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ABSTRACT 
 
Accurate prediction of CHF under various fluid flow conditions continues to be required for design, 
operation and safety analysis of light water reactor rod bundles. Due to the lack of in-depth physical 
understanding as well as limited high-resolution data in the micro-scale flow and heat transfer, the 
existing models feature a sub-optimal uncertainty band. In this study, driven by the prior domain 
knowledge information obtained, an improved CHF look-up table is developed through unified machine 
learning algorithms for the vertical flow conditions within tube and annulus geometry. The Groeneveld 
2006 look-up table is used as the domain knowledge to train machine learning process against tube and 
annulus CHF data for both DNB and DO type. The new look-up table shows improved accuracy for 
conditions relevant to PWRs and BWRs. In addition, its domain knowledge informed nature ensures that 
a rationale prediction can be made, thus accounting for previous valuable information in the machine 
learning model training process. 
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1. INTRODUCTION 
 
Despite the long-lasting and extensive research campaign focused on the phenomenon of critical heat flux 
(CHF) phenomenon in the field of thermal-fluid sciences for decades, our fundamental understanding as 
well as the existing prediction capabilities for accuracy CHF occurrence are still progressing. This is 
partially due to the fact that there are many complexed two-phase flow and heat transfer processes 
involved (type of fluids and/or heating methodology, fluid local velocity and temperature distribution, 
local vapor generation mechanisms and density, sub-scale two-phase flow interface behavior, micro-scale 
heating surface morphology, system mass flow rate and pressure, etc.) and the limited resolution can be 
achieved by both available measurement techniques and analytical methodology under high-temperature 
high-pressures conditions relevant to nuclear industry. 
 
Depending on different flow conditions and heat transfer mechanisms, CHF can be further distinguished 
as the dryout (DO) type, corresponding to high quality and low mass flux, and departure from nucleate 
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boiling type (DNB), corresponding to high subcooling and high mass flux. As a result, many correlations 
and alternative methods have been developed for better prediction of this phenomenon. For example, the 
W-3 correlation developed at Westinghouse [1], series of CISE correlations developed and improved at 
MIT [1]; GEXL correlation developed by GE [1]; CHF look-up table methodology developed by 
Groeneveld et al., 2007 [2]; and three-field model by Zhao et al., 2003 [3]. In order to further improve the 
operating efficiency and safety margin of energy systems, more accurate CHF prediction models are 
desirable. 
 
Along with the significant advances in modern computational science and optimization theory, machine 
learning (ML) based regression techniques are quickly drawing attentions and provide an alternative 
approach to conventional predictive tools. The ML approach has unique strength in tackling complicated 
and non-linear problems with quick convergence speed, which makes it very suitable for solving multi-
scale and multi-physics engineering problems like the one encountered in two-phase flow mass and heat 
transfer. Recently, a number of researchers investigated the feasibility of applying the ML techniques in 
predicting key thermal-hydraulic and safety parameters in nuclear engineering including Kim. et al., 2021 
[4] for narrow rectangular channel applications, Jin et al., 2021 [5] and Zhao et al., 2020 [6] for CHF 
model development based on domain knowledge informed ML in various geometries, Park et al., 2020 [7] 
for wall temperature prediction at CHF, as well as He and Lee, 2018 [8] for CHF table construction using 
support vector machine. 
 
This paper summarizes the recent effort in developing a new LUT based on the unified domain 
knowledge informed machine learning (DKIML) model trained for predicting the CHF in upward flow 
systems of various geometries (tube and annulus). The Groeneveld 2006 CHF LUT [2] is used as the 
domain knowledge to guide the learning process. Then, two advanced regression methods: the deep feed-
forward neural network (NN) and random forest (RF) are used to construct unified CHF models. Then, a 
new LUT is constructed in the same way as Groeneveld 2006 CHF LUT based on the ML models, which 
are validated by experimental data. Improved prediction performance is obtained for the new LUT. The 
developed ML LUT can be validated and implemented into existing numerical codes to further improve 
their prediction capability and robustness. 
 
2. DESCRIPTION OF METHODOLOGY 
 
The two advanced ML methods that will be applied and evaluated in the current study are the random 
decision forest (RF) and the feed-forward deep neural network (NN). This section will provide a brief 
introduction of the two methods and the domain knowledge informed ML. 
 
