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Critical Mineral Resources from Coal

Projected increase in demand for REEs driven by
wind powet,
electronics

electric vehicles, and advanced

Global REE trade is monopolistic with ~85-95%
of trade controlled through China

Domestic mining requires environmentally harsh
chemicals and practices making it impractical

Coal i1s naturally REE-rich, and 1ts utilization
byproducts are further enriched.
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Figure 2. Global REE production 2015 (USGS, 2016).

GLOBAL REE

PRODUCTION

B CHINA 82.8%
B AUSTRALIA 7.9%
B USA 3.2%
INDIA 2.4%
B RUSSIA 2%
B THAILAND 1.6%

MALAYSIA 0.2%

http://minerals.usgs.gov /minerals/pubs/mcs/2015/mcs2015.pdf




REE Content in Coal Resources = [NATIONAL
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~70 to 140 ppm REE
DO 10.1016/j.c0al.2016.04.005
Acid Mine Drainage Coal Rock Refuse Coal Fly Ash
(0.07-7 ppm)

(~250 ppm REE) (~450 ppm REE)

DOTI: 10.1016/.c0al.2006.01.009 DOI: 10.1016/j.c0al.2011.05.006 DOT: 10.1007/511356-015-4111-9



https://www.indiamart.com/proddetail/coal-fly-ash-16965807573.html
http://niwr.info/media/research/test

Multiple Processing Steps Required
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Rapid Characterization Methods Needed N NATIONAL
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. =B Technique Instrument | Detection Limit Portable?
B\ Xy ot
° Inductively-Coupled ~$180k Part-per-trillion
Plasma Mass-Spectrometry
X-Ray Fluorescence ~$13-17k 10s of part-per-million Yes

Spectroscopy

Laser-Induced Breakdown ~$30-50k 10s of part-per-million Yes
Spectroscopy

Luminescence ~$18-35k 10s of part-per-billion  Yes
Spectroscopy

Luminescent sensors can provide significantly higher sensitivity than portable
XRF or LIBs techniques at a comparable cost, while providing significant cost
and time savings over ICP-MS



https://www.geology.pitt.edu/facility/elemental-analysis-instrumentation

Goal: Develop Luminescent REE Sensor N=|NAronaL
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Certain REEs Are Inherently Emissive! = |y
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Intense REE-Centered Emission N=|tanona:
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Raymond Lab, Cal Berkley DOI: 10.1021/acs.inorgchem.7b02861

Eul

DOLI: 10.1016/j.c1¢i.2010.05.007

Relative Emission Intensity
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http://www.cchem.berkeley.edu/knrgrp/ln.html

A Sensitizer Material is Required N=|aronaL
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Sensitization Mechanisms N = [NATIONAL
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Forster Resonance Energy Transfer Dexter Energy Transfer Photoinduced Electron Transfer

‘ Energy Transfer .

} d

1. Electron Transfer

N

Energy Transfer

d

hv

Donor Acceptor

Donor Acceptor N

Donor Acceptor 2. Back Electron Transfer
REE Emission

* Through Space; Dipole-Dipole Coupling * Through bond; double electron exchange + 2 distinct electron transfer steps
» Efficiency Decays with distance as d*© » Efficiency Decays with distance as e * Observed in Eu(lll) and Yb(lll)
* Spectral Overlap Required * Spectral Overlap Required * No Spectral Overlap Required

Crawford*, Ohodnicki, Baltrus, Journal of Materials Chemistry C 2020, 8, 7975
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J. Mater. Chem. C. Review on REE Sensing N=|NATioNAL
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Materials Chemistry C -

M) Check for updates Materials for the photoluminescent sensing of
rare earth elements: challenges and
opportunitiest

Citethis: DOI: 10.1039/d0tc01939a

Scott E. Crawford, "= * Paul R. Ohodnicki Jr'® and John P. Baltrus

Rare earth elements (REEs) are widely used in high-performance technologies including wind turbine
magnets, electric vehicle batteries, lighting displays, circuitry, and national defense systems. A combination
of projected increasing demand for REEs, monopolistic economic conditions, and environmental hazards
associated with the mining and separation of REEs has led to significant interest in recovering REEs from
alternative sources such as coal waste streams. However, rapidly locating high-value waste streams in the
field remains a significant challenge primarily because of slow analytical methods, and existing techniques
with low limits of detection such as inductively-coupled plasma mass spectrometry suffer from high
equipment and operating costs and a lack of portability. Alternatively, luminescence-based sensors for
REEs present a potential path for sensitive, portable, low-cost detection. The development and design of
materials suitable for the luminescence-based detection of REEs are crucial to realizing this potential.
Here, we review a broad range of materials used (or that have the potential to be used) for REE
luminescence-based detection, including organic compounds, biomolecules, polymers, metal complexes,
nancparticles, and metal-organic frameworks. A general overview of REE optoelectronic properties and
luminescent sensing protocols is first presented, followed by analyses of material-specific sensing

