑ [𝜇𝑔,𝑡,𝑠

(17) + ∑ (𝜇
𝑔,𝑡,𝑠,𝑠′
(21)

+ 𝜇
𝑔,𝑡,𝑠,𝑠′
(23)

)𝑠′ ]𝑔 + ∑ 𝑃𝑤,𝑡,𝑠
𝑢

𝑤 ∙  𝜇𝑤,𝑡,𝑠
(4)

+𝐷𝑅𝑑,𝑡
𝑐 ∙ 𝜇𝑡

(15)
+ ∑ 𝜇𝑑,𝑡,𝑠

(19)
𝑑

+∑ [𝑃𝑙
𝑚𝑎𝑥 ∙ 𝑥̂𝑙,𝑡 ∙ (𝜇𝑙,𝑡,𝑠

(7) + 𝜇𝑙,𝑡,𝑠
(8) ) + 𝑀 ∙ (1 − 𝑥̂𝑙,𝑡) ∙ (𝜇𝑙,𝑡,𝑠

(10) + 𝜇𝑙,𝑡,𝑠
(11))]𝑙

+∑ [𝜃𝑚𝑎𝑥 ∙ (𝜇𝑖,𝑡,𝑠
(13) + 𝜇𝑖,𝑡,𝑠

(14)) + (∑ 𝑃𝑑,𝑡,𝑠
𝑢

𝑑∈𝐵𝑑(𝑖) ) ∙ 𝜇𝑖,𝑡,𝑠
(9) ]𝑖 }

  
 

  
 

𝑠    

s.t. −𝜇𝑔,𝑡,𝑠
(1) + 𝜇𝑔,𝑡,𝑠

(2) + 𝜇𝑖,𝑡,𝑠
(9) ≤ 𝑇𝑡,𝑠 ∙ 𝑉𝐶𝑔, 𝑔 ∈ 𝐵𝑔(𝑖)                                           (𝑝𝑔,𝑡,𝑠) 

𝑥̂𝑔,𝑡 ∙ (𝑃𝑔
𝑚𝑖𝑛 ∙ 𝜇𝑔,𝑡,𝑠

(1) − 𝑃𝑔
𝑚𝑎𝑥 ∙ 𝜇𝑔,𝑡,𝑠

(2) ) + ∑ 𝜇
𝑔,𝑡,𝑠,𝑠′
(12)

𝑠′   

−∑ 𝜇
𝑔,𝑡,𝑠,𝑠′
(12)

𝑠 − 𝜇𝑔,𝑡,𝑠
(16) +  𝜇𝑔,𝑡,𝑠

(17)
≤ 𝑇𝑡,𝑠 ∙ 𝐹𝐶𝑔       (𝑦𝑔,𝑡,𝑠) 

−𝜇𝑤,𝑡,𝑠
(3) + 𝜇𝑤,𝑡,𝑠

(4) + 𝜇𝑖,𝑡,𝑠
(9)

≤ 0, 𝑤 ∈ 𝐵𝑤(𝑖)                                        (𝑝𝑤,𝑡,𝑠) 

−𝜇𝑑,𝑡,𝑠
(5)

+ 𝜇𝑑,𝑡,𝑠
(6)

+ 𝜇𝑖,𝑡,𝑠
(9)

≤ 𝑇𝑡,𝑠 ∙ 𝐸𝐶𝑡,𝑠, 𝑑 ∈ 𝐵𝑑(𝑖)                                   (𝑑𝑟𝑑,𝑡,𝑠) 

−𝐷𝑅𝑑,𝑡
𝑚𝑎𝑥 ∙ 𝑥̂𝑑,𝑡 ∙ 𝜇𝑑,𝑡,𝑠

(6) + 𝑇𝑡,𝑠 ∙ 𝜇𝑡,𝑠
(15) − 𝜇𝑑,𝑡,𝑠

(18) + 𝜇𝑑,𝑡,𝑠
(19)

≤ 0            (𝑦𝑑,𝑡,𝑠) 

−𝜇𝑙,𝑡,𝑠
(7) + 𝜇𝑙,𝑡,𝑠

(8) − 𝜇𝑠(𝑙),𝑡,𝑠
(9) + 𝜇𝑟(𝑙),𝑡,𝑠

(9) + 𝜇𝑙,𝑡,𝑠
(10) − 𝜇𝑙,𝑡,𝑠

(11) = 0    (𝑝𝑙,𝑡,𝑠) 

−𝜇
𝑔,𝑡,𝑠,𝑠′
(12)

− 𝜇
𝑔,𝑡,𝑠,𝑠′
(20)

+ 𝜇
𝑔,𝑡,𝑠,𝑠′
(21)

≤ 𝑁𝑡,𝑠,𝑠′ ∙ 𝐶𝑔
𝑢𝑝

                                     (𝑠𝑢𝑔,𝑡,𝑠,𝑠′) 

𝜇
𝑔,𝑡,𝑠,𝑠′
(12)

− 𝜇
𝑔,𝑡,𝑠,𝑠′
(22)

+ 𝜇
𝑔,𝑡,𝑠,𝑠′
(23)

≤ 𝑁𝑡,𝑠,𝑠′ ∙ 𝐶𝑔
𝑑𝑛

                                            (𝑠𝑑𝑔,𝑡,𝑠,𝑠′) 

𝐵𝑙 ∙ (−𝜇𝑙∈𝑆(𝑖),𝑡,𝑠
(10) + 𝜇𝑙∈𝑆(𝑖),𝑡,𝑠

(11) ) + 𝐵𝑙 ∙ (𝜇𝑙∈𝑅(𝑖),𝑡,𝑠
(10) − 𝜇𝑙∈𝑅(𝑖),𝑡,𝑠

(11) )  

−𝜇𝑖,𝑡,𝑠
(12) + 𝜇𝑖,𝑡,𝑠

(13) = 0       (𝜃𝑖,𝑡,𝑠) 