2.1.  Introduction of ML Methods for Regression 
 
The random decision forest (RF) constructs a multitude of decision trees at training time. It is a fast and 
flexible tree-based ML technique that produces reliable results without engaging in cumbersome 
hyperparameter tuning. By randomly selecting observations and features via the bootstrap aggregation 
technique, multiple decision trees are built, and predictions from each tree are then averaged to derive the 
final output. For classification tasks, the output of the random forest is the class selected by most trees. 
For regression tasks, the mean or average prediction of the individual trees is returned. Figure 1 shows 
the configuration of the RF structure. 
 
The artificial neural networks were inspired by information processing and distributed communication 
nodes in biological systems. It is a collection of connected units or nodes called artificial neurons, which 
loosely model the neurons in a biological brain. An artificial neuron that receives a signal then processes it 
and can signal neurons connected to it. The "signal" at a connection is a real number, and the output of each 
neuron is computed by some non-linear function of the sum of its inputs and weights. Typically, neurons 
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are aggregated into layers. Signals travel from the first layer (the input layer), to the last layer (the output 
layer), possibly after traversing the layers multiple times. Weights for each neurons are updated after each 
training batch through backward propagation base on different gradient descent learning algorithms, such 
as the Stochastic Gradient Descent (SGD) or Adaptive Moment Estimation (ADAM). The training process 
is repeated for certain times (epochs) such that the errors (e.g., “mse”, “logcosh”, etc.) are adequately 
reduced. A sketch of the NN architecture can be found in Figure 2. 
 

 
Figure 1. Sketch of Random Forest Method 

 

 
Figure 2. Sketch of Neuron Network Method 

 
Both the above two regression methods allow for high generalization ability when properly sampled and 
trained. However, their training processes are generally unknown to the outside, which creates a so-called 
"black-box" problem. 
 
2.2.  Development of Domain Knowledge Informed Machine Learning Models 
 
In order to solve this “black-box” problem, the DKIML method are introduced in the current work, as is 
shown in Figure 3. This method stems from the idea that already established and validated prior knowledge 
space information is valuable and can be used to assist the ML training process and reduce un-physical data 
scatter, since the prior knowledge, usually existed as correlations, models or formulated database, is capable 
of providing credible baseline solutions for the ML training process. 
 
For DKIML, a conventional physics model, 𝑓(𝑥), is selected as the fixed-structure prior model providing 
baseline prediction, 𝑦&!. ML is then used to learn from the residuals, 𝜀, between true value, 𝑦, and the physics 
model predicted output, which would effectively minimize the ML training loss function. Input feature 
space, 𝑥, is available to both components of the prior and ML model, although their input features might be 
different. Once the DKIML model is trained, the final predicted CHF output, 𝑦&", can be obtained by adding 
the baseline prediction, 𝑦&!, with ML predicted residual, 𝜀#̂. 
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Figure. 3 DKIML Workflow 

 
In the current study, new CHF LUT table similar to the Groeneveld 2006 version will be constructed. 
Therefore, the Groeneveld CHF LUT is selected as the domain knowledge, based on which ML models will 
be developed and trained. Same to the original LUT, the model input features are the system pressure (𝑝), 
mass flux (𝐺), flow channel hydraulic diameter (𝐷$), and local quality (𝑥$). And the model output is the 
CHF value. Both NN and RF methods will be used to develop CHF model. The performance of the final 
predicted output 𝑦&" is evaluated by its mean and standard deviation, as well as by the relative root-mean-
square error (rRMSE): 

𝑟𝑅𝑀𝑆𝐸 = '!
"
∑ )#$!

"%#"

#"
*
&

"
'(!      (1) 

where, 𝑛 is the size of the dataset. 
 
2.3.  CHF Dataset 
 
A collective CHF data set has been obtained and cleared for use from available literature both in upward 
tube [9-13] and upward annulus [14-16] flow geometry. The present data set represents a wide range of 
flow and heat transfer operating conditions which includes both the DO and DNB type CHF. Table I shows 
the ranges for each input parameters for tube and annulus data set. It can be seen that the current data sets 
cover the entire operating ranges that will be encountered in a nuclear system. 
 

