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ABSTRACT
A straight fiber with nonlocal forces that are independent of bond strain is considered. These
internal loads can either stabilize or destabilize the straight configuration. Transverse waves with
long wavelength have unstable dispersion properties for certain combinations of nonlocal kernels
and internal loads. When these unstable waves occur, deformation of the straight fiber into a
circular arc can lower its potential energy in equilibrium. The equilibrium value of the radius of
curvature is computed explicitly.
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1. INTRODUCTION

Some fibers can change length or curvature in the absence of external mechanical loading. This
phenomenon affects a broad range of technologies, including paper and textiles [13, 6, 24, 1]. It is
also important in artificial muscles and actuators [3, 19, 20, 9, 2, 8]. Electrospinning involves the
deposition of electrostatic charge in fluids that causes them to extend into fibers. The charge
continues to affect the shape and motion of the fibers after they are formed [23, 17]. In fibers that
have internal structure, such as natural textile materials and optical fibers, the relative differences
in properties of the constituents can induce spontaneous curvature [7].

How can the change in curvature of a fiber, without external loading, be modeled within
continuum mechanics? In the present paper, nonlocal internal loads are introduced into a bond
based peridynamic model of an initially straight fiber. These are loads that act within a bond but
do not change in magnitude as the bond changes length under the deformation. Although constant
in magnitude, the internal loading force density vectors rotate along with the bond as it deforms.
The bond based material model does not contain explicit bending moments or rotational degrees
of freedom, although these concepts have been used successfully in beam, plate, and shell models
within peridynamics [14, 15, 16, 4, 25, 21, 22]. The effect of nonlocal internal loading on the
stability of thin structures has apparently not been studied before. However, it is related to the
phenomenon of wrinkling in thin structures caused by external loading or temperature changes,
which has been investigated within peridynamics [11, 5, 10].

The main result of the present paper is that for certain combinations of the micromodulus and
internal loading as they depend on bond length, a straight fiber with free ends is unstable. In these
cases, an equilibrium curvature can be computed explicitly.

In the remainder of the paper, Section 2 considers the dynamic stability of the straight nonlocal
fiber with respect to transverse wave motion. In Section 3, approximations for the strain energy in
a fiber are derived as a function of axial strain and curvature. In Section 4, the equilibrium
curvature and self-shaping in a fiber with free ends is discussed. Conclusions are presented in
Section 5.
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2. TRANSVERSE WAVES

Among the simplest examples of wave motion is the transverse vibration of a string under
tension. In this section, the peridynamic version of this elementary problem is considered,
including internal loading. (These waves are referred to here as transverse waves rather than
“bending waves” to avoid confusion with the use of the latter term in beam and plate theory.)

Consider a long, thin peridynamic body whose undeformed configuration is a long interval on the
x1-axis and whose cross-sectional area is a (Figure 2-1). a is small enough that in the absence of
internal loading, the body has negligible resistance to bending. (Background on the peridynamic
theory is available in the book by Madenci and Oterkus [12].) Let y denote the deformation map
and u the displacement vector,

y(x, t) = x+u(x, t). (1)

Let u2(x1, t) denote the transverse deflection, which is assumed to be small. For a given bond
ξξξ = e1ξ , let p be the deformed bond length (Figure 2-2),

p = |y(x+ξξξ , t)−y(x, t)|. (2)

Let s be the bond strain,
s =

p
|ξξξ |
−1. (3)

The deformed bond direction vector is denoted by M:

M =
y(x+ξξξ , t)−y(x, t)

p
. (4)

The peridynamic equation of motion in three dimensions is given by

ρü(x, t) =
∫
Hx

f(x+ξξξ ,x, t) dξξξ +b(x, t) (5)

where ρ is the density, Hx is a neighborhood of x called the family of x, and b is the external
body force density, which throughout the remainder of this paper will be assumed to equal zero.
The vector valued function f is the pairwise bond force density, which is determined by the
deformation through the material model. In the present case of the thin fiber initially on the
x1-axis, (5) is approximated by

ρü(x, t) = a
∫

δ

−δ

f(x1 +ξ ,x1, t) dξ (6)

where δ is the horizon. Throughout this discussion, three-dimensional material models are used
for purposes of units.