𝜇𝑖,𝑡,𝑠
(9)

− 𝜇𝑖,𝑡,𝑠
(24) ≤ 𝑇𝑡,𝑠 ∙ 𝑃𝐶𝑡                                                  (𝑣𝑖,𝑡,𝑠) 

 

(ii) With revealed 𝒖∗ from (i) and 𝒙∗ from the master problem, the inner 

single-level deterministic mixed-integer linear programming (MILP) 

problem is calculated to derive solutions 𝒚∗ and 𝒛∗. 
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(iii) Fixing binary recourse variables 𝒚 = 𝒚∗, the bi-level sub-problem is 

converted into a max-min LP problem, which is re-computed to obtain 

final solutions 𝒖𝟎 and 𝑉̃(𝒙∗).  Detailed formulations of the bi-level sub-

problem with fixed 𝒚∗ and its single-level equivalence are provided as 

follows: 

𝑚𝑎𝑥
𝒖∈𝑼

𝑚𝑖𝑛 {
∑ 𝑇𝑡,𝑠 ∙ (𝑉𝐶𝑔 ∙ 𝑝𝑔,𝑡,𝑠)𝑠,𝑔∈𝑮 + ∑ 𝑇𝑡,𝑠 ∙ 𝐸𝐶𝑡,𝑠𝑠,𝑑 ∙ 𝑑𝑟𝑑,𝑡,𝑠

+𝑃𝐶𝑡 ∙ ∑ 𝑇𝑡,𝑠 ∙ 𝑣𝑖,𝑡,𝑠𝑠,𝑖

}        

s.t. 𝑃𝑔
𝑚𝑖𝑛 ∙ 𝑦̂𝑔,𝑡,𝑠 ∙ 𝑥̂𝑔,𝑡 ≤ 𝑝𝑔,𝑡,𝑠 ≤ 𝑃𝑔

𝑚𝑎𝑥 ∙ 𝑦̂𝑔,𝑡,𝑠 ∙ 𝑥̂𝑔,𝑡                        (𝜂𝑔,𝑡,𝑠
(1)

, 𝜂𝑔,𝑡,𝑠
(2)

) 

0 ≤ 𝑝𝑤,𝑡,𝑠 ≤ 𝑃𝑤,𝑡,𝑠
𝑢          (𝜂𝑤,𝑡,𝑠

(3)
, 𝜂𝑤,𝑡,𝑠
(4)

) 

0 ≤ 𝑑𝑟𝑑,𝑡,𝑠 ≤ 𝐷𝑅𝑑,𝑡
𝑚𝑎𝑥 ∙ 𝑥̂𝑑,𝑡 ∙ 𝑦̂𝑑,𝑡,𝑠         (𝜂𝑑,𝑡,𝑠

(5)
, 𝜂𝑑,𝑡,𝑠
(6)

) 

−𝑃𝑙
𝑚𝑎𝑥 ∙ 𝑥̂𝑙,𝑡 ≤ 𝑝𝑙,𝑡,𝑠 ≤ 𝑃𝑙

𝑚𝑎𝑥 ∙ 𝑥̂𝑙,𝑡           (𝜂𝑙,𝑡,𝑠
(7)
, 𝜂𝑙,𝑡,𝑠
(8)
) 

∑ 𝑝𝑔,𝑡,𝑠𝑔∈𝐵𝑔(𝑖) + ∑ 𝑝𝑙,𝑡,𝑠𝑙∈𝑅(𝑖) − ∑ 𝑝𝑙,𝑡,𝑠𝑙∈𝑆(𝑖) + ∑ 𝑝𝑤,𝑡,𝑠𝑤∈𝐵𝑤(𝑖) + 𝑣𝑖,𝑡,𝑠  

= ∑ (𝑃𝑑,𝑡,𝑠
𝑢 − 𝑑𝑟𝑑,𝑡,𝑠)𝑑∈𝐵𝑑(𝑖)                                             (𝜂𝑖,𝑡,𝑠

(9)
) 

−𝑀 ∙ (1 − 𝑥̂𝑙,𝑡) ≤ 𝐵𝑙 ∙ (𝜃𝑠(𝑙),𝑡,𝑠 − 𝜃𝑟(𝑙),𝑡,𝑠) − 𝑝𝑙,𝑡,𝑠 ≤ 𝑀 ∙ (1 − 𝑥̂𝑙,𝑡)  

                   (𝜂𝑙,𝑡,𝑠
(10), 𝜂𝑙,𝑡,𝑠

(11)) 

−𝜃𝑚𝑎𝑥 ≤ 𝜃𝑖,𝑡,𝑠 ≤ 𝜃𝑚𝑎𝑥 ,    𝜃𝑟𝑒𝑓,𝑡,𝑠 = 0                                   (𝜂𝑖,𝑡,𝑠
(12), 𝜂𝑖,𝑡,𝑠

(13)) 

𝑣𝑖,𝑡,𝑠 ≥ 0                  (𝜂𝑖,𝑡,𝑠
(14)) 

Its single level equivalent formulation is as follows. 

