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Outline of Talk

1. Overview of Thermal Spray processing
2. Background of High Entropy Alloys
3. Initial processing results – Air plasma spray
4. Characterization of Controlled Atmosphere Plasma Spray (CAPS) and Cold 

Spray coatings
5. Conclusions
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Thermal Spray Processing Conditions for High 
Entropy Alloy Film Deposition3

 Cold Spray and plasma spray deposition rely on fundamentally different 
mechanisms to form coatings which cover a wide area of process 

conditions (Temperature and Velocity)

Impact 5/11 
Cold Spray 
System at 
Sandia

SG100 Torch 
used for 
CAPS at 
Sandia

*Adapted from plots by R.C. McCune, Ford Motor Co. & A. 
Papyrin, Ktech Corp. 

• Thermal Spray technologies encompass a 
wide range of particle processing 
temperatures and velocities

• Two of the largest differences are 
between plasma spray and cold spray

• Plasma spray relies on melting of particles 
and droplet quenching

• Cold Spray relies on high velocity – low 
temperature impacts to induce plastic 
deformation



Background of High Entropy Alloys4

• High Entropy Alloys (HEAs) are 
loosely defined as alloys containing 
five or more constituents at roughly 5-
35 at. % each

• Alloys with four or more 
constituents interchangeably 
called HEAs or complex 
concentrated alloys (CCAs)

• The chemistry results in high 
configurational entropy which is 
theorized to stabilize single-phase 
solid solutions

• HEAs can be multiphase

• CCAs/HEAs have properties 
exceeding most conventional alloys, 
plus resistance to phase precipitation



As-Received Powder Properties (Cantor Alloy – 
CoCrFeMnNi)5

Composition (wt%) Al C Co Cr Fe Mn Ni N O S

HEA Powder 0.003 ± 
0.00045

0.005 ± 
0.00075

20.91 ± 
0.42

18.46 ± 
0.37

20.14
± 0.40

19.06 ± 
0.38

21.34 ± 
0.43

0.002 ± 
0.00026

0.064 ± 
0.0096

0.008 ± 
0.0012

100µm

Channeling Contrast SEM of HEA Powder

20µm *Kustas, Andrew, et al. “Advanced Manufacturing 
of High Entropy Alloys.” TMS, 2019.

• Powder was high pressure gas atomized (hpga), AMES Laboratory: 
45um powder

• Despite promising properties, there are challenges with conventional 
processing methods (i.e., casting): defects and insufficient mixing of 
constituents.

• Example below: CoCrFeMnNi HEA – microsegregation of Mn and Cr, 
microshrinkage porosity. Micro-shrinkage porosity: Micro-segregation of Mn:

Mn-Kα



RESULTS
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Air Plasma Sprayed High Entropy Alloy7

20µmCr

20µmO20µm

20µmMn

• Inhomogeneous distribution 
of alloying constituents with 
depleted and enriched 
regions throughout coating 
thickness

• Significant oxygen content 
interwoven within coating 
(processed in air)

• Chromium rich oxides 
present throughout the film

• Porosity = 6.0 ± 0.6%

Samples sprayed using Triplex APS system using Argon processing gas

Can We Produce Coatings With Same Composition As Starting Powder?



SEM/Image Analysis of Controlled Atmosphere 
Plasma Spray and Cold Spray HEA8

Backscatter SEM Imaging:

Density = 89.3 ± 1.2% Density = 97.2 ± 0.4%

• Significant microstructural differences observed in the CAPS vs Cold 
Spray films

• Image analysis using Python was used to determine area fraction of 
porosity

• Averages and St. Dev determined using three images at two magnifications
• Porosity is significantly reduced when using Cold Spray processing
• Controlled Atmosphere Plasma spray coatings contained several un-melt 

particles

SG100 – Ar/He 5/11 – N2



Phase and Composition Analysis of Sprayed 
High Entropy Alloy9

• No evidence of change in concentration of oxygen, nitrogen, or hydrogen from spray 
processing

• XRD shows phase retention of as-received powder for CAPS and Cold Spray 
coatings

• APS films show oxide peaks: EDS confirms Chromium-rich oxide phase with some 
Mn and Fe
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XRD Spectral Results for Thermal Sprayed HEAs

