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ABSTRACT

Accurate prediction of CHF under various fluid flow conditions continues to be required for design,
operation and safety analysis of light water reactor rod bundles. Due to the lack of in-depth physical
understanding as well as limited high-resolution data in the micro-scale flow and heat transfer, the
existing models feature a sub-optimal uncertainty band. In this study, driven by the prior domain
knowledge information obtained, an improved CHF look-up table is developed through unified machine
learning algorithms for the vertical flow conditions within tube and annulus geometry. The Groeneveld
2006 look-up table is used as the domain knowledge to train machine learning process against tube and
annulus CHF data for both DNB and DO type. The new look-up table shows improved accuracy for
conditions relevant to PWRs and BWRs. In addition, its domain knowledge informed nature ensures that
a rationale prediction can be made, thus accounting for previous valuable information in the machine
learning model training process.
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1. INTRODUCTION

Despite the long-lasting and extensive research campaign focused on the phenomenon of critical heat flux
(CHF) phenomenon in the field of thermal-fluid sciences for decades, our fundamental understanding as
well as the existing prediction capabilities for accuracy CHF occurrence are still progressing. This is
partially due to the fact that there are many complexed two-phase flow and heat transfer processes
involved (type of fluids and/or heating methodology, fluid local velocity and temperature distribution,
local vapor generation mechanisms and density, sub-scale two-phase flow interface behavior, micro-scale
heating surface morphology, system mass flow rate and pressure, etc.) and the limited resolution can be
achieved by both available measurement techniques and analytical methodology under high-temperature
high-pressures conditions relevant to nuclear industry.

Depending on different flow conditions and heat transfer mechanisms, CHF can be further distinguished
as the dryout (DO) type, corresponding to high quality and low mass flux, and departure from nucleate
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boiling type (DNB), corresponding to high subcooling and high mass flux. As a result, many correlations
and alternative methods have been developed for better prediction of this phenomenon. For example, the
W-3 correlation developed at Westinghouse [1], series of CISE correlations developed and improved at
MIT [1]; GEXL correlation developed by GE [1]; CHF look-up table methodology developed by
Groeneveld et al., 2007 [2]; and three-field model by Zhao et al., 2003 [3]. In order to further improve the
operating efficiency and safety margin of energy systems, more accurate CHF prediction models are
desirable.

Along with the significant advances in modern computational science and optimization theory, machine
learning (ML) based regression techniques are quickly drawing attentions and provide an alternative
approach to conventional predictive tools. The ML approach has unique strength in tackling complicated
and non-linear problems with quick convergence speed, which makes it very suitable for solving multi-
scale and multi-physics engineering problems like the one encountered in two-phase flow mass and heat
transfer. Recently, a number of researchers investigated the feasibility of applying the ML techniques in
predicting key thermal-hydraulic and safety parameters in nuclear engineering including Kim. et al., 2021
[4] for narrow rectangular channel applications, Jin et al., 2021 [5] and Zhao et al., 2020 [6] for CHF
model development based on domain knowledge informed ML in various geometries, Park et al., 2020 [7]
for wall temperature prediction at CHF, as well as He and Lee, 2018 [8] for CHF table construction using
support vector machine.

This paper summarizes the recent effort in developing a new LUT based on the unified domain
knowledge informed machine learning (DKIML) model trained for predicting the CHF in upward flow
systems of various geometries (tube and annulus). The Groeneveld 2006 CHF LUT [2] is used as the
domain knowledge to guide the learning process. Then, two advanced regression methods: the deep feed-
forward neural network (NN) and random forest (RF) are used to construct unified CHF models. Then, a
new LUT is constructed in the same way as Groeneveld 2006 CHF LUT based on the ML models, which
are validated by experimental data. Improved prediction performance is obtained for the new LUT. The
developed ML LUT can be validated and implemented into existing numerical codes to further improve
their prediction capability and robustness.

2. DESCRIPTION OF METHODOLOGY

The two advanced ML methods that will be applied and evaluated in the current study are the random
decision forest (RF) and the feed-forward deep neural network (NN). This section will provide a brief
introduction of the two methods and the domain knowledge informed ML.