𝑚𝑎𝑥
𝒖∈𝑼

∑

{
  
 

  
 ∑ 𝑦̂𝑔,𝑡,𝑠 ∙ 𝑥̂𝑔,𝑡 ∙ (−𝑃𝑔

𝑚𝑖𝑛 ∙ 𝜂𝑔,𝑡,𝑠
(1) + 𝑃𝑔

𝑚𝑎𝑥 ∙ 𝜂𝑔,𝑡,𝑠
(2)

) +𝑔

∑ 𝑃𝑤,𝑡,𝑠
𝑢

𝑤 ∙  𝜂𝑤,𝑡,𝑠
(4) + ∑ 𝐷𝑅𝑑,𝑡

𝑚𝑎𝑥 ∙ 𝑥̂𝑑,𝑡 ∙ 𝑦̂𝑑,𝑡,𝑠 ∙𝑑 𝜂𝑑,𝑡,𝑠
(6)

+∑ [𝑃𝑙
𝑚𝑎𝑥 ∙ 𝑥̂𝑙,𝑡 ∙ (𝜂𝑙,𝑡,𝑠

(7) + 𝜂𝑙,𝑡,𝑠
(8) ) + 𝑀 ∙ (1 − 𝑥̂𝑙,𝑡) ∙ (𝜂𝑙,𝑡,𝑠

(10) + 𝜂𝑙,𝑡,𝑠
(11))]𝑙

+∑ [𝜃𝑚𝑎𝑥 ∙ (𝜂𝑖,𝑡,𝑠
(12) + 𝜂𝑖,𝑡,𝑠

(13)) + (∑ 𝑃𝑑,𝑡,𝑠
𝑢

𝑑∈𝐵𝑑(𝑖) ) ∙ 𝜂𝑖,𝑡,𝑠
(9)
]𝑖 }

  
 

  
 

𝑠   

s.t. −𝜂𝑔,𝑡,𝑠
(1) + 𝜂𝑔,𝑡,𝑠

(2) + 𝜂𝑖,𝑡,𝑠
(9)

≤ 𝑇𝑡,𝑠 ∙ 𝑉𝐶𝑔, 𝑔 ∈ 𝐵𝑔(𝑖)                                (𝑝𝑔,𝑡,𝑠) 

−𝜂𝑤,𝑡,𝑠
(3) + 𝜂𝑤,𝑡,𝑠

(4) + 𝜂𝑖,𝑡,𝑠
(9)

≤ 0, 𝑤 ∈ 𝐵𝑤(𝑖)                                         (𝑝𝑤,𝑡,𝑠) 

−𝜂𝑑,𝑡,𝑠
(5) + 𝜂𝑑,𝑡,𝑠

(6) + 𝜂𝑖,𝑡,𝑠
(9)

≤ 𝑇𝑡,𝑠 ∙ 𝐸𝐶𝑡,𝑠, 𝑑 ∈ 𝐵𝑑(𝑖)                               (𝑑𝑟𝑑,𝑡,𝑠) 

−𝜂𝑙,𝑡,𝑠
(7) + 𝜂𝑙,𝑡,𝑠

(8) − 𝜂𝑠(𝑙),𝑡,𝑠
(9) + 𝜂𝑟(𝑙),𝑡,𝑠

(9) + 𝜂𝑙,𝑡,𝑠
(10) − 𝜂𝑙,𝑡,𝑠

(11) = 0            (𝑝𝑙,𝑡,𝑠) 
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𝐵𝑙 ∙ (−𝜂𝑙∈𝑆(𝑖),𝑡,𝑠
(10)

+ 𝜂𝑙∈𝑆(𝑖),𝑡,𝑠
(11)

) + 𝐵𝑙 ∙ (𝜂𝑙∈𝑅(𝑖),𝑡,𝑠
(10)

−𝜂𝑙∈𝑅(𝑖),𝑡,𝑠
(11)

)  

−𝜂𝑖,𝑡,𝑠
(12) + 𝜂𝑖,𝑡,𝑠

(13) = 0       (𝜃𝑖,𝑡,𝑠) 

𝜂𝑖,𝑡,𝑠
(9)

− 𝜂𝑖,𝑡,𝑠
(14) ≤ 𝑇𝑡,𝑠 ∙ 𝑃𝐶𝑡                                                                        (𝑣𝑖,𝑡,𝑠) 

 

The ECCG algorithm is summarized as follows. 

Step 1: Initialize data, set lower bound 𝐿𝐵 = −∞, upper bound 𝑈𝐵 =

+∞, and iteration counter 𝑟 = 1. 

Step 2: Solve the master problem and obtain the optimal 

solution(𝒙𝑟, 𝜂𝑟), set 𝐿𝐵 = 𝐼𝐶(𝒙𝑟) + 𝜂𝑟. 

Step 3: Solve the sub-problem, obtain 𝒖𝟎 and corresponding solution 

𝑉̃(𝒙𝑟), update 𝑈𝐵 = 𝑚𝑖𝑛{𝑈𝐵, 𝐼𝐶(𝒙𝑟) + 𝑉̃(𝒙𝑟)}. 

Step 4: If (𝑈𝐵 − 𝐿𝐵) 𝐿𝐵⁄  ≤ 𝜀 , the algorithm terminates and the final 

solution is 𝒙𝑟 ;  Otherwise, set 𝒖𝒓+𝟏 = 𝒖𝟎 and 𝑟 = 𝑟 + 1 in the 

master problem, and then go to Step 2.  That is, the newly 

identified worst scenario 𝒖𝟎  from Step 3 is added into the 

master problem, for seeking new investment solutions to 

mitigate such worst case operation situations. 

 

III.2. Phase II. Validation and Verification of MMCOP via Standard Testing 

Systems and Practical Systems 

Three main activities are involved to validate and verify the MMCOP framework.  

First, the MMCOP is implemented through General Algebraic Modeling System 

(GAMS), which is a high-level modeling system with linkages to many nonlinear 

and mixed-integer solvers;  Second, effectiveness of the developed MMCOP is 

verified via standard testing systems that have been widely used as benchmark 

in many power system studies, including the IEEE 24-bus (RTS) system, the 

IEEE 30-bus system, and the IEEE 118-bus system;  Third, the developed 

MMCOP is further validated via the practical WECC Transmission Expansion 

Planning Dataset to illustrate its performance on practical large-scale systems in 

terms of the computational time and the solution optimality.  Numerical case 

studies illustrate effectiveness of the developed MMCOP as compared to 

traditional generation and/or transmission planning approaches, by analyzing the 

impacts on annual planning and hourly operation, long-term reliability and short-

term flexibility, AC power flows, as well as risk and uncertainty accommodations.  

Some result highlights are shown below, while the detailed testing results and 
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the analysis can be referred to from the team’s publications [18, 22-24] out of this 

project. 

