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Learning Objectives

* Describe the attributes of a load profile.

* Explain why weather-normalization is useful in analyzing electricity consumption.

* Describe how a data-driven grey-box model can be used for modeling classrooms in a school building

* Quantify capability of a school building to provide energy flexibility for a period of time when needed by the grid

. &n%erlgtand a method for conducting peak load and energy use analyses for a heat-wave using Building Energy
odeling.

* Discern the advantages and disadvantages of using detailed Building Energy Models for heat wave analyses.

* Describe the requirements and potential approaches to modeling large populations of buildings to investigate
coordination of grid flexible loads.

* Describe the possible causes leading to systematic errors in the prediction of aggregate grid loads

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will
be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with AIA/ASHRAE for continuing professional education. As such, it does not include any content that may be deemed or
construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or
dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
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Introduction



Background

o Heat waves are a prolonged period of abnormally hot weather
that cause:
o Heat related deaths or hospitalization
o Abnormally high demand on the electrical grid via
elevated Air Conditioning (AC) loads
o AC s the dominant source of increased electricity
demand during a heat wave (Choobineh et. al., 2019).
o Degradation of efficiency for power generation
o Solar Photo-voltaic efficiency degrades,
o Line losses increase
o Heat rejection at thermal plants is less efficient
o Power outages
o Directly — equipment failure
o Indirectly — High temperatures and dryness leads to a fire
that damages infrastructure

o Cro p failure https://www.pinterest.com/pin/155303887119794294/
o Global warming is increasing magnitude, duration, and frequency
of heat waves (Perkins, 2015; Horton et. al., 2016; IPCC, 2014)

o Urban environments can expect +14°C (25°F) peak waves from
normal average (Santamouris, 2020)



AC/Global Warming/Heat Wave Hazard Causal Loop

In urban environments,

heat rejection from AC HVAC coolant leaks

systems can give and increased fossil  Increased GHG
positive feedback that fuel- based power ~ drives Global
elevates external increases green house warming
ambient temperatures gasses (GHG)

even further (Viguié et. 4
al., 2020).

Public Domain

Positive feedback HVAC heat rejection and heat absorbing More HVAC installed to
between increasing surfaces creates urban heat island keep population cool
AC use and heat
waves calls for a
need for clean
energy and energy
efficient systems

Un-conditioned spaces
are more likely to be
hazardous during heat
waves

Figure obtained from ASHRAE Kansas City 2019 presentation background



Resilience to Heat Waves

o Resilience to heat wave events can be enhanced by several approaches:

Demand side Outage

S ppply e (Buildings) Performance

Bolster electric Energy
generation or efficiency,
transmission Flexible loads

Microgrids,
Passive Designs

o Resilience is costly and not always positively correlated to energy efficiency (Sun et. al, 2020)

o The focus here is a necessary step toward any of these approaches: Quantify heat waves effects on
power demand from the built environment




Scales for resilience analyses
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Institutional Heat Wave Analyses

Large institutions often have buildings that support critical operations for
which interruption due to a heat wave could cause:

o Economic losses

o Infrastructure downtimes for large populations

o Loss of one-of-a-kind assets that are irreplaceable
o Loss of critical or confidential information

o Damage to the environment

o Injury or death for personnel

Assuring these operations are resilient to heat waves is import to avoid such
conseguences



NM SNL Heat wave study

The New Mexico (NM) site heat
wave study was conducted
rapidly with now need for
calibration of any of the
individual 97 BEM used.

The NM study has been
published in Energy and Buildings
(Villa, 2021)

The California (CA) site study is
the focus of this presentation. It
ended up being much more
difficult even though it only
involved 23 buildings

Both studies’ objective was to
qguantify the effect on peak
electric load due to heat waves
at their respective sites
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Methods and Data Input



Data input:

1) Energy meter data for the most recent year.

2) Weather data for BEM

3) Downscaled climate model future temperatures
4) Monthly institution-wide energy use bills

Procedure:
1) Filtering meter data

2) Calibration of indvididual BEM models
3) Deriving the heat wave parameters

thw: Thw: ﬁthw-
4) Removing non-applicable time steps
5)
6)
7)
8)
9)

10) Extrapolation of the data driven regression

Performing heat wave cases.

