SAND2021- 5819PE

Integrating Systems
Management into CoDesign

Ann Gentile (SNL) presenting
— — — — @ciERey ANOSA
A S C Pl M ee t/n g 2 0 2 1 Sandia National Laboratories is a multimi;sion
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,
SAND LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Incorporating Systems Management into CoDesign

CoDesign has been about the HW and SW being
designed together to enable efficient performance
through leveraging features of each.

Analysis of applications to devise
the most efficient solutions

Applications

Execution Model

Programming System

Architecture

v Circuits & Design

Issues and opportunities
to exploit

Figure from “On the Role of Co-design in High Performance Computing”, Barrett et al, 2013

...but even the best CoDesigned
system+application will perform
badly if the system is not managed

with consideration of applications
and architecture!

Incorporating Systems Management into CoDesign

gystem

gpplications to devise
he most £fficient solutions

Applications

Execution Model

Programming System

Architecture

Circuits & Design

Dynamic System Management based on
architecture, workload, application demands,
resource state. Examples:

* Co-scheduling and allocations based on application
demands and architectural support

* Application remapping due to changing requirements
or contention

HPC System Management Ideals:
Data-driven -- We shouldn't operate systems like a
black box
Continuous -- Systems management does not end at

job launch

Holistic - System/application doesn't exist in a
vacuum

Autonomous -- Human in the loop is inefficient

Revolutionizing Systems Management

Needed capabilities:

* Continuous holistic data collection

* Large-scale low-latency analytics

* Feedback channels for and response mechanisms to conditions of interest

These must be first class citizens, peer to the rest of the codesigned capabilities,

and built in from the ground up

Approach - Develop and deploy capabilities on current systems:
* Maximize performance/throughput of current systems and applications
* Enable data-driven next-generation design

Understanding Performance

The dynamic nature of system state over the time é/PCl)J llJJtti'lli'Zatti'on
of an applications execution makes effects on 1lization

.. . . Memory Utilization
application performance difficult to quantify T A -

Fusion of system and application state and
. c e . . Informs

performance metrics can provide insights into

application behaviors:

* Temporal association of application progress with

i P / Th hput
changes in system resource state roﬁ;?:j Imbarlg:%epu
* Location (e.g., spatial, temporal) of behavior of Unexpected Exit

interest can be expedited through examination of an

application’s run time progress Informs

* Quantify relationships between application

performance and degree of system resource

Progress:
contention

Time-per-timestep
Number of kernel calls and timings

FY21 ASC L2 Milestone:
Unified Framework for Continuous, Run Time, Fused
System and Application Data and Performance

Analysis
Data Flow Diagram
HPC System Analysis Cluster
time

> Dashboard
Applications \
dynamically and App 1 App 2 Continuous Analysis on T S
irregularly inject Kokkos Kokkos dynamically populated
data into the LDMS datab App Performance =@=System Performance
transport Streams Streams arapase
LDMS continuously LDMS transport NVMe-based
and regularly database

collects and

transports full
system data LDMS samplers

Enabling Application Data Injection via LDMS

LDMS - low-overhead data collection, transport, and storage
capability designed for continuous monitoring supporting
runtime analytics and feedback.

* System data collection is typically synchronous at regular (e.g.,
second or less) intervals

* Structured data format (i.e., metric set) designed to minimize data
movement

* Transport is typically pull based to minimize CPU interference

* Transport to multiple arbitrary consumers over both RDMA and
socket

GOAL: Leverage the efficient and secure LDMS transport to
support Application Data Injection

LDMS Streams — on demand publication of loosely formatted
information to subscribers

* Transport is push based and supports asynchronous event data
(e.g. scheduler and log data)

* Unstructured data

ldmsd L1 aggregator pulls
from memory regions

/ “Xf LO samplers

<— Sampler plugins

ldmsd
Daemon publish API called from externally or by a plugin

pushes to l[dmsd which pushes to all subscribing plugins
and aggregators

Kokkos Performance Portability Layer: Background

Kokkos Runtime Code

Application Code

call kokkosp_start_parallel_for(..)

Kokkos::parallel_for(... , KOKKOS_LAMBDA(int i) {
<loop body>
3);

<execute loop body>

call kokkosp_end_parallel_for(..)

Call functions within a dynamically loaded Kokkos Tool

Exposing application data via Performance Portability Layer enables general data availability without application
modifications

* Kernels and Teuchos timers within Trilinos are configured to dynamically load a Kokkos supplied “connector”. This
requires no r)ecompilation for profile enabled code and can be used for any Kokkos application (not just Trilinos,
EMPIRE, etc.

* Hook points already exist for kernels (parallel-for, reduce, scan), “regions” (arbitrary points in code which can
stack) and “sections” (arbitrary points in code which may overlap)

* Already have a good idea of what the valuable profiling information would be (doesn’t require user input)

Run time Injection of Application Data into the LDMS

Transport

Application Code

Kokkos Runtime Code

Kokkos::parallel_for(...,
KOKKOS_LAMBDA(int i) {
<loop body>

3);

call kokkosp_begin_parallel_for(..)
<execute loop body>

call kokkosp_end_parallel_for(..)

Kokkos Sampler controls the sampling
rate. When triggered, it signals for the
Kokkos Connector to publish data to
LDMS.

Kokkos Sampler introduces the option
to sample data using time-based or
count-based criteria.

Kokkos-LDMS Connector

-Publishes to LDMS Streams API

!