  Table 1 shows the 10-year generation and transmission planning results on 

the modified IEEE 24-bus (RTS) system with different penetration levels of 

DSRs.  The original RTS system contains 33 units, 40 branches, and 17 loads.  

4 wind farms are added to buses 3, 10, 14, and 19 in this study.  10 candidate 

units from 3 different generation technologies, i.e., combustion turbine, coal 

steam turbine, and oil steam turbine, are considered.  In addition, 8 candidate 

transmission lines are considered, some increase available transfer capacities of 

existing lines while others are planned in new corridors.  DSR-0 denotes the case 

without DSRs, in which only generation and transmission candidates are 

considered, while capacities of candidate DSRs on individual buses in DSR-2 

are twice of those in DSR-1.  With a second subscript representing installation 

year of candidate assets, results of deterministic cases are shown in Table 1.   

  Table 1 shows that total costs are reduced when the DSR penetration level 

increases.  Indeed, an increased deployment in DSRs could help enhance social 

welfare by economically reducing peak loads, which would consequently 

postpone expansion of expensive generation and/or transmission assets and 

improve economic efficiency in the operation stage.  Specifically, G7 and T1 are 

postponed when the system faces with a higher DSR penetration level, which 

reflect benefits of enhanced DSR participation.  In fact, as Independent System 

Operators (ISO) can effectively schedule DSRs in the operation stage to meet 

practical system needs based on system status, benefits from DSRs could be 

more significant when significant supply shortage occurs due to unexpected 

contingencies.  These studies clearly show effectiveness of the proposed 

MMCOP model, i.e., with the technology advancement such as the integration of 

DSRs, more economically efficient systems can be planned by system operators.  

Expensive generation and transmission investments in the planning stage could 

be effectively postponed or even avoided, and economic efficiency in the 

operation stage can also be improved. 

  The modified IEEE 24-bus (RTS) system is further studied while considering 

uncertainties.  Comparing with the deterministic results in Table 1, both total 

costs and investment costs in Table 2 are increased, because generators are 

invested more extensively (i.e., generators are constructed more extensively 

and/or earlier) and/or turned on more proactively to protect system against 

uncertainties.   
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Table 1. Deterministic planning results against different penetration levels of demand 

side resources 

Case 
Total Cost 

($1010) 

Investment 

Cost ($109) 

Generation 

Investment 

Transmission 

Investment 

DSR-0 2.291 3.206 G3,1G4,5G7,4 T1,4T2,1T3,1 T4,1T7,1T8,1 

DSR-1 2.203 3.178 G3,1G4,5G7,4 T1,5T2,1T3,1 T4,1T7,1T8,1 

DSR-2 2.123 3.146 G3,1G4,5G7,6 T1,5T2,1T3,1 T4,1T7,1T8,1 

 

Table 2. Planning results when considering uncertainties 

Case 
Total Cost 

($1010) 

Investment 

Cost ($109) 

Generation 

Investment 

Transmission 

Investment 

DSR-0 3.080 3.426 G3,1G4,3G7,3G8,10 T1,2T2,1T3,1T4,1T5,10T7,1T8,1 

DSR-1 2.990 3.784 G3,1G4,4G7,3G8,10 T1,2T2,1T3,1T4,1 T5,8T7,1T8,1 

DSR-2 2.905 3.545 G3,1G4,4G7,4G8,10 T1,4T2,1T3,1T4,1 T5,9T7,1T8,1 

 

  The impacts of different load uncertainty levels on the optimal planning 

results are further studied.  As indicated in Table 3, with an increase in the 

uncertainty level, the total cost increases because power system assets are 

constructed more extensively or much earlier for accommodating uncertainties.  

Specifically, deployment of G4, G7, G8, T1, T5, D1, and D2 are brought forward 

when uncertainty level is high.  However, considering that certain assets could 

be regarded as alternative feasible system expansion options, installation time 

of some assets may not follow the same trend.  For instance, T1 is constructed 

in year 4 with uncertainty level of 0.75 as compared to year 3 with uncertainty 

level of 0.5.  This could be explained as that T1 is an alternative expansion option 

of D7 in year 4, whose construction in year 4 with uncertainty level of 0.5 is 

switched to year 1 when the uncertainty level is 0.75.  

  In order to further illustrate the impact of solution robustness against 

different uncertainty levels and facilitate system planners with a better choice, 

Monte Carlo simulation with 1,000 scenarios is conducted to compare the 

expected total costs (i.e., investment cost and expected operation cost of the 

1,000 scenarios) of individual investment solutions in Table 3.  Scenarios are 

generated from normal distributions with mean values of 𝑃𝑑,𝑡,𝑠  and 𝑃𝑤,𝑡,𝑠  and 

standard deviations of 𝑃̃𝑑,𝑡,𝑠
+ /1.95 and 𝑃̃𝑤,𝑡,𝑠

+ /1.95.  Results in Table 4 show a 

trade-off between investment cost and expected operation cost.  That is, a higher 

uncertainty level would derive a more expensive expansion plan to immunize 
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against more significant worst cases, which would lead to a lower expected 

operation cost of scenarios.  Indeed, uncertainty level of around 0.75 would be 

the best choice in this case, which achieves the smallest expected total cost. 