Received 20th April 2020, mechanisms, emphasizing sensing figures of merit including sensitivity, selectivity, reusability and
Accepted 5th June 2020 portability. The review concludes with a discussion of remaining barriers to luminescent REE sensing, how
DOI: 10.1039/d0tc01939a each sensor class may be best deployed, and directions for future material and spectrometer design.

Taken together, this review provides a broad overview of sensing materials and methods that should be
rsc.lifmaterials-c foundational for the continued development of high-performance sensors.
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Luminescent Sensors for Rare Earth Elements
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Opportunity for Material Science Solution
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Elements: Challenges and Opportunities” in Journal of Materials Chemistry C

For additional details, see our recent review article: “Materials for the Luminescent Sensing of Rare Farth
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Opportunity for Material Science Solution N=|MAToNAL
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Crawford*, Ohodnicki, Baltrus, Journal of Materials Chemistry C 2020, 8, 7975




MOFs as REE Sensors

Metal-Organic Framework REE Sensors

Zinc-Adeninate MOFs
REE Encapsulated by lon Exchange

REE Chelated by Linker
UiO MOFs r

v" Highly Tunable X Long term instability
v' Easy Synthesis
v Facile Sensor Integration

v Dispersible in Water & Organics
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Increasing Eu(lll)

—

DOI: 10.1021/acs.cgd.7pb00219

Color-Tunable
Luminescent MOFs

Sm"@bie-MOF-1 Tb"@bio-MOF-1 Eu"@bio-MOF-1

DOI:10.1021/ja109103t




Initial Effort: BioMOF-100, an Anionic MOF N=|Nanona
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Sensitization of 6 REEs with One Material! N=|NATONAL
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Crawford*, Gan, Lemaire, Millstone, Baltrus, and Ohodnicki, .ACS Sensors 2019, 4, 1986
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Sub-ppm Limits of Detection for é REEs! N- MATIONAL
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0.088 0.29
0.51 1.7 572 18
0.38 1.2 597 24
0.043 0.14 617 36
0.28 0.85 980 54
Nd 0.36 1.2 1056 24

Sub-ppm limits of detection (LODs) measured for all REEs analyzed, with low-ppm or ppb-level limits of
quantification (LOQ)s). The best results are obtained for Eu and Th.

Crawford* Gan, Lemaire, Millstone, Baltrus, and Ohodnicki, AACS Sensors 2019, 4, 1986




Selectivity is a Significant Challenge = BTy
TL R8RSR

Location pH Total REE Fe (ppm) Al (ppm) Ca(ppm) Mg (ppm)
(Ppm)

Sitai Mine, China  3.61 .0612 4.73 8.83 249 1.03
Clarion, PA 4.4 1.134 385 9.1 149 236
Pittsburgh, PA 0.3 0.00029 22 0.1 66 20.1
Germany 4.8 0.073 0.01 4.01 405 193
Germany 3.8 4.7 404 88.2 57.8 1,139
Romania 3.0 1.58 1500 237 402 88.3
Romania 3.0 0.38 538 74.8 386 141
Sweden 3.2 0.035 0.3 1.10 396 57.4

Competing metal 10ns have concentrations that can be thousands of times higher than total REE content, in
addition to highly acidic matrices

U.S. DEPARTMENT OF




Secondary Metal Quenching
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Fe (II) sulfate 1s used as a representative AMD secondary metal. Quenching behavior is observed for all BtoMOF -
100/REE systems, with element-specific differences in the quenching profiles.

