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Si: P delta-layer Tunnel Junction 

Si: P δ-layer wire

• High potential for quantum computing and advanced microelectronic devices
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Open-system Quantum Transport Framework 

Our quantum transport simulator is based on Non-Equilibrium Green’s function (NEGF) 

formalism with

• Fully charge self-consistent solution of Poisson-open system Schrödinger 

equation

• Single-band (Γ valley) effective mass approximation

• Predictor-corrector approach and Anderson mixing scheme 

• Contact Block Reduction (CBR) method for fast numerical efficiency
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Open-system Quantum Transport Framework 

• D. Mamaluy et al., J. Appl. Phys., vol. 93, no. 8, p. 4628-

4633, 2003.

• D. Mamaluy et al. Phys. Rev. B, vol. 71, p. 245321, 2005.
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Our quantum transport simulator is based on Non-Equilibrium Green’s function (NEGF) 

formalism with

• Fully charge self-consistent solution of Poisson-open system Schrödinger equation

• Single-band (Γ valley) effective mass approximation

• Predictor-corrector approach and Anderson mixing scheme 

• Contact Block Reduction (CBR) method for fast numerical efficiency



Dyson equation

Open-device Hamiltonian matrix

Non-Equilibrium Green Function

Self-energy matrix of lead 

• Current from leads λ to λ’

(ND × N D)
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(ND × ND)

(NC × NC)

(NDi × NDi)

(NC × NDi)

ND > NDi >>> NC !!

Contact Block Reduction Method

(NC × NC)

• Electrical current:

• Electron density:

ND = NC + NDi

Contact λ Contact λ'Device

NC

NDi

Boundary grid-points Interior grid-points

7



Last year in SISPAD 2020 …

ND=1.2×1014 cm-2, NA=1017 cm-3

Infinite-width δ-layer systems:

δ-layer thickness: 0.2-5 nm

δ-layer thickness: 0.2-5 nm

• Good agreement with experiments at 4K!!

• Prediction of shallow Sub-bands

• Quantum thickness dependence on the sheet 

conductance

High-doping density

Low-doping density

• The so-called “quantum menorah”: LDOS(E,z) 
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https://www.nature.com/articles/s42005-021-00705-1



Conductive Properties for Ideal Tunnel Junctions
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t=1nm, ND=1.0×1014 cm-2, NA=1017 cm-3

Infinite-width δ-layer Tunnel Junctions
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• Low-energy electrons contribution on the current is depressed with the tunnel gap
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Variation of the δ-layer thickness
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ND=1.0×1014 cm-2, NA=1017 cm-3

• The tunneling rate considerably increases with the δ-layer thickness, specially for larger 

tunnel gaps  



Variation of the tunnel gap length

11

ND=1.0×1014 cm-2, NA=1017 cm-3

• Small variations of the gap length (around 0.2 nm) leads to a tunneling rate change of 

around 20%-30%



Effects of Edge roughness
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ND=1.0×1014 cm-2, NA=1017 cm-3

• Edge roughness might lead to a decreases of the tunneling rate up to 5%-25%

d1= 0.8-2.0 nm and d2=0.6-3.4 nm



Effects of a Single Impurity in the Tunnel Gap

• While p-type impurities might moderately reduce the tunneling rate, n-type impurities might 

dramatically increase the tunneling rate, specially for tunnel gaps of the order of 10 nm
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ND=1.0×1014 cm-2, NA=1017 cm-3
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Effects of a Single Impurity in the Tunnel Gap

ND=1.0×1014 cm-2, NA=1017 cm-3

• While p-type impurities might moderately reduce the tunneling rate, n-type impurities might 

dramatically increase the tunneling rate, specially for tunnel gaps of the order of 10 nm



Summary

Presented an efficient quantum open-system transport framework for δ-layer

tunnel junctions

 While most of the non-idealities moderately affect the tunneling rate, a single

charged impurity in the tunnel gap can alter the tunneling rate by more than an

order of magnitude, even for relatively large tunnel gaps

 The electric sign of impurity plays an important role in the tunneling rate: the

change of current due to an n-type impurity is an order of magnitude stronger than

for p-type impurity

 Overall these simulations suggest that geometric fidelity of the device

fabrication is less important than mitigation of defects inside of the junction
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