 

Table 3. Planning results against different uncertainty levels 

Uncertainty 

level 

Total cost 

($1010) 

Increase in 

total cost (%) 

Generation 

investment 

Transmission 

investment 

0 2.203 0 G3,1G4,5G7,4 T1,5T2,1T3,1T4,1T7,1T8,1 

0.25 2.642 19.9 G3,1G4,4G7,4 T1,4T2,1T3,1T4,1T7,1T8,1 

0.5 2.800 27.1 G3,1G4,4G7,4G8,10 T1,3T2,1T3,1T4,1T5,10T7,1T8,1 

0.75 2.933 33.1 G3,1G4,4G7,3G8,10 T1,4T2,1T3,1T4,1T5,8T7,1T8,1 

1 2.990 35.7 G3,1G4,4G7,3G8,10 T1,2T2,1T3,1T4,1T5,8T7,1T8,1 

 

Table 4. Monte Carlo simulation results 

Budget 0 0.25 0.5 0.75 1 

Investment cost ($109) 3.178 3.294 3.496 3.547 3.784 

Expected operation cost ($1010) 1.909 1.894 1.868 1.861 1.840 

Expected total cost ($1010) 2.227 2.223 2.218 2.216 2.218 

 

  Computational effort of the MMCOP could be quite expensive due to a large 

number of binary variables related to unit commitment status in the operation 

model, as well as time coupling constraints of investment decisions throughout 

the long-term planning horizon.  Indeed, significant computational effort comes 

mainly from the master problem of the proposed ECCG based decomposition 

approach, while the well-recognized computational burden from the mixed-

integer recourse problem has been successfully handled by the proposed ECCG 

approach.  Figure 3 shows computational time on the modified IEEE 24-bus 

(RTS) system study.  It clearly shows that computational effort from the sub-

problem only takes a small portion of total calculation time, which greatly relieves 

computational burden of the traditional CCG decomposition algorithm for solving 

mixed-integer recourse sub-problems.  

  Computational performance of the proposed ECCG is further compared 

with the traditional CCG approach, as shown in Table 5.  In Table 5, “***” 

indicates that the computational time limit is reached while no solution satisfying 
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the predefined mixed-integer programming (MIP) gap threshold is found, and 

“OOM” represents that the test is out of memory before reaching the time limit 

while no solution satisfying the predefined MIP gap threshold is found.  As shown 

in Table 5, the proposed ECCG algorithm takes less time than the traditional 

CCG approach algorithm to derive final solutions.  Specifically, compared with 

the proposed ECCG algorithm, traditional CCG approach algorithm could not find 

feasible solutions for most cases within time or memory limit, showing that 

traditional CCG approach algorithm might be poor to handle certain practical 

instances.  While for the instances that can be solved by traditional CCG 

approach, solutions derived by the proposed ECCG are the same as those of 

traditional CCG approach, which verifies the exactness of solutions derived by 

the proposed ECCG algorithm.  As all the instances are solved within the 

required MIP gap via the proposed ECCG, optimality of the solution is indeed 

guaranteed and solution quality is not sacrificed for the studied instances.  

Therefore, these studies clearly demonstrate the effectiveness and practicality of 

the proposed ECCG algorithm, as well as its superiority over the traditional CCG 

approach algorithm.  

 

 

Figure 3. Computational time of master and sub-problem 

 

Table 5. Results comparison between the proposed ECCG and traditional CCG 

approaches 

Uncertainty 

level 

ECCG NCCG 

Obj ($1010) Time (h) Obj ($1010) Time (h) 

0.25 2.687 1.87 2.687 22.74 

0.5 2.805 2.35 *** *** 

0.75 2.941 7.88 OOM OOM 

1 3.000 2.70 3.000 10.49 
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  For real-world tests and scalability validations, the MMCOP is further tested 

on the modify WECC 243-bus system for a 5-year planning study.  The WECC 

243-bus system is a real-world test case originally designed for unit commitment 

(UC) problems, which includes 451 existing transmission lines.  58 potential 

locations are considered to install new coal-fired generators, combustion 

generators, as well as wind and solar farms.  As for the transmission network, 

we consider that no new corridors are allowed, while new lines can be built 

following existing corridors to enhance transmission capabilities.  Notably, we 

simulate a case with the annual capacity phasing-out rate of 25% for 

conventional generations, and evaluate whether it is feasible to reach a 100% 

renewable penetration environment in a 5-year planning process.  Both regional 

N-1 contingencies and hourly operation characteristics are considered within the 

long-term planning horizon.  Figure 4 depicts the scheduled installed capacity for 

each generation technology and transmission line, which shows that the 

investment on solar and wind generators grows sharply in the first year and 

keeps increasing.  Particularly, aiming at investigating the 100% renewable 

penetration scenario, the test results show that the investment in solar and wind 

generators grows sharply in the first year and keeps increasing, due to the 25% 

annual phasing-out rate of conventional generators.  The computational time of 

the WECC simulation is 27 hours, which is comparably reasonable concerning 

the scale of the multi-year stochastic and robust planning problem. 

 

 
Figure 4. Planning results of the WECC system 
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III.3. Phase III. Dissemination of The Results and The Final Reporting 

The research findings of this project have been disseminated to the community 

via 8 journal publications and 4 technical conference presentations.  APPENDIX 

A: Product or Technology Production provides the full list of these publications 

and presentations out of this project. 

  The project team has also interacted with multiple industry partners, seeking 

potential opportunities to customize the MMCOP models and computational tools 

according to their specifications and needs and to provide technical support for 

promoting co-optimization in their system expansion planning practice.  

Specifically, (i) PI Wu presented the proposed MMCOP framework as well as the 

preliminary results to New York Independent System Operator (NYISO) on 

September 2017; (ii) PI Wu visited MISO in April 2018, discussing about the 

potential applicability of the MMCOP framework to address their challenges of 

integrating a high penetration of distributed resources and utility-scale energy 

storage assets in the MISO market.  As MISO currently uses PLEXOS for its 

planning studies, the team conducted a preliminary survey on PLEXOS about 

how heterogeneous assets of the MISO system are modelled in PLEXOS and 

the long-term planning is calculated via PLEXOS, and evaluated the potential 

possibility in incorporating some of the proposed approaches to solve the MISO 

system planning problem. 

