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* Review the differences between resonances and
bound states in the continuum (BICs) in photonic
crystal slabs and metasurfaces

* Applications
* Limitations

* Analytical proof of the limitations of symmetry-
protected BICs in homogeneous, isotropic
radiative environments

* Overcoming these limitations using a 3D
photonic crystal as the radiative environment

* Theory and experiment




Types of states in photonic crystal slabs

Outside the slab:
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Bound states in the continuum

Bound modes above the light line,

Could be symmetry protected from s
leaking

* Commoninslabsatk, =k, =0
Requires rotational symmetry
about z-axis
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* 2 constraints, dg, d,

» Results in a BIC

Could not leak ‘accidentally’

» BICwhend; =d, =0

* 2degrees of freedom, ky, k,,

Hsu, Zhen et al., Nature 499, 188 (2013)
Hsu, Zhen et al., Nat. Rev. Mater. 1, 16048 (2016)
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Mechanisms for creating BICs

Symmetry protection

1D array with 51 waveguides
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Plotnik et al., PRL 107, 183901 (2011)
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Applications have almost exclusively focused
on symmetry protection

» Predictable
» No fine-tuning required
» Only requires isotropic materials
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Uses of symmetry-protected BICs

Photonic Ci ation

Limitations of symmetry-protected BICs:

= Only exist at normal incidence y
= Always isolated

) . . 'a 6, 1039 (2019)
» Forces single frequency, single wavevector operation | 7, 1126 (2020)
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Campione et al., ACS Koshelev et al., PRL 121, 193903 (2018)
Photonics 3, 2362 (2016) Yanik et al., Proc. Natl. Acad. Sci. 108, 11784 (2011)



Limitations on symmetry-protected BICs

Theorem: In a planar system embedded in isotropic, homogeneous environments,
symmetry protected BICs only appear at I, below the diffractive limit.

Example: photonic crystal Diffraction limit is

slab surrounded by air

nw
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(can change momentum
when radiating from lattice)

Frequency, w
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Wavevector, k,

First diffractive order radiative channels span all possible slab symmetries

K| is the in-plane wavevector

b,,, are the in-plane reciprocal lattice vectors

AC,* Jorg,™ et al., arXiv:2104.09603



Overcoming this limitation

Need to either break:
isotropy — using birefringent materials in the environment
homogeneity — by patterning the environment

Embed slab in a 3D photonic crystal > Changes the radiative channels to be the photonic
crystal’s projected-in-k, bands, w, (k”)

Remember — Looking for a slab symmetry not in the environment
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Can find a line of BICs against

Overcoming this limitation the continuum with the wrong
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Observing a line of BICs

¢ 0

Effect can still be observed with just a single completc onment
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AC,* Jorg,™ et al., arXiv:2104.09603
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S Umma ry AC,* Jorg,* et al., arXiv:2104.09603

* Analytical argument of the limitations of symmetry-protected BICs in

photonic crystal slabs and metasurfaces surrounded by air

* Full proof can be completed using representation theory

e Can achieve multi-frequency, multi-wavevector BICs in a monolithic

device using a single layer of a 3D photonic crystal surrounding the
0 = 15°

slab
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