Table I. Input Space Ranges for Tube and Annulus 
 

Tube Min Max 
Pressure (kPa) 310 20000 
Mass Flux (kg/m2s) 241 7975 
Hydraulic Diameter (m) 0.0011 0.0375 
Quality (-) -0.48536 1 

 
Annulus Min Max 
Pressure (kPa) 4088.6 15513 
Mass Flux (kg/m2s) 353.98 5913.2 
Hydraulic Diameter (m) 0.004572 0.0127 
Quality (-) -0.14622 0.615 

 
There are in total 1699 and 464 data points collected for the tube and annulus geometry, respectively. In 
order to evaluate the overall performance of the new CHF LUT constructed by the ML models, a 10% 
subset was retained for the final model testing for each tube and annulus data set. This subset is not used in 
the ML training process such that the ML models developed can be evaluated independently. On the other 
hand, the rest 90% subset is used in the training process. 
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To guarantee a fair evaluation of the ML models developed, the final testing subset sampled should be 
representative in terms of statistics for the overall dataset. Both tube and annulus data sets were randomly 
shuffled multiple times before sampling. Figures 4 and 5 show the Groeneveld 2006 CHF LUT predictions 
for the two subsets for both tube and annulus geometry. Several insights can be drawn from the comparison. 
1). Both the sampled 10% subsets for tube and annulus cover the same ranges of CHF values; 2). The 10% 
subsets have similar mean and standard deviation as the 90% subsets, indicating that it is a valid and 
representative dataset for final testing; 3). The Groeneveld 2006 CHF LUT can predict both the tube and 
annulus CHF values within 70% error span. However, due to its simple geometry, the prediction statistics 
for tube are found to be better compared with that of annulus. Also note that for the annulus geometry, the 
heated diameter, 𝐷", was used rather than the hydraulic diameter, 𝐷$, in the LUT to achieve better 
performance. 
 

  
(a) ML Data Set (90%) 

  
(b) Final Testing Data Set (10%) 

Figure. 4 Groeneveld 2006 CHF LUT Prediction - Tube 
 

  
(a) ML Data Set (90%) 
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(b) Final Testing Data Set (10%) 

Figure. 5 Groeneveld 2006 CHF LUT Prediction - Annulus 
 
In the ML model training process, the 90% subset was further shuffled and divided into training set and 
validation set with ratio 9:1. Data in the training set will be seen and learned by the training process and 
will be used to obtain hyperparameters for the model. While data in the validation set will be used to 
evaluate the model performance and adjust these parameters accordingly at the end of each batch iteration. 
 
3. RESULTS AND DISCUSSION 
 
This section presents the LUT and ML model prediction results for the collected CHF dataset. The model 
architecture for RF is: 65 trees/estimators, 50%-70% features in each individual tree, no regularization. The 
model architecture for NN is: 4/32/64/32/1, Adam optimizer (learning rate = 0.001), “ReLU” activation, no 
regularization. An extensive grid search was also performed to determine the optimal epoch number and 
batch size (epoch = 250, batch size = 25 for tube and epoch = 150, batch size = 20 for annulus). In addition, 
to avoid the potential overfitting problem, both RF and NN are trained using 10-fold cross-validation 
technique. 
 
1.1. Performance of Trained ML Models 
 
Figures 6 and 7 show CHF prediction capabilities for tube and annulus during the training process by RF 
and NN using the 90% subset, respectively. At the end of training, the RF model obtained was able to 
significantly reduce the CHF prediction error for tube and annulus from 30% down to only 10%. The 
prediction mean and standard deviation were also reduced, especially for the annulus data prediction. 
 

  
(a) ML Data Set (90%) - Tube 
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(b) ML Data Set (90%) - Annulus 

Figure. 6 Trained RF ML Model CHF Prediction for 90% Subset 
 
The developed NN model had very similar performance as the RF model, indicating that both ML methods 
can be effectively used in constructing the CHF model for nuclear applications. It has been proved in the 
study by Jin et al., 2021 [5] that the DKIML is able to not only solve the “black-box” problem existed in 
pure ML process but also generate robust final prediction results. 
 

  
(a) ML Data Set (90%) - Tube 

  
(b) ML Data Set (90%) - Annulus 

Figure. 7 Trained NN ML Model CHF Prediction for 90% Subset 
 
The trained RF and NN models are then tested by the 10% subset CHF data in order to make sure that 
they exhibit similar behavior when predicting unseen data. The testing results are shown in Figure 8 for 
RF and Figure 9 for NN, respectively. It can be seen from both figures that the ML models developed are 
indeed reliable in both cases with even better statistics due to smaller data set and less scatter. However, 
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the better statistics obtained for the annulus does not necessarily indicate that the ML models are better 
for annulus. This is partially due to the much less data was collected for the annulus than that of tube. 
 