Curating data-driven peak-load dataset

11) Scale the meter results to site-wide results«———

12) Compare data and model driven predictions

@hcr API and TMY3

1. Data
filtering

Create a log-linear regression of peak load versus peak temperature

This step was
not needed for
the NM study

|

4. Iteratively )

remove reduced
operations

from fo(t) )

)

2. BEM model

calibrations

5. Calibrate )

IX Model via
Po:Pm . Pt

(Equation 1) )
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Calibrating the aggregate model (IX = model used here - Villa, 2017)

Calculating model output peak load linear regressions

6. Apply heat
wave cases
to IX model
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7. Linear
regression
of model
peak loads

@de energy monthly bills

Not needed for CA
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vs. Peak
Temperature
data set

8. Peak load )
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9. Loglinear
regression
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10. Extrapolate
peak load 95%
confidence

bounds

12. Outputs: 1. Increase
in daily peak load, 2. In-
crease in net energy use




Calibration function

pm[(l _ po)f(t) + fmaxpu] + Dt 1= Po =0

i i i tl ] » -
A scaling functionis  fnew (&, Pos P, Pt) pm[_pofnew_i(t) + (py + 1)f(t)] +p, —-1<p,<0

applied to the
institution-wide

power signal (Step 5) frew_, () = fmax F(t) - fmax fmin

fmax - fmin fmax - fmin
X X — original e Pm = 1.10 — original  :---- pPo = 0.50 — original @ seee- p: = 0.10
The calibration Pm =067 === pp=125 oo po=-1.00 ~——- p,=0.90
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example function used to illustrate parameter effects: f(t) =t(t + 1)(t — 0.9) (¢t —0.2) + 0.5



Data Input

o Weather data came from the Lawrence Livermore National Laboratory (LLNL) (LLNL, 2020) directly adjacent to the SNL CA
site.
o Missing Total horizontal solar radiation, cloud type, and cloud were filled in with Typical Meteorological Year 3 (TMY3) (Wilcox and

Marion, 2008).
o Meter data came from the SNL energy analytics database through a Python API.
o Verified to be 0.32% variation between the yearly sum of energy between 2019 monthly bills and the 15 min meter data.
o The heat wave scenario from NEX-DCP30 model results (Thrasher et. al., 2013).
o ATy,,=3.4°C (6.1°F), t;,,,=August 27", At;,,,= 7 days
o Unlike the NM case, the 2.0°C (3.6°F) volatility was not used due to lack of information about CA concerning increased volatility.
o The resulting scenario peak temperature of 45.1°C did not even break the current record high of 46.1°C, yet is still representative of
future heat waves according to NEX-DCP30 model results.
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Results



Individual model calibration results —Much more work for CA vs NM!

NMBE (%) CVRSME (%) Data Mean Power Model Mean Power
Calibrated Uncalibrated calibrated Uncalibrated Calibrated UnCalibrated

(kW) (kBTU /h) (kW) (kBTU/h) (kW) (kBTU/h)

1 -3414 -5209 4,228 404 4.26 E+404 1.013 3.458 35.6 121.5 53.79 121.5
2 =5.5 11.41 206.7 206.7 225.3 7T68.8 237.7 311 199.6 811
3 92 .86 87.31 101.9 97.15 193.4 659.9 13.83 4717 24.56 4717
4* 8.967 17.57 11.05 21.1 488.4 1667 444.6 1517 402.6 1517
5% -0.7239 37.61 23.05 45.59 37.98 129.6 38.25 130.5 23.7 130.5
6 -474 -178.6 476.9 226.6 102.7 350.3 589.3 2011 286.1 2011
T* 0.6584 51.78 7.819 56.5 593.2 2024 589.3 2011 286.1 2011
8* 0.6287 -8.661 17.98 81.37 101.6 346.7 101 344.5 110.4 344.5
9* 0.4323 -3.088 25.85 35.3 420.1 1433 418.3 1427 433.1 1427
10 -191.6 -260.1 198.1 282.5 106 361.7 309.1 1055 381.7 1055
11 -44.67 -78.66 69.07 105.9 213.7 729.1 309.1 1055 381.7 1055
m* -0.2531 -49.1 23.21 99.81 21.09 71.96 21.14 72.14 31.44 72.14
13 -18.89 31.5 42.31 49.83 31.95 109 37.98 129.6 21.89 129.6
14 -90.59 -93.12 147.9 190.1 15.07 51.42 28.72 08 29.1 98
15 -98.79 -192.5 163 310.9 16.69 56.96 33.19 113.2 48.82 113.2
16 -116.7 -120.6 170.5 162.3 70.1 239.2 151.9 518.3 154.6 518.3
17 -42.3 -41.2 51.58 111.2 118 402.6 167.9 572.8 166.6 H72.8
18 0.1673 77.76 57.42 97.75 129.7 442.5 129.5 441.8 28.86 441.8
19 24.57 24.57 61.26 61.26 32.91 112.3 24.82 84.69 24.82 R84.69
20 27.77 27.77 48.57 48.57 14.73 50.25 10.64 36.3 10.64 36.3
21% -1.07 47.08 14.6 58.97  36.19 123.5  36.58 124.8  19.15 124.8
EZ* -1.371 -43.79 18.49 60.07 110.1 375.7 111.6 380.9 158.3 380.9
23* -2.128 31.99 27.39 47.27 90.29 308.1 02.22 314.7 61.42 314.7
Unscaled total 27.38 35.9 27.91 40.4 3059 1.044E+04 2700 9214
Secaled total all data 2.563E-08 3.006E-07 5.242 7.202 4213 1.437TE+04 4213 1.437TE+04 4213 1.437TE+04
Scaled total filtered data 4.418E-08 1.469E-08 5.121 6.74 4213 1.437TE+04 4231 1.444E4+04 4236 1.445E4-04

