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ABSTRACT
Data is a valuable commodity, and it is often dispersed over multiple entities. Sharing data or 
models created from the data is not simple due to concerns regarding security, privacy, 
ownership, and model inversion. This limitation in sharing can hinder model training and 
development. Federated learning can enable data or model sharing across multiple entities that 
control local data without having to share or exchange the data themselves. Differential 
privacy is a conceptual framework that brings strong mathematical guarantee for privacy 
protection and helps provide a quantifiable privacy guarantee to any data or models shared. 
The concepts of federated learning and differential privacy are introduced along with possible 
connections. Lastly, some open discussion topics on how federated learning and differential 
privacy can tied to AI-Enhanced co-design of microelectronics are highlighted.

KEY-TAKEAWAYS
 Federated learning can enable model or data sharing across multiple entities that hold or 

control local data without having to actually share or exchange the data themselves. 
 Differential privacy can provide a quantifiable provable guarantee to amount of privacy 

leaked by models or datasets being shared. 
 Together federated learning and differential privacy could address some of the open 

discussion topics in AI-Enhanced co-design of microelectronics.
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INTRODUCTION
Data privacy in today’s world is a hot-button topic. Companies such as Netflix, Facebook, 
Microsoft, Google, among others have caused an uproar in how they collect data and how they 
share data. Headlines in newspapers, magazines, and journals around the world, highlight the 
growing concerns with data privacy, data collection, data protection and data sharing. These 
concerns are ever growing and serve as motivation for work in the privacy field. 

While privacy breaches continue to be a huge concern, it has not stopped the requests for data 
sharing or data release. Government agencies, business, survey and research organizations, and 
medical institutions are constantly being asked to release and share more and more of their data for 
transparency and accountability. Thus, handling all this data in a way that protects the confidentiality 
of the data subjects' identities and sensitive attributes while maintaining the statistical usability and 
accuracy of the data set has developed into a critical area of study. 

One of the most common ways to “protect” data is to simply anonymize the data (i.e. remove 
identifying information or sensitive characteristics). However, simply anonymizing data does not 
simply solve the problems with record linkage. For example, if there is a data set that has name, 
address, phone number and education. And another data set with medical diagnoses, procedures, 
and payment information. All you would need is gender, birth date and zip code to link the two data 
sets. Sweeny 2013 was able to identify 130 of the people in the personal genome project simply by 
using voter data.

FEDERATED LEARNING
Federated learning is a technique in machine learning that enables model training over multiple 
entities (these entities could be servers, devices, databases, etc.) that hold local data without actually 
exchanging the data themselves (Kone"c"  ̌"n" "y"  ́ 2015). Thus, even though one may not have 
access to all the data one can still do model training and get machine learning models based on all 
the data. This is a powerful tool since a machine learning model is only as good as the data it is built 
on, therefore having a larger training dataset is beneficial. Further, data collection is often difficult, 
and organizations are limited based on the cost, time, and energy required to collect data. This often 
leads to multiple agencies to collecting data of similar nature, leaving data disjoint with many 
owners. Federated learning could help facilitate sharing in these instances.

Consider the example where there are 7 datasets and each one is owned by a different entity. Ideally 
what all 7 datasets would be combined together to one massive dataset to run analysis on. However, 
that is not very practical. In fact, most people are not willing to simply share their data so that it can 
be combined with other data. Complications and concerns regarding privacy, security, ownership 
and model inversion further constrain the sharing, and often limit model training and development.

There are three major types of federated learning: 1) centralized federated learning; 2) decentralized 
federated learning; and 3) heterogenous federated learning. Figure 1 provides an example of a 
centralized federated learning system. In this system there are multiple entities that all own some 
dataset. The central server, a trusted entity, sends some an initial model to all the entities, and 
requests them to get a local model based on the data they own. These local models are then shared 
back to the central server which can then combine the multiple local models into a global model. 
This global model is now based on all the data owned by multiple entities, but the central server 
never had to access the data points themselves. Multiple exchanges between the central server and 
multiple entities may be required to get a more accurate global model. 
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For decentralized federated learning, there is no central server, and the nodes are able to coordinate 
themselves to obtain the global model. This setup prevents single point failures as the model updates 
are exchanged only between interconnected nodes without requiring a central server to orchestrate 
the entire process. 