Suppose the material model is microelastic with micropotential given by

w(p,ξ ) =
c(ξ )

2
|ξ |s2 + fi(ξ )|ξ |s (7)
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where s is given by (3) and c is the micromodulus, which is assumed to be positive on (0,δ ]. In
(7), fi is the bond’s internal load, which depends on ξ but not on x1 or on s. Assume that c and fi
are symmetric:

c(−ξ ) = c(ξ ), fi(−ξ ) = fi(ξ ) (8)

for all ξ . From (7), the pairwise bond force density is given by

f(x1 +ξ ,x1, t) = f̂ (s,ξ )M (9)

where

f̂ (s,ξ ) =
∂w
∂ p

(p,ξ ) = c(ξ )s+ fi(ξ ). (10)

In the following discussion, the subscript 0 refers to an initial, straight configuration of the fiber.
Suppose that initially the (straight) fiber has a constant strain ε0, which can be due to remote
loading or internal loading. Define the initial stretch by

λ0 = 1+ ε0. (11)

The (normal) stress σ0 in the fiber is found from the partial stress tensor [18], which in the present
case simplifies to

σ0 = a
∫

δ

0
f̂ (ε0,ξ )ξ dξ . (12)

In (12), σ0 has dimensions of force/area, as in 3D. From (10) and (12),

σ0 = a
∫

δ

0
(c(ξ )ε0 + fi(ξ ))ξ dξ . (13)

From (13), it follows that the Young’s modulus is given by

E =
dσ0

dε0
= a

∫
δ

0
c(ξ )ξ dξ . (14)

To investigate the propagation of transverse waves in the nonlocal fiber with internal loading, the
dispersion properties of these waves will now be derived. For a bond ξ , under the assumption of
small deflections,

M2 =
u2(x1 +ξ , t)−u2(x1, t)

|ξ |
. (15)

From (9) and (15),

f2(x1 +ξ ,x1, t) =
f0(ξ )

|ξ |
(u2(x1 +ξ , t)−u2(x1, t)) (16)

where, from (10),
f0(ξ ) := f̂ (ε0,ξ ) = c(ξ )ε0 + fi(ξ ). (17)

Assume a transverse wave of the form

u2(x) = ei(kx−ωt) (18)
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where k is the wavenumber and ω is the angular frequency. The equation of motion (6) reduces
to

ρ ü2(x, t) = a
∫

δ

−δ

f2(x1 +ξ ,x1, t) dξ . (19)

Using (16), (17), and (19), differentiating (18) twice with respect to time leads to

ρω
2 = a

∫
δ

−δ

f0(ξ )

|ξ |

(
1− eikξ

)
dξ . (20)

Since the integrand in (20) is an even function,

ρω
2(k) = 2a

∫
δ

0

f0(ξ )

ξ
(1− cos(kξ )) dξ . (21)

Equation (21) is the dispersion relation for transverse waves. If ω2(k)> 0 for all k > 0, then the
system is stable in the sense of propagating waves of constant amplitude with any wavenumber. If
ω2(k)≥ 0 for all k > 0 but ω2(k0) = 0 for some k0 > 0, then the system is neutrally stable. If
ω2(k)< 0 for some k0 > 0, then the system is unstable.

To study the stability of long waves, it suffices to derive the leading terms in (21) for small k.
Using the first few terms of a Taylor series for cosine in (21) leads to

ρω
2(k) = 2a

∫
δ

0

f0(ξ )

ξ

(
k2ξ 2

2
− k4ξ 4

24
+O(k6)

)
dξ . (22)

Combining (13), (17), and (22), and neglecting terms of order k6 or higher,

ρω
2(k) = σ0k2−Bk4, |k| � 1/δ (23)

where

B =
a

12

∫
δ

0
(c(ξ )ε0 + fi(ξ ))ξ

3 dξ . (24)

To obtain the phase velocity, which is defined by V (k) = ω/k, (23) implies

V (k) =

√
σ0−Bk2

ρ
, |k| � 1/δ . (25)

The terms involving B in (23) and (25) incorporate the effect of nonlocality and internal
loading.

