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+ 1 Heterogeneously Integrated (HI) Electronics E

Systems

Connecting multiple chiplets from
different manufacturing processes key
to improving microsystem functionality

High-density interconnects needed for
performance with variety of chips,
components, and operating conditions

Need methods to test interconnect

viability both after manufacturing and \%{/ | |

afte r u Se pump laser probe laser

Metal Transducer

Frequency-domain
thermoreflectance (FDTR) poniaes o |

Device with sub-surface
features

Given complex microelectronic
structure, use inverse methods to I« | Sub-mount
assess integrity of microbumps P




Sierra/SD, Rapid
Optimization Library (ROL),
and Inverse Methods




6 ‘ Inverse Methods in Sierra Mechanics

Inverse solution types via Sierra/SD linked to Rapid Optimization Library
(ROL)

Objective function,
Derivative operators

— RSL I

RAPID OPTIMIZATION LIBRARY

Next iteration
of design variables




7 1 PDE-Constrained Optimization

minimize  J(u,p) . Objective function
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s I Discrete Equations for Inverse Problem

Objective Functions Governing Equations
Y
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Choose frequency domain to attempt inversion with FDTR data



» I Optimization Procedure

PDE and Objective Optimality conditions
g(u,p) = [K(p) +iwC(p)|u — f(p) Lo=Ju+giw=0
: 2 Lol= Jp+glw =0
J(u):§|u—um| p|= Jp + gpw =
1. Solve PDE for u (forward solution) Lyoy=g=0

2. Use forward solution with | and J,, (known)
to find w (adjoint solution)

3. Use adjoint solution along with [, and g4, ML
(both known) to find current gradient

RAPID OPTIMIZATION LIBRARY

4. Pass current objective, gradient to ROL



o I Frequency-Domain Material and Force
Optimization
Governing equation for time-harmonic temperature oscillations:

wwpcy T — VAT =0

Discretized heat equation: Discretized temperature field:
g(u,p) = [K(p) +iwC(p)] T — £ =10 ) = Z 7N (x)
k=1
Thermal conductivity, heat capacity,
heat flux:
K(p) — / “UN . UNT 4V Derivatives with respect to K, Cp:
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Verification and Inversion for
Thermophysical Properties




2 I Verification: Sierra/SD vs COMSOL

Cylinder with uniform material
properties

Gaussian heat flux applied to top
surface

Insulating condition applied to bottom
and outer surfaces
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Inverse Problem: Geometry

Cylindrical geometry separated into three layers:
° Top: silicon
> Middle: aluminum

> Bottom: silicon dioxide

Thin layer (100 nm) representing possible de-
bond

> Bonded: aluminum
> De-bonded: air

Gaussian heat source applied to small region on
top surface (2 um beam radius, 1/e%)

Simultaneous runs at 500 Hz and 1 kHz

Nodal temperature data considered in small
region on top surtface
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4 I |nverse Problem: Results

IRIETE

parameter space

0,030 4

Flat objective function for much of ‘

0.025 -

Rapid convergence to objective as
material properties in thin de-bond
approach material properties of air

k= 237 W/m-K

0.020 A

Objective Function

Simple material identification:
thousands of iterations to converge
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K = ﬁk}%_(ﬁﬁi__fsu)®pl Quasi-Newton Method with Limited-Memory BFGS |
o bi io . Line Search: Cubic Interpolation satisfying Null Curvature Condition
pPCp = pPC, +—(pcp —-pcp)¢f2 iter value gnorm snorm #fval #grad 1s #fval
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¢ € H)’l] 1 1.239728e-04  1.957021e-06  1.957024e-06 2 2
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Optimization Terminated with Status: Converged



Conclusions and Future
Work




i I Conclusions and Future Work

Conclusions
o FDTR may be used to assess material bond integrity

o Sierra/SD can be used for massively parallel thermal simulations in
frequency domain

° Inverse methods may be effective in determining unknown material
properties in practical geometries

Future Work
o Investigate different frequencies for heat flux applied to top surface
o Examine different thicknesses for top layer

> Use temperature phase data (instead of more ideal nodal temperature
data) from top surface

o Try more complicated geometries (e.g., less symmetry, an array of
interconnects, etc.)

> Try to detect partial de-bonds (i.e., heterogeneous properties in thin
layers)



7 I Acknowledgments

Funding €)
o Laboratory Directed Research & Development (LDRD) at Sandia '_%R\D

National Laboratories (SNL)

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

Coworkers at SNL | .
> Greg Pickrell (PI)




s I Questions?