Cold Spray

Controlled Atmosphere Plasma 
Spray

Air Plasma Spray

As-Received Powder

Oxide Peaks Oxide Peaks

 
Oxygen 
[wt%]

Nitrogen 
[wt%]

Hydrogen 
[ppm]

  Average Average Average
Powder 0.14±0.01 Not Quantifiable 16±1.1
Cold Spray 0.17±0.03 0.008±0.003 20±8.7
CAPS 0.16±0.03 0.003±0.003 17±4.7

Composition determined by 
IGF – LECO ONG836

Phase analysis conducted on a 
Bruker D2-Phaser using a Cu Kα 
source



Manganese Evaporation in Plasma Spray 
Processing of High Entropy Alloy10
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CAPS EPMA

Cold Spray EPMA

20µm
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• Electron Probe Micro-Analyzer (EPMA) used to measure Mn composition
• Observable Mn depletion along splat boundaries
• Boiling Point of Mn is in range of expected in-flight particle temperatures 

(especially boundary layer)
• Large vapor pressure compared to other constituents indicates faster evaporation 

rate
• Manganese vapor pressure at 1280-1349°C is ~10-3 - 10-4 *

• Cobalt, Chromium, Iron, and Nickel vapor pressure at 1280-1349°C is ~ 10-5.5 – 10-6.5 *

*Mackowiak, J., Physical 
chemistry for 
metallurgists, Allen & 
Unwin, 1965, p 311.



Manganese Evaporation in Plasma Spray 
Processing of High Entropy Alloy – EPMA Line 
Scans

• Manganese depletion observed 
along boundaries in Plasma Sprayed 
samples (Right)

• Due to differences in vapor pressure of 
the individual constituents

• Low temperature of kinetic 
processing prevents manganese 
evaporation

• Cold Spray Mn composition is 
19.86% compared to the average 
CAPS composition of 17.74%

• Powder Mn composition is 19.06%

• Dips in CAPS Mn reach 10%, 
indicating significant localized 
depletion of Mn

• Manganese depletion could result in 
differences in inter-splat bonding, 
corrosion, and mechanical properties

• Changes in diffusion
• Increase in pure chromium oxides
• Reduced twinning
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Mechanical Properties of Thermal Sprayed HEA12

Powder
(10 values)

CAPS
(25 values)

CS
(25 values)

Average 163 196 351
St Dev 19 18 32

Vickers Hardness 
Data:

12mm

• Mechanical properties were measured 
using micro-tensile bars of coating which 
was electrical discharge machined to size

• CAPS HEA coatings were sprayed on 
aluminum (Al) and 316 steel substrates 
(SS)

• Coatings on aluminum delaminated, but 
were thick enough to cut tensile bars

• Cold Spray coatings on aluminum 
substrates

• Large deviation in measured mechanical 
properties indicates no statistical 
evidence of differences between the 
processes

• Vickers hardness data shows significant 
work hardening of the Cold Spray 
coatings Tensile Bar Summary:

Cold Spray CAPS – SS CAPS - Al

UTS [Mpa] 245 ± 78 297 ± 58 293 ± 43
Ductility [%] 0.13 ± .06 0.23 ± 0.06 0.16 ± 0.03
Modulus [Gpa] 180 ± 58 116 ± 15 160 ± 20



Summary of Thermal Spray Processing of 
Cantor HEA

• Severe oxidation was present in the APS coating, with no oxidation observed 
for CAPS and Cold Spray coatings

• The density of Cold Spray was considerably higher than CAPS (~8%)
• No compositional or phase changes occurred in Cold Spray coatings 
• Reduction of Mn composition in CAPS coatings which was attributed to 

evaporation due to the low vapor pressure of Mn compared to the other 
constituents

• Plastic deformation during Cold Spray processing resulted in significant cold 
working which increased hardness by ~200%, while only a slightly higher 
hardness was observed for the CAPS coating relative to the feedstock powder

• Coatings from both CAPS and Cold Spray exhibit very low ductility before brittle 
fracture during tensile testing, with lower UTS and YS compared to bulk values
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