Now restrict attention to the case of a fiber with free ends, so that

σ0 = 0. (26)

In this case, from (13) and (26),

ε0 = ε f ree :=−
∫

δ

0 fi(ξ )ξ dξ∫
δ

0 c(ξ )ξ dξ
(27)
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and from (23),
ρω

2(k) =−Bk4. (28)

Therefore, in the case of a fiber with free ends, the system is unstable if

B > 0. (29)

An example of the effect of internal loading on the dispersion curve of a fiber is illustrated in
Figure 2-3. In this example, a long fiber has a material model given by

c(ξ ) = 1, fi(ξ ) = η +β

(
ξ

δ
− 2

3

)
(30)

where η and β are constants. The effect of β is to change whether the internal loading in long
bonds is more tensile (β > 0) or more compressive (β < 0) than short bonds. For the fiber with
free ends, (27) and (30) lead to

ε0 = ε f ree =−η . (31)

Using (24) and (31),

B =
aδ 4

360
β . (32)

So, comparing (28) and (32), the fiber is unstable if β > 0, that is, if longer bonds have more
tensile internal loading than shorter bonds. Perhaps surprisingly, η has no effect on stability, since
it does not appear in (32). This observation does not necessarily hold if a different form of c(ξ ) is
used.
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3. POTENTIAL ENERGY IN A FIBER WITH
CONSTANT CURVATURE

The previous section showed that a fiber with internal loading can be either stable or unstable in
the straight configuration. The remainder of this paper concerns the equilibrium configuration of
a fiber, particularly in the event that the straight configuration is unstable. To investigate this, the
potential energy in a family of deformations parameterized by curvature and tangential (axial)
strain will be derived.

Suppose the straight fiber has strain ε0, so the stretch is λ0 = 1+ ε0. The fiber then undergoes a
further incremental deformation such that its deformed radius of curvature is a constant r. The
tangential strain also incrementally changes by ε in this additional deformation. The final
tangential stretch λ is therefore

λ = λ0 + ε. (33)

Referring to Figure 3-1, the deformed bond length of a bond ξ is given by

p = 2r sin
θ

2
, θ =

λ |ξ |
r

. (34)

To simplify the algebra, without loss of generality, assume ξ > 0. From (3) and (34), the bond
strain is given by

s =
2r
ξ

sin
(

λξ

2r

)
−1. (35)

To obtain the leading terms in (35), use the first few terms of the Taylor series for sine,

sinz = z− z3

6
+

z5

120
+O(z7). (36)

From (35) and (36),

s =
2r
ξ

[(
λξ

2r

)
− 1

6

(
λξ

2r

)3

+
1

120

(
λξ

2r

)5

+O((δ/r)7)

]
−1. (37)

Simplifying (37) leads to

s = (λ −1)− λ 3ξ 2

24r2 +
λ 5ξ 4

1920r4 +O((δ/r)6) (38)

Using (11) and (33), (38) becomes

s = ε0 + ε− (λ0 + ε)3ξ 2

24r2 +
(λ0 + ε)5ξ 4

1920r4 +O((δ/r)6). (39)

Expanding the powers of λ0 + ε in (39) leads to

s = ε0 + ε−
(λ 3

0 +3λ 2
0 ε)ξ 2

24r2 +
(λ 5

0 +5λ 4
0 ε)ξ 4

1920r4 +O((δ/r)6)+O(εδ/r)2). (40)
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Let ψ denote the curvature of the fiber, defined by

ψ =
1
r
. (41)

Because the lowest order term that depends on curvature in (40) involves ψ2 rather than ψ , it is
convenient to work with κ defined by

κ = ψ
2 =

1
r2 . (42)

From (40) and (42),

s = ε0 + ε−
(λ 3

0 +3λ 2
0 ε)κξ 2

24
+

(λ 5
0 +5λ 4

0 ε)κ2ξ 4

1920
+O((δ 2

κ)3)+O(ε2
δ

2
κ)). (43)

Retaining terms up to second order (that is, up to and including ε2, κ2, and εκ), (43) yields

s = ε0 + ε−
λ 3

0 ξ 2

24
κ +

λ 5
0 ξ 4

1920
κ

2−
λ 2

0 ξ 2

8
εκ. (44)

Taking the square of (44) and discarding the higher order terms leads to

s2 = ε
2
0 +2ε0ε−

ε0λ 3
0 ξ 2

12
κ + ε

2 +

(
λ 6

0 ξ 4

576
+

ε0λ 5
0 ξ 4

960

)
κ

2 +

(
−

λ 3
0 ξ 2

12
−

ε0λ 2
0 ξ 2

4

)
εκ. (45)

Now that we have explicit expressions for s and s2 in terms of κ and ε given by (44) and (45), the
bond micropotential is evaluated using (7) to give

w(ε,κ,ξ ) =
c(ξ )