Heterogenous federated learning has become a more commonly used type of federated learning 
system. This is because unlike many of the existing federated learning methods, this does not assume 
that the local models all share the same global architecture. HetroFL from Diao et al. 2020 proposed 
a new framework that allowed training of heterogenous local models with varying computation 
complexities to still get a single global model. 

Lastly in federated learning it is important to consider whether the data hosted by each of the 
entities or nodes is balance or not. That must be considered to create the global models. Thus 
overall, federated learning is often employed, as it enables training an algorithm over multiple data 
sources without exchanging the data samples themselves. Unfortunately, this current system for 
sharing models is marred by privacy concerns regarding reverse engineering the original data based 
on the released model parameters.

DIFFERENTIAL PRIVACY
Differential privacy is a conceptual framework that brings strong mathematical guarantee for privacy 
protection and helps provide a quantifiable privacy guarantee to any data or models shared. 
Differential privacy ensures that the addition or removal of a single database item does not 
substantially affect the outcome of any analysis. This means that just because a single person is or 
isn’t in a database, you should not be able to deduce any information about them. More formally, 
the definition of differential privacy is as follows. Let 𝒦, a mechanism to be defined later, and let 𝐷1 
and 𝐷2 be two databases that differ in at most one element. 𝐷1 and 𝐷2 differing by one individual 
and can be interpreted in two ways: 1) 𝐷1 is one individual more or less than 𝐷2, or 𝐷1 and 𝐷2 are 
of the same size but have difference in attributes values in exactly one individual. 

Definition (Dwork 2006): A randomized function 𝒦 gives 𝜖-differential privacy if for all 
datasets 𝐷1 and 𝐷2 be two databases that differ on at most one element, and all 
𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝒦), 𝑃𝑟(𝒦(𝐷1) ∈ 𝑆) ≤ 𝑒𝜖 × 𝑃𝑟(𝒦(𝐷2) ∈ 𝑆).

The formulation of privacy via differential privacy is robust and guards against the worst-case 
scenario as it does not impose any assumptions about the behavior or the background knowledge of 
data intruders. Thus, 𝜖 which is often referred to as the privacy budget and is pre-specified, is the 
amount of privacy used or information leaked. The larger 𝜖 is then the more information is leaked or 
less privacy, and the smaller 𝜖 is then the less information is leaked and the more privacy. 

Differential privacy requires some noise to be added to queries of interest in order to protect 
privacy. Examples of noise adding mechanisms include the Laplace mechanism (Dwork 2006), 
Exponential Mechanism (McSherry and Talwar 2007), Gaussian mechanism (Dwork and Roth 
2014), and the median mechanism (Roth and Roughgarden 2010). Additionally, noise adding 
mechanisms have been developed for specific statistical analyses such as contingency tables (Barak 
et al. 2007), principal component analysis (Chaudhuri et al. 2012), location privacy (Xiao and Xiong 
2015) and graphs and social networks (Yan et al. 2016). 
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Figure 1: Centralized Federated Learning Figure 2: Federated Learning and Differential 
Privacy Together

FEDERATED LEARNING AND DIFFERENTIAL PRIVACY TOGETHER
Federated learning and differential privacy could be used together to help solve the problems 
surrounding data/model sharing and privacy. This is a growing area and there are many methods 
being developed to utilize both to facilitate sharing while still protecting privacy. Figure 2 provides a 
simple example of how these two concepts can used together. Specifically, prior to the local models 
being shared with the central server to create a global model, differential privacy could be used to 
add noise. This would allow for sharing of data without concerns about reverse engineering or 
leaking sensitive information.

OPEN DISCUSSION TOPICS
Federated learning and differential privacy could be utilized can tied to AI-Enhanced co-design of 
microelectronics. Some examples of open discussion topics include the following:

 Data is valuable for training: In the microelectronics application area, data may be limited 
or restricted, so having access to additional data would be extremely valuable.

 Challenges to accessing data: Accessing dataset related to microelectronics may be 
limited. If this is the case, then federated learning may prove to be a useful method to 
facilitate sharing while still limiting access to private data. 

 Importance of Privacy: In the application area of microelectronics, there are instances 
where data cannot be shared due to the sensitive nature of the information in the datasets. 
Therefore, incorporating something like differential privacy could help ease these concerns 
and provide a quantifiable privacy value. 

 Possible use cases: There are many possible use cases within microelectronics that could 
use either federated learning or differential privacy or both together. 
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