  Multiple undergraduate and graduate students at Clarkson University, 

University of Pittsburgh, and Southern Methodist University have participated in 

this project, receiving training and professional development on areas of power 

and energy systems, mathematical optimization, and algorithms.  Specifically, (i) 

The Ph.D. thesis “Multiple Timescale Power Systems Operation and Planning 

with Renewable Energy, Demand Side Resource, and Energy Storage” was 

completed in August 2018 at Clarkson University;  (ii) One undergraduate 

student of Industrial Engineering at University of Pittsburgh, graduated in 

December 2018, was motivated by this research project and worked on an 

undergraduate research project about capacity expansion considering both wind 

and nuclear generations in a stochastic environment;  (iii) Some of the developed 

mathematical models and computational algorithms, i.e., stochastic 

programming and robust optimization models as well as ECCG based 

decomposition approach for energy system planning, have been supplemented 

and presented in multiple undergraduate and graduate courses offered at 

Clarkson University and University of Pittsburgh.  For instance, the development 

of computational algorithms, i.e., the bilinear Benders decomposition for chance 

constrained system planning, has been supplemented and presented in Dr. 

Zeng’s graduate course, “computational optimization” in Fall 2017, as a 
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demonstration for large-scale system optimization.  Moreover, in Dr. Wu’s 

course, EE452/552 “Optimization Techniques in Engineering” in Spring 2018, 

these developed mathematical models and computational algorithms were used 

as a demonstration for large-scale system optimization.  In Spring 2018, 5 

undergraduate students and 11 graduate students enrolled in this class, from 

both engineering and business schools.   
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IV. Accomplishments and Conclusions 

IV.1. Major Accomplishments 

During the project period, the team has developed the MMCOP prototype, which 

integrates the modeling and algorithm features as detailed in Section III of this 

report.  The MMCOP prototype has been tested via several IEEE benchmark 

systems and the practical WECC system to illustrate its effectiveness and 

efficiency.  The detailed modeling and solution techniques, as well as research 

findings of this project have been disseminated to the community via 8 journal 

publications and 4 technical conference presentations.  APPENDIX A: Product 

or Technology Production provides the full list of publications and presentations 

out of this project. 

  Table 6 lists the milestones of the project and the related completion 

information. 

 

Table 6. List of milestones of the project 

Milestone Completion Date Detailed Completion Information 

Planned Actual 

1. 

Presentation, 

Year 1 

9/30/2017 9/30/2017 

Invited presentation in the 2017 INFORMs Meeting. 

L. Wu and B. Zeng, “Integrating Demand Side 

Resources into Multi-Stage and Multi-Timescale  

Robust Generation and Transmission Expansion 

Planning,” INFORMS Annual Meeting, Houston, TX, 

Oct. 2017. 

2. 

Publication, 

Year 1 

9/30/2017 9/30/2017 

By 9/30/2017, two journal papers related to this 

project have been published. 

Z. Bao, Q. Zhou, L. Wu, Z. Yang, and J. Zhang, 

“Optimal Capacity Planning of MG with Multi-energy 

Coordinated Scheduling under Uncertainties 

Considered,” IET Generation, Transmission & 

Distribution, vol. 11, no. 17, pp. 4146-4157, Jan. 

2017. 

A. Bagheri, J. Wang, and C. Zhao, “Data-Driven 

Stochastic Transmission Expansion Planning,” IEEE 

Transactions on Power Systems, vol. 32, no. 5, pp. 

3461-3470, Sept. 2017.  

3. 

Completion 

of MMCOP 

prototype 

3/31/2018 3/31/2018 

A MMCOP prototype has been built.  

The documentation that describes the basic 

functionalities of the MMCOP prototype has been 

submitted to DOE. 

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8128691
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4. Validate 

MMCOP via 

standard 

IEEE testing 

systems 

9/30/2018 9/30/2018 

Test results of MMCOP via standard IEEE testing 

systems (including a modified IEEE 24-bus system 

and a modified IEEE 118-bus system) have been 

reported in a Ph.D. Thesis and a journal paper. 

Ph.D. Thesis, C. Dai, Multiple Timescale Power 

Systems Operation and Planning with Renewable 

Energy, Demand Side Resource, and Energy 

Storage, Clarkson University, August 2018. 

A paper “A System State Model Based Multi-Period 

Robust Generation, Transmission, and Demand 

Side Resource Co-Optimization Planning” has been 

submitted to IET Generation, Transmission & 

Distribution for review. 

5. 

Presentation, 

Year 2 

9/30/2018 9/30/2018 

B. Zeng, “A Study on Generalized Security Games 

in Power Systems,” in 2018 INFORMS Optimization 

Conference, Denver, CO, March 23-25, 2018. 

6. 

Publication, 

Year 2 

9/30/2018 9/30/2018 

By 9/30/2018, one journal paper related to this 

project has been published. 

Y. Wang, L. Wu, and J. Li, “A Fully-Distributed 

Asynchronous Approach for Multi-Area Coordinated 

Network-Constrained Unit Commitment,” 

Optimization and Engineering, pp. 1-34, DOI: 

https://doi.org/10.1007/s11081-018-9375-8, 

February 2018. 

7. Test 

MMCOP via 

practical 

systems 

6/30/2020 6/30/2020 

Due to the change of PI and the delay on renewing 

of subawards with the two subcontracts, the project 

progress falls behind what was originally proposed. 

On June 13, 2019, the PI of this project was officially 

changed to Jie Li. 

On June 29, 2020, Clarkson updated the PO for the 

Southern Methodist University subaward to reflect 

the new end date 9/30/2020 after non-cost 

extension. 

The team was planning to include Stevens Institute 

of Technology as a new subaward of this project 

(where the original PI Lei Wu moved to).  However, 

Clarkson was unable to complete this in time.  As the 

current team members had no active data usage 

agreement with the targeted industry partners (Lei 

Wu has an active agreement with MISO, but cannot 
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use that to conduct this project as he is not part of 

the project team without the subaward being set up), 

additional testing on practical system has stalled. 

8. 

Presentation, 

Year 3 

9/30/2019 9/30/2019 

S. Yin and J. Wang, “Generation and Transmission 

Expansion Planning Towards a 100% Renewable 

Future,” ECE Seminar, Southern Methodist 

University, March 2019. 