2.1. Introduction of ML Methods for Regression

The random decision forest (RF) constructs a multitude of decision trees at training time. It is a fast and
flexible tree-based ML technique that produces reliable results without engaging in cumbersome
hyperparameter tuning. By randomly selecting observations and features via the bootstrap aggregation
technique, multiple decision trees are built, and predictions from each tree are then averaged to derive the
final output. For classification tasks, the output of the random forest is the class selected by most trees.
For regression tasks, the mean or average prediction of the individual trees is returned. Figure 1 shows
the configuration of the RF structure.

The artificial neural networks were inspired by information processing and distributed communication
nodes in biological systems. It is a collection of connected units or nodes called artificial neurons, which
loosely model the neurons in a biological brain. An artificial neuron that receives a signal then processes it
and can signal neurons connected to it. The "signal" at a connection is a real number, and the output of each
neuron is computed by some non-linear function of the sum of its inputs and weights. Typically, neurons
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are aggregated into layers. Signals travel from the first layer (the input layer), to the last layer (the output
layer), possibly after traversing the layers multiple times. Weights for each neurons are updated after each
training batch through backward propagation base on different gradient descent learning algorithms, such
as the Stochastic Gradient Descent (SGD) or Adaptive Moment Estimation (ADAM). The training process
is repeated for certain times (epochs) such that the errors (e.g., “mse”, “logcosh”, etc.) are adequately
reduced. A sketch of the NN architecture can be found in Figure 2.

Instance

Tree 1 Tree 2 Tree 3

Averaging
Figure 1. Sketch of Random Forest Method

input layer

hidden layer 1 hidden layer 2
Figure 2. Sketch of Neuron Network Method

Both the above two regression methods allow for high generalization ability when properly sampled and
trained. However, their training processes are generally unknown to the outside, which creates a so-called
"black-box" problem.

2.2. Development of Domain Knowledge Informed Machine Learning Models

In order to solve this “black-box” problem, the DKIML method are introduced in the current work, as is
shown in Figure 3. This method stems from the idea that already established and validated prior knowledge
space information is valuable and can be used to assist the ML training process and reduce un-physical data
scatter, since the prior knowledge, usually existed as correlations, models or formulated database, is capable
of providing credible baseline solutions for the ML training process.

For DKIML, a conventional physics model, f(x), is selected as the fixed-structure prior model providing
baseline prediction, 3i,. ML is then used to learn from the residuals, €, between true value, y, and the physics
model predicted output, which would effectively minimize the ML training loss function. Input feature
space, x, is available to both components of the prior and ML model, although their input features might be
different. Once the DKIML model is trained, the final predicted CHF output, y5,, can be obtained by adding
the baseline prediction, ,,, with ML predicted residual, &,.
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Figure. 3 DKIML Workflow

In the current study, new CHF LUT table similar to the Groeneveld 2006 version will be constructed.
Therefore, the Groeneveld CHF LUT is selected as the domain knowledge, based on which ML models will
be developed and trained. Same to the original LUT, the model input features are the system pressure (p),
mass flux (G), flow channel hydraulic diameter (D, ), and local quality (x,). And the model output is the
CHF value. Both NN and RF methods will be used to develop CHF model. The performance of the final
predicted output ¥, is evaluated by its mean and standard deviation, as well as by the relative root-mean-
square error (rRMSE):

()

where, n is the size of the dataset.
2.3. CHF Dataset

A collective CHF data set has been obtained and cleared for use from available literature both in upward
tube [9-13] and upward annulus [14-16] flow geometry. The present data set represents a wide range of
flow and heat transfer operating conditions which includes both the DO and DNB type CHF. Table I shows
the ranges for each input parameters for tube and annulus data set. It can be seen that the current data sets
cover the entire operating ranges that will be encountered in a nuclear system.

Table 1. Input Space Ranges for Tube and Annulus

Tube Min Max
Pressure (kPa) 310 20000
Mass Flux (kg/m’s) 241 7975
Hydraulic Diameter (m) 0.0011 0.0375
Quality (-) -0.48536 1
Annulus Min Max
Pressure (kPa) 4088.6 15513
Mass Flux (kg/m’s) 353.98 5913.2
Hydraulic Diameter (m) 0.004572 0.0127
Quality (-) -0.14622 0.615

