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Metamaterials and Metasurfaces

Man-made “atoms” : Metamaterials Metasurfaces

Ref. : Neshev & Aharonovich, Light : Science & Applications 7
(58), 2018.

In metamaterials, optical properties are determined by configuration and properties of meta-atoms.

Metasurfaces are planar (2D) equivalents of metamaterials.



The All-Dielectric Approach: Mie modeqy=
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This is not the case for metallic resonators at optical A (nm)

frequencies because of metal losses Ref. : Optics Express 21, 26285 (2013)
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Advantages of Nonlinear Mie Metasurfaces :
high damage thresholds 3. Large mode volume ( enhanced light-matter interaction) 4. Ease of fabrication

1. Ultrathin ( relaxed phase matching)
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Polaritonic Metasurface : Light-Matter Coupling

Energy (eV)
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* Light-matter coupling between a MD Mie mode and

intersubband electronic excitations. -0.2}

* MD mode has strong z electric field components, allows
for normal incidence, and smallest size of the resonator.
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(2) using Intersubband Transitions : Magnitude and Sign Control

Energy (eV)
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Fabrication of the Polaritonic All-Dielectric Metasurface
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Linear Reflectance Spectra : Simulation and Experiment
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Splitting of Photonic Resonance due to Strong Coupling !



Second-Harmonic Generation : Experiment and Simulations

Experiment Simulation
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Excellent agreement between experiments and simulations can be seen ! -



Experimentally Measured SHG Efficiencies
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Large magnitude of (2 gives SHG efficiency ~ 0.016 % at 11 kW/cm?2 and conversion factor ~ 0.6 mW/W2
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Polarity Switching of ¥{?)
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The SHG efficiency can be controlled by controlling the sign of x2) inside the Mie resonator



Summary

* We demonstrate giant second-order nonlinearities in polaritonic all-dielectric
metasurfaces which can be controlled via microscopic control of magnitude and
sign of the material nonlinearity.

* Our results are proof-of-concept and the efficiencies can be improved by optimizing
the heterostructure, field overlaps, and interplay between field enhancement and
nonlinearity.

e QOur approach although demonstrated for a particular wavelength, in principle, can
be scaled to other wavelengths from visible to near-IR.
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