9. 

Publication, 

Year 3 

9/30/2019 9/30/2019 

By 9/30/2019, three journal papers related to this 

project have been published. 

C. Dai, L. Wu, B. Zeng, and C. Liu, “A System State 

Model Based Multi-Period Robust Generation, 

Transmission, and Demand Side Resource Co-

Optimization Planning,” IET Generation, 

Transmission & Distribution, DOI:10.1049/iet-

gtd.2018.5936, November 2018. 

X. Cao, J. Wang, and B. Zeng, “Networked 

Microgrids Planning Through Chance Constrained 

Stochastic Conic Programming,” IEEE Transactions 

on Smart Grid, vol. 10, no. 6, pp. 6619-6628, April 

2019. 

X. Cao, J. Wang, J. Wang, and B. Zeng, “A Risk-

Averse Conic Model for Networked Microgrids 

Planning with Reconfiguration and Reorgani-

zations,” DOI:10.1109/TSG.2019.2927833, IEEE 

Transactions on Smart Grid, July 2019 
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Ph.D. Thesis, Chenxi Dai, Multiple Timescale Power 

Systems Operation and Planning with Renewable 

Energy, Demand Side Resource, and Energy 

Storage, Clarkson University, August 2018. 

 

  This project is highly in line with the objective of DE-FOA-0001493 

“Addressing Risk and Uncertainty in the Future Power System”.  Specifically, 

• The MMCOP prototype co-optimizes generation and transmission planning, 

which adequately addresses “uncertainty in the location and type of future 

generation”; 

• The MMCOP prototype optimizes spatial transmission network based on the 

raster map in GIS while considering physical nonlinear AC power flow 

characteristics, which effectively accounts for “environmental and other public 

policies simultaneously with electrical engineering considerations”; 
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• The MMCOP prototype adopts tighter convex formulations of non-linear AC 

power flows, which presents an effective approach “for dealing realistically 

with alternating current (AC) networks”; 

• The MMCOP prototype integrates long-term reliability, short-term flexibility, 

and hourly operation details in a single analytical framework, which effectively 

addresses “both engineering considerations and economic realities of 

perhaps integrated system planning and operations”; 

• The MMCOP prototype adopts the hybrid robust and stochastic optimization 

model to systematically evaluate the impacts of spatial and temporal 

variability as well as uncertainty correlations on planning and operation 

decisions, which effectively quantifies “the uncertainty that has become 

ubiquitous in electric power systems planning and operation” and provides 

good “tradeoffs between economics and reliability”. 

  The MMCOP prototype presents fundamental and transformative changes 

beyond existing generation and transmission planning practices.  A clear 

comparison between the existing planning approaches and the MMCOP 

prototype is conducted in Table 7, which shows the innovative and significant 

contribution of the MMCOP prototype in a number of areas.  

 

Table 7. Comparison between existing planning approaches and the MMCOP 

prototype 

Existing Planning Approaches [9-17] The Proposed MMCOP Prototype 

Modeling Capability 

- Generation and transmission planning 

in a queue; 

- A set of predefined generation and 

configurations; 

 

 

- Static or dynamic expansion plan that 

only considers the most stressful hours 

while neglecting operation details or 

the production cost minimization; 

- Deterministic derated generation 

capacity, without possibilities of 

generator or line outages; 

- Uncertainties and risks in future 

economic, policy, and technology 

Modeling Capability 

+ Generation and transmission co-

optimization; 

+ Network topology, line routing, 

topology control capacity, and 

generation sizing and sitting are co-

optimized; 

+ Multi-stage and multi-timescale 

planning, while accurately evaluating 

broader reliability, sustainability, and 

economic benefits; 

+ Robust optimization model to fully 

consider N-1, N-2, and N-1-1 reliability 

criteria; 

+ Hybrid robust and stochastic 

optimization model to systematically 
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conditions are either neglected or 

evaluated by a limited number of 

independent scenarios; 

 

 

-  (Successive) Linear approximations 

of AC transmission network; 

 

- System aggregation based on static 

similarity of loads and/or generations. 

 

Solution Methodology 

- Weak approximation (e.g., LP, or rule-

based approximations) and computa-

tionally heavy decomposition methods 

(e.g., successive LP and traditional 

Benders decomposition); 

- Centralized computational approaches 

without considering distributed 

implementation. 

evaluate spatial and temporal 

variability and correlations on 

planning and operation decisions, and 

to ensure resilience under different 

disruptions; 

+ Full non-linear AC power flow via tight 

convex formulation using SOCP and 

cutting planes; 

+ Dynamic system aggregation based 

on actual system operation status. 

 

Solution Methodology 

+ Integrated decomposition techniques, 

e.g., Benders decomposition and 

ECCG generation integration; 

 

 

+ Distributed computational methods, 

e.g., ADMM, to handle complexities 

and multi-area coordination. 

 

IV.2. Major Conclusions 

By comparing with existing long-term generation and/or transmission planning 

approaches in literature, the following conclusions are observed via extensive 

studies on standard IEEE testing systems and the practical WECC Transmission 

Expansion Planning Dataset: 

(i) By considering flexible resources, especially those non-wire technologies 

on the demand side, and capturing short-term operation status of the power 

systems, more economically efficient and reliable systems can be planned.   

(ii) The hybrid stochastic and robust model used in the MMCOP prototype can 

accurately capture various discrete and continuous uncertainties in modern 

power grid, thus facilitating the long-term planning with significant 

renewables while ensuring cost effectiveness, reliability, and sustainability.   

(iii) Extensive studies also show that the proposed advanced solution 

approaches have the potential to enhance computational efficiency for 

solving real-world large-scale long-term planning problems. 