There are in total 1699 and 464 data points collected for the tube and annulus geometry, respectively. In
order to evaluate the overall performance of the new CHF LUT constructed by the ML models, a 10%
subset was retained for the final model testing for each tube and annulus data set. This subset is not used in
the ML training process such that the ML models developed can be evaluated independently. On the other
hand, the rest 90% subset is used in the training process.
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To guarantee a fair evaluation of the ML models developed, the final testing subset sampled should be
representative in terms of statistics for the overall dataset. Both tube and annulus data sets were randomly
shuffled multiple times before sampling. Figures 4 and 5 show the Groeneveld 2006 CHF LUT predictions
for the two subsets for both tube and annulus geometry. Several insights can be drawn from the comparison.
1). Both the sampled 10% subsets for tube and annulus cover the same ranges of CHF values; 2). The 10%
subsets have similar mean and standard deviation as the 90% subsets, indicating that it is a valid and
representative dataset for final testing; 3). The Groeneveld 2006 CHF LUT can predict both the tube and
annulus CHF values within 70% error span. However, due to its simple geometry, the prediction statistics
for tube are found to be better compared with that of annulus. Also note that for the annulus geometry, the
heated diameter, Dy, was used rather than the hydraulic diameter, D,, in the LUT to achieve better
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LUT Prediction 90% - Annulus

75 100 125 15.0 175

Exp. CHF (MW/m?)

20.0

Probability density (-)

Histogram of IQ: 4 = -0.48, 0 = 1.424

o
wn

o
'S

o
w

o
N

o
-

-1 0 1 2
Abs. Error (MW/m?2)

(a) ML Data Set (90%)

5




2.0

The 19m International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19)

Brussels, Belgium, March 6 - 11, 2022

LUT Prediction 10% - Annulus

=
K

Log nr.: 19001

Histogram of IQ: u = -0.76, 0 = 1.476

s e
175 7 /,/ 12
150 7z e b
£ e 210
-
2 1s A o .
E /'/ 7 . J/'/+ o, U 08
w 100 v oo S~ +30% °
T 0o ot 2 06
O s /./ . /_ﬁ- —
© . - 1]
Y 5o 7, .J({_,' 8 o4
a ,./ [
25 & a 02
\é/'
00 : ! ! ! T T . 0.0 . \
00 25 50 75 100 125 150 175 200 -4 -3 -2 -1 0 1 2 3 4

Exp. CHF (MW/m?) Abs. Error (MW/m?2)
(b) Final Testing Data Set (10%)

Figure. 5 Groeneveld 2006 CHF LUT Prediction - Annulus

In the ML model training process, the 90% subset was further shuffled and divided into training set and
validation set with ratio 9:1. Data in the training set will be seen and learned by the training process and
will be used to obtain hyperparameters for the model. While data in the validation set will be used to
evaluate the model performance and adjust these parameters accordingly at the end of each batch iteration.

3. RESULTS AND DISCUSSION

This section presents the LUT and ML model prediction results for the collected CHF dataset. The model
architecture for RF is: 65 trees/estimators, 50%-70% features in each individual tree, no regularization. The
model architecture for NN is: 4/32/64/32/1, Adam optimizer (learning rate = 0.001), “ReLU” activation, no
regularization. An extensive grid search was also performed to determine the optimal epoch number and
batch size (epoch = 250, batch size = 25 for tube and epoch = 150, batch size = 20 for annulus). In addition,
to avoid the potential overfitting problem, both RF and NN are trained using 10-fold cross-validation
technique.

1.1. Performance of Trained ML Models

Figures 6 and 7 show CHF prediction capabilities for tube and annulus during the training process by RF
and NN using the 90% subset, respectively. At the end of training, the RF model obtained was able to
significantly reduce the CHF prediction error for tube and annulus from 30% down to only 10%. The
prediction mean and standard deviation were also reduced, especially for the annulus data prediction.
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Figure. 6 Trained RF ML Model CHF Prediction for 90% Subset

The developed NN model had very similar performance as the RF model, indicating that both ML methods
can be effectively used in constructing the CHF model for nuclear applications. It has been proved in the
study by Jin et al., 2021 [5] that the DKIML is able to not only solve the “black-box” problem existed in
pure ML process but also generate robust final prediction results.
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Figure. 7 Trained NN ML Model CHF Prediction for 90% Subset