Kokkos

“Sampler”
Keeps statistics
and timing to
determine
publishing

LDMS Transport

Unified Framework for Continuous, Run Time, Fused
System and Application Performance Monitoring and
Analysis

Data Flow Diagram

HPC System Analysis Cluster
time
> Dashboard

Applications \
dynamically and App 1 App 2 Continuous Analysis on I
irregularly inject Kokkos Kokkos dynamically populated
dCltCl into the LDMS database App Performance =@=System Performance
transport Streams Streams
LDMS continuously LDMS transport NVMe-based
and regularly database

collects and

transports full
system data LDMS samplers

Application and LDMS Configuration

Eclipse (CTS1) ~1500 nodes

Target recording ~1% of kernel execution events (e.g., one or
more instances of {kernel name, kernel executions count,
time})

Provide reasonable representation of execution behavior

while having little instrumentation overhead (can dial in
whatever desired)

* Resolving application features at ~“10 ms to a few seconds resolution
System data collection at 1 sec intervals

Recorded information per message:

rank, timestamp, job-id, kokkos-perf-
data:time, kokkos-perf-data:type, kokkos-perf-
data:name, kokkos-perf-data:count

0,100907.012310,8290750,0.000003,0, "Kokkos::view::initializat
ion [Kokkos::Random_Xorshift64::state]",?2
0,100907.012360,8290750,0.000008,0, "Kokkos::view::initializat
ion [Dualview: :modified_flags]",5
0,100907.012400,8290750,0.000014,0, "Kokkos: :view::initializat
ion [Surfcollide:nsingle]", 4

Socket

Socket

Socket

Large-scale low-latency analytics

Challenge: Acquiring tangible and realistic run
time representations of resources’ state and of

Human in the loop

m pu—
application performance that can be utilized to) % t h teri L'i._ata *
; : 1000 = charactenzation
quantify performance effects for any given c == L
.. : o o * Historical data
application and input deck. i @ :
o = > < analysis
g g O * Visualization
Data Features S— x = D —~— =
, w & * Multivariate analyses -
* High volume (10s of TB/day) .E' - — of job and system o o
* High dimensionality (100s to 1000s of discrete = 1 _ _ o 0
) Q - Online congestion ¥ Q@
metrics) o *anal s System o &
 Timeseries data from complex application T—u] ys profile > 9 =
science in variable workloads > data points * Job =5 @
. | < * profile c &
Machine Learning (ML) focus.areas.. E individual -
* Fundamental techniques for time-series, rare tu“ 001 g
events Q 10° 103 10° 10° 1012
* Physics-constrained ML -> Architectural :
constraints Data Size (B)
* Validated and explainable ML for automated Active Feedback

response

Base Source: Holistic Measurement Driven System
Assessment - ECP Annual Meeting 2019

‘ Example: Characterizing Network Congestion

X+ Gemini Link: Percent Time Spent in Credit Stalls (1 min intervals) Automated Characterization of “Congestion
_ Clouds” In Cray Gemini Networks
o ime=1199 .
100
i 80 20
20 - gg
oy .
= 50 I
S 15 | 20 15
O 30 1
Lo
g 10 - 29 10
E 1]
N e -
5 i ﬁ’ﬁ__;.f’” I g 8 L4 5
.=-,-—’”"—H.p-. * - y
0 - - L : 2 0
20 -
20 o 15 g 20
10 10 0 ’ < 15
5 5 " .
Y Mesh Coord 0 0 X Mesh Coord 5 10 ° <10 &8
X 1 5 - 5 ‘:'S',
*Dj}‘ 20 0

Plays at 10 real minutes per second

Long duration congestion clouds (direction independent)
(NCSA Blue Waters)

Analysis from NCSA’s Blue Waters, Lightweight Distributed Metric
Service: A Scalable Infrastructure for Continuous Monitoring of From Measuring Congestion in High Performance Data Center
Large Scale Computing Systems and Applications SC14 Interconnects NDSI20

Determining performance-affecting data features using ML

Build models to characterize behavior (resource utilization and performance) and adaptively allocate /
control resources

Architectural and workload complexity can make it difficult to determine the association of resource

counters with performance effects

Example: Use ensemble models to identify features most indicative of application performance and |
associated performance sensitivity

Feature Type Feature List Avg R2*
(Cray XC)

' Application and app,hugepages, 0.64
g% | k-Fold Scheduler Specific | placement,
- > balance, avg hops

.\ ___#,_ Network Specific nic2proc,procZnic, | 0.86
Voting Cross h(2hl PTS & SPF

Validation
All features All the above 0.91

Ensemble Models R2 is the coefficient of determination (higher is better)

From A Study of Network Congestion in Two Supercomputing High-Speed Interconnects HOTI26 2019

‘ Conclusions

Systems are inefficient when components cannot know or respond to applications needs or resource

conditions:

* Limits the effective use of heterogeneous resources

* Integrating Systems management into codesign would enable full interplay of management + applications + architecture
Example: Maximize total system throughput in jobs/time and ensure fairness of access to network resources*

* Continuous assessment of network performance impact drives targeted throttling of application injection based on
injection rate and sensitivity to network latency

* Enables low-bandwidth latency sensitive applications to maintain performance
* ML-based characterization of applications to degree of latency or bandwidth sensitivity
* Currently throttling at the MPI-layer, but would like to directly control the fabric

Need new CoDesign capabilities to support on-platform resource characterization analytics and response™*:

* Pervasive low-latency communication channels among all components

* Analytics sited closer to the data and responders

* Response hooks and capabilities

* Resource-aware components with respect to capabilities and headroom

* Negotiation between resource components and application components in order to meet application needs within the
capabilities of the resources

* From Delay Sensitivity-Driven Congestion Mitigation for HPC Systems ICS21
**From Including Operations, Analytics, & Communication In Next Generation CoDesign: It Just Makes Sense! ASCR Reimagining CoDesign Workshop 2021