2
ξ

[
ε

2
0 +2ε0ε−

ε0λ 3
0 ξ 2

12
κ + ε

2

+

(
λ 6

0 ξ 4

576
+

ε0λ 5
0 ξ 4

960

)
κ

2 +

(
−

λ 3
0 ξ 2

12
−

ε0λ 2
0 ξ 2

4

)
εκ

]

+ fi(ξ )ξ

[
ε0 + ε−

λ 3
0 ξ 2

24
κ +

λ 5
0 ξ 4

1920
κ

2−
λ 2

0 ξ 2

8
εκ

]
. (46)

The strain energy density is given by

W =
a
2

∫
δ

−δ

w(ε,κ,ξ ) dξ . (47)

From (46) and (47),
W =W0 +σ0ε−A1κ +A2ε

2 +A3κ
2−A4εκ (48)
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where σ0 is given by (13) and

W0 = aε0

∫
δ

0

[
c(ξ )

2
ε0 + fi(ξ )

]
ξ dξ ,

A1 =
aλ 3

0
24

∫
δ

0
[c(ξ )ε0 + fi(ξ )]ξ

3 dξ ,

A2 =
a
2

∫
δ

0
c(ξ )ξ dξ =

E
2
,

A3 =
aλ 5

0
1920

∫
δ

0

[
c(ξ )

(
5λ0

3
+ ε0

)
+ fi(ξ )

]
ξ

5 dξ ,

A4 =
aλ 2

0
8

∫
δ

0

[
c(ξ )

(
λ0

3
+ ε0

)
+ fi(ξ )

]
ξ

3 dξ . (49)

Figure 3-2 shows the strain energy density given by (48) and (49) as a function of curvature for
the material with η = 0 and β = 0.02, arbitrarily setting ε = 0.02 for purposes of illustration.
This expression is approximate because it retains terms in the bond strain only up to second order,
as discussed above. For comparison, the figure also shows the exact result, which is obtained by
combining (7), (35), and (47).

The total potential energy Φ will be used in the next section to investigate the equilibrium
configuration of the fiber. This is found by integrating W over volume, therefore

Φ(κ) = LaW (50)

where L is the length of the fiber. (48) and (50) lead to

Φ(κ,ε) = La
(
W0 +σ0ε−A1κ +A2ε

2 +A3κ
2−A4εκ

)
. (51)
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4. FIBER WITH FREE ENDS

Consider an initially straight fiber of length L, with L� δ . Suppose the ends are free, so that the
stress in the straight configuration is given by

σ0 = 0. (52)

There can be a nonzero value of λ0, which is found from (27), thus

λ0 = 1+ ε0, ε0 = ε f ree. (53)

To minimize the potential energy given by (51), set

0 =
∂Φ

∂ε
= La(2A2ε−A4κ),

0 =
∂Φ

∂κ
= La(−A1 +2A3κ−A4ε), κ > 0. (54)

Solving (54) for the equilibrium values of κ and ε yields

κeq = max
{

0,
2A1A2

4A2A3−A2
4

}
, εeq =

A4κeq

2A2
. (55)

Using the third equation of (49), (55) can be rewritten in the slightly more suggestive form

κeq = max
{

0,
EA1

2EA3−A2
4

}
, εeq =

A4κeq

E
. (56)

The denominator 2EA3−A2
4 in the first equation of (56) is positive for sufficiently small fi (see

Appendix). The fiber length L has no effect on the curvature of the fiber.

An example of the self-induced curvature of a fiber with free ends is shown in Figure 4-1. In this
example, δ=1 and a=1.0E-4. The material model is given by (30). Three cases with different
values of η are shown, with β on the horizontal axis. The plots show that for β < 0 (less tensile
internal loading in the long bonds) the fiber remains straight. As β becomes positive (more tensile
internal loading in long bonds), the curvature rises rapidly. As the curvature increases, the axial
stretch also shows a modest increase.