Crawford*, Gan, LLemaire, Millstone, Baltrus, and Ohodnicki, ACS Seusors 2019, 4, 1986
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Acidic Conditions also Reduce Signal =Ny
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Similarly, the addition of HCI leads to a decrease in emission for BloMOF-100/REE systems. Eu®* shows the
highest tresistance to quenching from proton addition, with signal detected at 90 ppm H* (pH 1.1)
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One Alternative: Measure Post-Extraction —|NATIONAL
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Intensity (a. u.)
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DOI110.1039/JA9900500371
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A representative visible-emitting REE (Eu) and NIR-emtting REE (Nd) both
exhibited detectable emission 1n hexanes post-extraction using BioMOF-100

Crawford*, Gan, Lemaire, Millstone, Baltrus, and Ohodnicki, ACS Sensors 2019, 4, 1986
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https://en.wikipedia.org/wiki/Trioctylphosphine_oxide

Choice of Linker Influences Selectivity i

TL TECHNOLOGY
Anionic Zinc Adeninate MOF LABORATORY
| Second Linker |
]
@]
Terbium — _ Terbium
Europium HO OH Europium
é | OR
Ho o
DMQ o
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Wavelength (nm) Wavelength (nm)
Emission in Acid Mine Drainage Matrix: 3.3 pH, [Cal = 59 ppm, [Mn] = 29 ppm, [Al]l = 10 ppm

Crawford, S.,)* Ellis, J., Ohodnicki, P, Baltrus, J., . ACS Applied Materials & Interfaces 2021, 13, 6 7268
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Detecting Down to <10 ppb REEs N=|AToNAL
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[Zn,;(ad)(BTC),(DMA), 5.75DME, 0.25H,0] 8x1 170£10  600%£ 90 70 £ 10

LOQ 27 + 4 550+ 30 2000+ 300 220+ 40
Zn,(Ad),(BTC),(DMF)O, 4DMA,3DMF, H,0 LOD 132 390 £ 60 1000 £ 100 74%3

LOQ 44 +3 1300+ 200 3400+ 500 240+ 10
Zn;(Ad)(BTC),(H,0) - DMA xDMF-yH,O LOD 10 £ 1 230 £ 30 490 £ 30 46 £ 2

LOQ  33+5 800+ 100 1600+ 100 152+ 6
[Zng4(ad),(BPDC),O*DMA, SDMF, 11H,0] LOD 831 0.8 190 = 20 190 = 30 44 + 3

LOQ  28+2 63080 600%+100 150+ 10
Zng4(ad),(BPDC), O, * 4DMA, 499DMF, 31H,0 LOD 5.7 0.6 200 £ 30 270+ 10 18 £ 4

LOQ 1842 700+ 100 900 * 40 60 £ 10
{DMA,[Zn,(1-O)(ad) (BPDC),]} ., LOD 102 190 = 30 184 + 6 20+ 3

LOQ  33+¢ 620+ 80 610+ 20 679
Zn4(ad),NDC) (OH)2:2DMA, 35DMF, 23H,0O LOD - - - 30£1

LOQ 98 + 3
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Sensitization of Multiple REEs N = [NanoNAL
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Selectivity Influenced by Linker, Structure =|NanionaL
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Does it Matter? Tests in AMD Matrix
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BTC MOFs sensitize
Tb, Eu even in an acid
mine drainage matrix

pH=33

[Ca] = 59 ppm

[Mn] = 29 ppm
[Al] = 10 ppm

[Fe] =320 ppb




Linker-Dependent REE Coordination = [ENERRY
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BTC MOFs exhibit enhanced Eu hypersensitive transition peak at 617 nm relative to the BPDC and NDC
MOFs, indicating linker-dependent REE coordination.
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Development of Low-Cost Sensor N=|Narona
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Integration onto Portable Sensor N=|NAroNa
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* Rapid detection (minute time-scale)
* 10s of part-per-billion detection limits for Tb, Eu
* Reusable tip/Inexpensive tip replacement ($0.06/MOF-coated tip)
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Signal Enhancement from Drying =[Ny -
T L |[ESHNOLOGY
LABORATORY
1800 -
— Solution
1500 -
> 1200 J‘ Drying sensor tip reduced vibronic

450

, U.S. DEPARTMENT OF
b

500

560 | 660 | 660 | 760
Wavelength (nm)

quenching from solvent, improving signal

Can reduce the detection limit by ~a factor
of 2




Sensitive, Reversible Sensing =|NATIONAL
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Performance in Simulated Process Stream
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Concluding Thoughts N=[MenoyA
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* Metal-Organic Frameworks (MOFs) exhibit significant promise as rare earth element
sensors, with limits of detection now down to sub-10 ppb in water

* Correlating MOF structure (pore dimensions, emission properties, pore functionality,
charge) with REE uptake and sensitization will aid in the rational design of MOF-based
Sensors

* Zinc-Adeninate MOFs with BTC linkers may help overcome selectivity challenges in harsh
matrices

* Inexpensive portable sensors may be developed with low cost (<$20k) for field use, with
some advantages over conventional commercial spectrometers
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