* BEM that were G-14 compliant (NMBE < 10, CVRSME < 30) after calibration.
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Peak Load Regressions

Even after the manual BEM
calibrations the results between
data and 23 BEM were not as well
aligned.

The right-hand figure shows the
2019 weather data calibration

The left hand shows the model
projection based on the heat wave
which has been linearly scaled in
10 steps from normal weather to
the heat wave shown on slide 15

Note: Confidence intervals help estimate
uncertainty but give no information about
probability of the occurrence of a given peak
load!
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Peak Load Regression Results

Description Data (workdays) Workdays Fridays Weekends
SI English SI English SI English SI English
43.1°C mean predicted peak (MW /MMBTU) 6.962 23.76 7.647 26.09 7.448 25.42 5.417 18.48
+95% CI 7.669 26.17 7.899 26.95 T7.647 26.09 5.762 19.66
+50% CI 7.049 24.05 7.68 26.2 7.494 25.57 5.473 18.67
-50% CI 6.877 23.47 7.614 25.98 7.403 25.26 5.361 18.29
— -95% CI 6.321 21.57 7.395 25.23 7.25 24.74 5.072 17.31
37.2°C mean predicted peak (MW /MMBTU) 6.633 22.63 7.379 25.18 7.165 24.45 5.215 17.79
Heat wave to baseline % difference 4.965 3.631 3.949 3.879
Mean slope (MW /°C or 1/°C) 0.01425% 0.007918* 0.07881  0.1494 0.08322  0.1578 0.0595 0.1128
(MMBTU/®F or 1/°F)
+95% CI 0.01539* 0.00855% 0.09057 0.1717 0.09958 0.1888 0.0823 0.156
— -95% CI 0.01312* 0.007286* 0.06706 0.1271 0.06687 0.1268 0.0823 0.156
Intercept (MW or unitless) 8.205 4.093 13.96 3.695 12.61 2.733 9.327
(MMBTU or unitless)
— +95% intercept 8.234 4.572 15.6 4.355 14.86 3.668 12.51
— -95% intercept 8.177 3.614 12.33 3.035 10.36 1.799 6.14
R? value 0.7929 0.837 0.9539 0.5051
Model to data sensitivity % difference 0 -16.64 -11.97 -37.06
Mean normalized slope 1.46 0.8113 1.068 0.5934 1.161 0.6452 1.141 0.6339

(%/°C or %/°F)

* The data regression model was calculated as log-linear [(In(y/1 MW)

= ax + b) orIn(y/1 MMBTU) = ax + b) where y 1s peak power in MW and x 1s daily
maximum temperature. All others are for a linear model (y = ax + b).



Increased Energy Use

The analysis was also used to project increased energy use from a heat wave at
the site given the heat-content of a heat wave

This information can be very helpful for variable rate price structures during
peak demand
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Conclusions



Conclusions

o The CA analysis has higher sensitivity to heat waves equal to 1.46 %/°C (0.81 %/ °F) but less expected
increase in heat wave severity equal to 3.4°C (6.1°F) than the NM results of 0.61 %/°C (0.34 %/°F) and 5.9 °C
(10.6°F) leading to maximum expected percent increases in peak load of 5.0% for CA and 3.6% for NM.

o Both these sensitivities are on the low end of values reported in the literature (Santamouris, 2020)

o This underscores the need for thoroughness in assessing both climate changes and sensitivity to those
changes — one size does not fit all for these kinds of analysis!

o The difficulties in the CA analysis suggest that detailed BEM modeling is not always a good approach for heat
wave assessments. Though the NM site analysis was easily conducted the models had been maintained more
thoroughly (Villa, 2019). This CA analysis showed use of a low-order RC model would have been easier. The
best approach to use depends on the purposes of the analysis.

o The reduction of the BEM and data to regression parameters with Cl’s provides a low-order method with
uncertainty for incorporating heat waves into energy master planning analyses (Jeffers, 2020) that consider
additional forcing events such as human-attacks, earthquakes, floods, draughts, and fires.
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