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Metamaterials and Metasurfaces

Man-made “atoms” : Metamaterials

In metamaterials, optical properties are determined by configuration and properties of meta-atoms.  

Metasurfaces

Ref. : Neshev & Aharonovich, Light : Science & Applications 7 
(58), 2018. 

Metasurfaces are planar (2D) equivalents of metamaterials. 
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           Ref. : Optics Express 21, 26285 (2013)                     

The All-Dielectric Approach: Mie modes 
Dielectric particles much smaller than wavelength  /n  Mie modes in dielectric particles comparable ~  /n               

For dielectric particles, the polarizabilities of the electric and 
magnetic dipole resonances are comparable at optical 
frequencies

This is not the case for metallic resonators at optical 
frequencies because of metal losses

Wikipedia

Rayleigh <<  /n



Applications of Mie Modes in Dielectric Metasurfaces 

Advantages of Nonlinear Mie Metasurfaces  :        1. Ultrathin ( relaxed phase matching)       2. Low loss and 
high damage thresholds  3.  Large mode volume ( enhanced light-matter interaction)  4. Ease of fabrication 

Nonlinear Optics

Nano Lett. 16, 5426 (2016)

Nano Lett. 16, 7191 (2016)

Tailoring Linear Transmission

Argonne National Labs

ACS Photonics 3, 514 (2016)
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Magnetic Response

PRL. 108, 097402 (2012)

E

Optica 1, 250 (2014)



Polaritonic Metasurface : Light-Matter Coupling

Surface Plasmon mode
   in thin ENZ material 

x

z

• Light-matter  coupling  between  a  MD  Mie  mode  and 
intersubband electronic excitations. 

• MD mode  has  strong  z  electric  field  components,  allows 
for normal incidence,  and smallest size of the resonator. 
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 �(2) using Intersubband Transitions : Magnitude and Sign Control

       IEEE J. Quantum Electr. 30, 1313 (1994)
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Magnitude : Optimization of heterostructure
Sign : Growth sequence of QWs
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Fabrication of the Polaritonic All-Dielectric Metasurface 
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Linear Reflectance Spectra : Simulation and Experiment

Splitting of Photonic Resonance due to Strong Coupling !

Simulation Experiment
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Second-Harmonic Generation : Experiment and Simulations
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Excellent agreement between experiments and simulations can be seen ! .



Experimentally Measured SHG Efficiencies 
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Large magnitude of χ(2) gives SHG efficiency ~ 0.016 % at 11 kW/cm2  and conversion factor ~ 0.6 mW/W2.
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Polarity Switching of χ(2)

The SHG efficiency can be controlled by controlling the sign of χ(2) inside the Mie resonator

-χ2
χ2

χ2



Summary 
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• We  demonstrate  giant  second-order  nonlinearities  in  polaritonic  all-dielectric 
metasurfaces  which  can  be  controlled  via  microscopic  control  of  magnitude  and 
sign of the material nonlinearity. 

• Our results are proof-of-concept and the efficiencies can be improved by optimizing 
the heterostructure,  field overlaps, and  interplay between field enhancement and 
nonlinearity. 

• Our approach although demonstrated for a particular wavelength, in principle,  can 
be scaled to other wavelengths from visible to near-IR. 


