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Si: P delta-layer Tunnel Junction (i) .

High potential for quantum computing and advanced microelectronic devices
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Non-Equilibrium Green Function ()
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Contact Block Reduction Method ()
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Conductive Properties for Ideal Tunnel Junctions ) i
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 Low-energy electrons contribution on the current is depressed with the tunnel gap
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Variation of the 6-layer thickness (Fh) ey

 The tunneling rate considerably increases with the d-layer thickness, specially for larger
tunnel gaps
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Variation of the tunnel gap length ()
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« Small variations of the gap length (around 0.2 nm) leads to a tunneling rate change of
around 20%-30%
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Effects of Edge roughness () e
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« Edge roughness might lead to a decreases of the tunneling rate up to 5%-25%
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Effects of a Single Impurity in the Tunnel Gap @) &%
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 While p-type impurities might moderately reduce the tunneling rate, n-type impurities might
dramatically increase the tunneling rate, specially for tunnel gaps of the order of 10 nm
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Effects of a Single Impurity in the Tunnel Gap @) &%
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While p-type impurities might moderately reduce the tunneling rate, n-type impurities might
dramatically increase the tunneling rate, specially for tunnel gaps of the order of 10 nm
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Summary () ..

dPresented an efficient quantum open-system transport framework for d-layer
tunnel junctions

O While most of the non-idealities moderately affect the tunneling rate, a single
charged impurity in the tunnel gap can alter the tunneling rate by more than an
order of magnitude, even for relatively large tunnel gaps

 The electric sign of impurity plays an important role in the tunneling rate: the
change of current due to an n-type impurity is an order of magnitude stronger than
for p-type impurity

 Overall these simulations suggest that geometric fidelity of the device
fabrication is less important than mitigation of defects inside of the junction
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