  
(a) Final Testing Data Set (10%) - Tube 

  
(b) Final Testing Data Set (10%) - Annulus 

Figure. 8 Trained RF ML Model CHF Prediction for 10% Subset 
 

  
(a) Final Testing Data Set (10%) - Tube 
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(b) Final Testing Data Set (10%) - Annulus 

Figure. 9 Trained NN ML Model CHF Prediction for10% Subset 
 
1.2. Performance of the New ML LUT Models 
 
The comparisons made in the previous section shows the superior capabilities of the DKIML models as 
compared to the pure Groeneveld LUT. But it’s usually difficult to apply such trained models in actual 
practices such as incorporating them into numerical analysis tools. As a result, it is desired to construct a 
new CHF LUT based on the ML predictions with simple structure but with improved accuracy and 
reduced scatter. The same interpolation scheme of the Groeneveld 2006 CHF LUT was used in the present 
construction process of new tables and the new table application range can be found in Table I. 
 
Figure 10 first shows RF LUT performance evaluated by the 10% testing subset. Compared with the 
direct RF model prediction in Figure 11, it is observed that the new RF LUT has slightly larger error and 
standard deviation. This is the expected behavior due to the linear interpolation method used. However, 
when it is compared with the Groeneveld 2006 CHF LUT prediction of 10% subset in Figures 4 and 5, 
significant improvement in model performance can be obtained, indicating that constructing a new LUT 
using ML is effective. 
 
Very similar trends were obtained for the NN LUT as well, as is shown in Figure 11. For both tube and 
annulus, the CHF values can be well captured within 10% error, improving the original LUT capability 
and as the same time eliminating the performance inconsistence in tube and annulus prediction. 
 

  
(a) Final Testing Data Set (10%) - Tube 
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(b) Final Testing Data Set (10%) - Annulus 

Figure. 10 Constructed RF ML LUT Prediction for10% Subset 
 

  
(a) Final Testing Data Set (10%) - Tube 

  
(b) Final Testing Data Set (10%) - Annulus 

Figure. 10 Constructed NN ML LUT Prediction for10% Subset 
 
A summary of the new ML model performance is summarized in Table II for tube and Table III for annulus. 
The rRMSE values are also included. It can be seen that, no significant improvement can be achieved for 
the tube geometry as compared with the conventional Groeneveld CHF LUT due to the fact that the old 
LUT was originally constructed for tube geometry. However, significantly improvement is observed for the 
annulus CHF prediction. Both the prediction mean, standard deviation as well as the rRMSE were reduced 
by through applying of the ML technology. 
 

Table II. Summary of the ML Model Prediction for 10% Final Testing Subset - Tube 
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Tube CHF LUT 
2006 

ML Direct Prediction New ML LUT 
RF NN RF NN 

Mean (𝜇) 0.00 -0.04 -0.05 -0.13 -0.06 
Std. (𝜎) 0.451 0.325 0.349 0.394 0.345 
rRMSE 0.110 0.077 0.113 0.350 0.111 

 
Table III. Summary of the ML Model Prediction for 10% Final Testing Subset - Annulus 

 

Annulus CHF LUT 
2006 

ML Direct Prediction New ML LUT 
RF NN RF NN 

Mean (𝜇) -0.76 -0.02 -0.01 0.085 -0.01 
Std. (𝜎) 1.476 0.297 0.325 0.366 0.335 
rRMSE 0.181 0.057 0.063 0.099 0.065 

 
3. CONCLUSIONS  
 
In this study, motivated by the idea of constructing a new CHF LUT based on the advanced ML 
techniques with improved accuracy and reliability, extensive efforts were focused on the development of 
the domain knowledge informed machine learning models using RF and NN methods. The models were 
developed for the various vertical flow conditions within tube and annulus geometry. An extensive 
experimental CHF data were collected in the current study for both DNB and DO type CHF, which was 
used to train and validate the ML models with the Groeneveld 2006 look-up table being the domain 
knowledge. The key input parameters used include system pressure, mass flux, channel hydraulic 
diameter as well as the local fluid quality. 
 
Base on the results obtained for the final testing subset, it was found that the new ML look-up table shows 
improved accuracy for conditions relevant to PWRs and BWRs. The RF and NN models typically have 
similar performance. In addition, its domain knowledge informed nature ensures that a rationale 
prediction can be made, thus accounting for the underling physics in the machine learning model training 
process. The new ML LUT has exactly the same structure and interpolation scheme as the Groeneveld 
2006 LUT. It can be easily applied into practical use or in various numerical analysis tools to achieve 
superior performance. In the future, thorough evaluation will be performed to investigate the uncertainty 
and sensitivity of the new LUT in terms of input data and the new LUT will be used in actual nuclear 
power plant safety analysis. 
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APPENDIX A 
 
The constructed ML CHF look-up table can be found at: https://github.com/doubtperfect/ML_CHF_LUT. 
 