Comparing (24) with the second equation of (49), evidently

A1 =
λ 3

0 B
2

. (57)

Therefore, when the straight fiber is unstable in the sense of imaginary wave speeds according to
the condition (29), the result (56) shows that a curved shape is stable in the sense of energy
minimization. Conversely, when there is stable wave propagation, the straight configuration is the
energy minimizer. These observations establish the connection between unstable waves and
self-induced curvature.
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It is interesting to compute the resistance of the fiber with self-induced curvature to further
changes in curvature. During these increments in curvature, the energy is stationary with respect
to changes in ε , so the first equation of (54) continues to hold, and therefore

ε =
A4

2A2
κ. (58)

Next, combine (51), (52), and (58) to obtain

Φ

La
=W0−A1κ +

[
A2

(
A4

2A2

)2

+A3−A4

(
A4

2A2

)]
κ

2. (59)

Using (42) and rearranging, (59) leads to

Φ

La
=W0−A1ψ

2 +

[
A3−

A2
4

4A2

]
ψ

4. (60)

The resistance of the fiber to changes in curvature can be defined by

S(ψ) =
1

2La
d2

Φ

dψ2 . (61)

From (60) and (61),

S(ψ) =−A1 +6
[

A3−
A2

4
4A2

]
ψ

2. (62)

Evaluating (62) at ψ2
eq = κeq using the first of (55) yields

S(ψeq) = −A1 +6
[

A3−
A2

4
4A2

]
2A1A2

4A2A3−A2
4

= 2A1. (63)

Recall that A1 > 0 is the condition for instability in the straight fiber. So, (63) suggests that as
material parameters such as β change to cause A1 to increase and therefore make the system
“more unstable,” the curved, stable configuration becomes stiffer with respect to further
increments in curvature.
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5. CONCLUSIONS

The main result of this paper is that internal loading can either stabilize or destabilize an initially
straight fiber with free ends. This instability is reflected in the sign of the dispersion relation for
certain combinations of the functions c and fi, as stated in equations (24) and (29). It is also
reflected in the fact that the straight configuration can be a local maximum, rather than a local
minimum, in the potential energy of the system. In these cases, the equilibrium curvature of a
local minimizer can be computed explicitly.

The unstable behavior of a fiber with nonlocal internal loading in some ways resembles the
classical problem of the buckling of an elastic beam under prescribed compressive loading at the
ends, since both result in the spontaneous appearance of curvature. However, in the case of the
nonlocal fiber, there is apparently only one equilibrium value of curvature, whereas in the beam
buckling problem the final curvature is undetermined.

This paper does not address the question of how to find a configuration that is a global minimizer,
which appears to be a very challenging problem that resembles that of protein folding. The
present results also do not prove, or even suggest, that the circular arc is necessarily obtained as a
large-time solution for arbitrarily shaped initial conditions in a time-dependent model. For
example, an initially tangled fiber could stay tangled. The present results only establish that a
curved fiber can have lower energy than a straight fiber, depending on the choice of c and fi.

Thermal expansion with a coefficient of thermal expansion (CTE) α that depends on bond length
provides an example of nonlocal internal loading. In this case, the internal loading is simply given
by fi(ξ ) =−α(ξ )c(ξ )(T −T0), where T is the current temperature and T0 is room temperature.
Based on the results in the present paper, a fiber with free ends composed of such a material could
change from straight to curved and back again, depending on the current temperature. Similar
bond-length dependence in the nonlocal material model could be used to model the effects of
moisture, electrostatic charge, or other environmental factors.
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APPENDIX

Here, it is shown that for sufficiently small fi, the denominator in the first of (56) is positive.
Suppose fi ≡ 0, which implies that ε0 = 0 and λ0 = 1. Recall that c > 0 by assumption. Then
using (14) and (49), write the denominator in the first of (56) as

D := 2EA3−A2
4

= a2
(

2
∫

δ

0
c(x)xdx

)(∫
δ

0

c(x)x5

1152
dx
)
−a2

(∫
δ

0

c(x)x5

24
dx
)2

. (64)

Shortening the notation slightly, and changing the dummy variable of integration, (64) yields

576D
a2 =

∫
c(x)x

∫
c(y)y5−

∫
c(x)x3

∫
c(y)y3

=
∫ ∫

c(x)c(y)(xy5− x3y3)

=
∫ ∫

c(x)c(y)(xy)y2(y2− x2)

=
1
2

∫ ∫
c(x)c(y)(xy)y2(y2− x2)

+
1
2

∫ ∫
c(y)c(x)(yx)x2(x2− y2)

=
1
2

∫ ∫
c(x)c(y)(xy)y2(y2− x2)

− 1
2

∫ ∫
c(y)c(x)(yx)x2(y2− x2)

=
1
2

∫ ∫
c(x)c(y)(xy)(y2− x2)2

where the dummy variables x and y are interchanged in the fourth line. Since the integrand in the
last line is positive for all x and y except on the line x = y, this proves that D > 0 for fi ≡ 0.
Therefore this result must also be true for sufficiently small fi.
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