The trained RF and NN models are then tested by the 10% subset CHF data in order to make sure that
they exhibit similar behavior when predicting unseen data. The testing results are shown in Figure 8 for
RF and Figure 9 for NN, respectively. It can be seen from both figures that the ML models developed are
indeed reliable in both cases with even better statistics due to smaller data set and less scatter. However,
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the better statistics obtained for the annulus does not necessarily indicate that the ML models are better
for annulus. This is partially due to the much less data was collected for the annulus than that of tube.
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1.2. Performance of the New ML LUT Models

The comparisons made in the previous section shows the superior capabilities of the DKIML models as
compared to the pure Groeneveld LUT. But it’s usually difficult to apply such trained models in actual
practices such as incorporating them into numerical analysis tools. As a result, it is desired to construct a
new CHF LUT based on the ML predictions with simple structure but with improved accuracy and
reduced scatter. The same interpolation scheme of the Groeneveld 2006 CHF LUT was used in the present
construction process of new tables and the new table application range can be found in Table 1.

Figure 10 first shows RF LUT performance evaluated by the 10% testing subset. Compared with the
direct RF model prediction in Figure 11, it is observed that the new RF LUT has slightly larger error and
standard deviation. This is the expected behavior due to the linear interpolation method used. However,
when it is compared with the Groeneveld 2006 CHF LUT prediction of 10% subset in Figures 4 and 5,
significant improvement in model performance can be obtained, indicating that constructing a new LUT
using ML is effective.

Very similar trends were obtained for the NN LUT as well, as is shown in Figure 11. For both tube and
annulus, the CHF values can be well captured within 10% error, improving the original LUT capability
and as the same time eliminating the performance inconsistence in tube and annulus prediction.
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Figure. 10 Constructed NN ML LUT Prediction for10% Subset

A summary of the new ML model performance is summarized in Table II for tube and Table III for annulus.
The rRMSE values are also included. It can be seen that, no significant improvement can be achieved for
the tube geometry as compared with the conventional Groeneveld CHF LUT due to the fact that the old
LUT was originally constructed for tube geometry. However, significantly improvement is observed for the
annulus CHF prediction. Both the prediction mean, standard deviation as well as the rRMSE were reduced
by through applying of the ML technology.

Table II. Summary of the ML Model Prediction for 10% Final Testing Subset - Tube
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Tube CHF LUT ML Direct Prediction New ML LUT
2006 RF NN RF NN
Mean (u) 0.00 -0.04 -0.05 -0.13 -0.06
Std. (o) 0.451 0.325 0.349 0.394 0.345
rRMSE 0.110 0.077 0.113 0.350 0.111

Table I1I. Summary of the ML Model Prediction for 10% Final Testing Subset - Annulus

Annulus CHF LUT ML Direct Prediction New ML LUT
2006 RF NN RF NN
Mean (u) -0.76 -0.02 -0.01 0.085 -0.01
Std. (o) 1.476 0.297 0.325 0.366 0.335
rRMSE 0.181 0.057 0.063 0.099 0.065

3. CONCLUSIONS

In this study, motivated by the idea of constructing a new CHF LUT based on the advanced ML
techniques with improved accuracy and reliability, extensive efforts were focused on the development of
the domain knowledge informed machine learning models using RF and NN methods. The models were
developed for the various vertical flow conditions within tube and annulus geometry. An extensive
experimental CHF data were collected in the current study for both DNB and DO type CHF, which was
used to train and validate the ML models with the Groeneveld 2006 look-up table being the domain
knowledge. The key input parameters used include system pressure, mass flux, channel hydraulic
diameter as well as the local fluid quality.

Base on the results obtained for the final testing subset, it was found that the new ML look-up table shows
improved accuracy for conditions relevant to PWRs and BWRs. The RF and NN models typically have
similar performance. In addition, its domain knowledge informed nature ensures that a rationale
prediction can be made, thus accounting for the underling physics in the machine learning model training
process. The new ML LUT has exactly the same structure and interpolation scheme as the Groeneveld
2006 LUT. It can be easily applied into practical use or in various numerical analysis tools to achieve
superior performance. In the future, thorough evaluation will be performed to investigate the uncertainty
and sensitivity of the new LUT in terms of input data and the new LUT will be used in actual nuclear
power plant safety analysis.
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APPENDIX A

The constructed ML CHF look-up table can be found at: https://github.com/doubtperfect/ML_CHF_LUT.
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