 

  Indeed, extensive studies show that the developed MMCOP prototype 
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could help enhance the energy reliability and sustainability of the existing grid 

with the most economic integration of additional generation and transmission 

assets.  Specifically, it can help electricity grid planners and operators better plan 

additional resources, manage available resources, achieve higher reliability 

standards, and increase renewable energy penetration, which otherwise may not 

have been explored due to the lack of analytical tools for simultaneously 

addressing co-optimization of generation and transmission assets under 

uncertain environments.  The developed MMCOP prototype can also assist 

market participants including generation and transmission companies, 

renewable energy developers, independent system operators, power system 

planners and operators in vertically integrated utilities, and regulatory agencies 

to analyze economics, reliability, and sustainability of various options for 

transmission upgrades and the planning of new generation and transmission 

facilities. The developed MMCOP prototype can also be conveniently customized 

to regulatory requirements such as RPS standards and other state mandates.  It 

can also be used by industry for teaching and training next-generation power 

system planners and operators for analyzing renewable energy integration 

uncertainties, identifying critical spots in power system operation, analyzing 

power system vulnerabilities, and providing credible decisions for examining 

operation and planning options.  

 

IV.3. Recommendations for Future Work 

The framework and algorithms of the MMCOP prototype are applicable to most 

of the organized wholesale electricity markets in the North American grid, as the 

underlying modeling assumptions and principles are generic to the industry 

practice regardless of the differences in regional resource and transmission 

topology.  Although the industry participants of this project (e.g., MISO, 

Pennsylvania-New Jersey-Maryland Interconnection (PJM), and ISO New 

England (ISO-NE)) provided technical advice and assistance on industry power 

system expansion planning practice, the MMCOP prototype was not tested via 

real data of Regional Transmission Organization (RTO) systems.  The MMCOP 

prototype could be further tested on RTO systems using their actual data, and 

comparing the performance with their existing planning tools.  For instance, 

MISO currently uses PLEXOS for their long-term planning studies.  The team did 

a preliminary study on PLEXOS about how different types of assets in the MISO 

system are modelled and how the long-term planning is calculated in PLEXOS.  

It would be interesting to compare the developed MMCOP prototype and 

PLEXOS against multiple MISO instances, evaluating their performance in terms 

of computational performance and solution quality (i.e., cost effectiveness, 

reliability, and sustainability).  It would also be interesting to explore if certain 
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models and solutions approaches developed under the MMCOP prototype could 

be integrated in the PLEXOS to potentially improve its modeling and 

computational performance. 

  



41 
 

APPENDIX A: Product or Technology Production 

The project team has delivered 9 peer-reviewed journal papers and 4 technical 

presentations to disseminate research findings during the period of performance. 

Peer-reviewed Publications 

[J1] Z. Bao, Q. Zhou, L. Wu, Z. Yang, and J. Zhang, “Optimal Capacity Planning of 

MG with Multi-energy Coordinated Scheduling under Uncertainties 

Considered,” IET Generation, Transmission & Distribution, vol. 11, no. 17, pp. 

4146-4157, January 2017. 

[J2] A. Bagheri, J. Wang, and C. Zhao, “Data-Driven Stochastic Transmission 

Expansion Planning,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 

3461-3470, September 2017.  

[J3] Y. Wang, L. Wu, and J. Li, “A Fully-Distributed Asynchronous Approach for 

Multi-Area Coordinated Network-Constrained Unit Commitment,” Optimization 

and Engineering, pp. 1-34, DOI: https://doi.org/10.1007/s11081-018-9375-8, 

February 2018.  

[J4] C. He, L. Wu, T. Liu, and Z. Bie, “Robust Co-Optimization Planning of 

Interdependent Electricity and Natural Gas Systems With a Joint N-1 and 

Probabilistic Reliability Criterion,” IEEE Transactions on Power Systems, vol. 

33, no. 2, pp. 2140-2154, March 2018.  

[J5] X. Cao, J. Wang, and B. Zeng. “A Chance Constrained Information-Gap 

Decision Model for Multi-Period Microgrid Planning.” IEEE Transactions on 

Power Systems, vo. 33, no. 3, pp. 2684-2695, May 2018. 

[J6] C. Dai, L. Wu, B. Zeng, and C. Liu, “System State Model Based Multi-Period 

Robust Generation, Transmission, and Demand Side Resource Co-

Optimization Planning,” IET Generation, Transmission & Distribution, vol. 13, 

no. 3, pp. 345-354, February 2019. 

[J7] X. Cao, J. Wang, and B. Zeng, “Networked Microgrids Planning Through 

Chance Constrained Stochastic Conic Programming,” IEEE Transactions on 

Smart Grid, vol. 10, no. 6, pp. 6619-6628, April 2019. 

[J8] X. Cao, J. Wang, J. Wang, and B. Zeng, “A Risk-Averse Conic Model for 

Networked Microgrids Planning with Reconfiguration and Reorganizations,” 

IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 696-709, January 2020. 

[J9] S. Yin and J. Wang, “Generation and Transmission Expansion Planning 

Towards a 100% Renewable Future,” IEEE Transactions on Power Systems, 

accepted, September 2020. 

 

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8128691
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8340241
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Invited Presentations 

[P1] L. Wu and B. Zeng, “Integrating Demand Side Resources into Multi-Stage and 

Multi-Timescale  Robust Generation and Transmission Expansion Planning,” 

INFORMS Annual Meeting, Houston, TX, October 2017.  

[P2] C. He, T. Liu, and L. Wu, “Robust Co-optimization Planning of Electricity and 

Natural Gas Systems,” in the 1st IEEE Conference on Energy Internet and 

Energy System Integration, Beijing China, November 2017.  

[P3] B. Zeng, “A Study on Generalized Security Games in Power Systems,” in 2018 

INFORMS Optimization Conference, Denver, CO, March 23-25, 2018.  

[P4] S. Yin and J. Wang, “Generation and Transmission Expansion Planning 

Towards a 100% Renewable Future,” ECE Seminar, Southern Methodist 

University, March 2019.  
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