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Abstract—We present an efficient self-consistent implementa-
tion of the Non-Equilibrium Green Function formalism, based
on the Contact Block Reduction method for fast numerical
efficiency and the predictor-corrector approach, together with
the Anderson mixing scheme, for the self-consistent solution of
the Poisson and Schrödinger equations. Then, We apply this
quantum transport framework to investigate 2D horizontal Si:P
δ-layer Tunnel Junctions.

Index Terms—quantum transport, Si:P δ-layer tunnel junc-
tions, contact block reduction, NEGF

I. INTRODUCTION

The electronic structure and conductive properties of Si:P δ-
layer systems have been a subject of intense experimental e.g.
[1], [2] and computational e.g. [3], [4] studies. In particular,
tunnel junctions (TJ) in semiconductor δ-layer systems have
raised a lot of interest due to their high potential to become
one of the important building blocks of quantum and classical
(beyond-Moore) computing applications.

Previous theoretical approaches to investigate semiconduc-
tor δ-layer systems [3], [4] were based on the employment of
periodic boundary conditions along the propagation direction,
which become inapplicable in the case of TJs and any other
more advanced (e.g. gated) devices. Additionally, in our pre-
vious works [5], [6], we have shown the need to extract the
system’s conductive properties from the quantum-mechanical
flux and thus study highly conductive δ-layer systems from
the first principles, i.e. without the use of semi-classical
approximations for the current. The quantum-mechanical flux
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can be readily extracted, for instance, using a Non-Equilibrium
Green’s Function (NEGF) treatment [6].

However, the NEGF simulations of δ-layer TJ systems
possess two main challenges: 1) the convergence issues due
to the existing sharp doping density in these systems; 2) the
computational cost of the simulations for these systems. For
the former one, we have successfully implemented a scheme,
based on a predictor-corrector approach and the Anderson
method, which considerably improve the convergence of the
self-consistent solution of the non-linear Poisson equation
and Schrödinger equation. For the latter one, we have used
the Contact Block Reduction (CBR) method which reduces
considerably the computational cost of the quantum transport
calculations.

The aim of this work is to introduce this quantum trans-
port framework and its application to δ-layer TJ systems. In
Section II we present the efficient self-consistent quantum
transport formalism [7]–[11]. In Section III we apply this
framework to investigate Si:P δ-layer TJs. Finally, in Sec-
tion IV we summarize the main findings.

II. QUANTUM TRANSPORT FRAMEWORK

Our open-system quantum transport framework [7]–[11]
relies on a self-consistent solution of Poisson-open system
Schrödinger equation in the effective mass approximation and
the Non-Equilibrium Green’s Function (NEGF) formalism.

Within the NEGF formalism, the current Jλλ′ from lead λ
to λ′ is computed from the Landauer formula

Jλλ′ =
2e

h

∫
Tλλ′(E)(fλ(E)− fλ′(E))dE, (1)

where e is the electron charge, h is the Planck’s constant, E
is the energy, fλ(E) = f(E −EF − qVλ) is the Fermi-Dirac
function within the leads, Vλ is the applied voltage to the lead,
EF is the Fermi level and Tλλ′ is the electronic transmission
from lead λ to λ′. The transmission function is giving by

Tλλ′(E) = Tr(ΓλGDΓλ′G†D), (2)

SAND2021-8848CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Quantum transport simulator

Calculation of transverse 

lead eigenstates (=modes)

Device Setup

(Geometry, doping, etc.)

||F|| < ε

CBR method

Solution of closed system: H0

Calculation of transmission,

LDOS and carrier density

for open system

Calculation of 

Functional: F

Predictor-Corrector approach 

and Anderson mixing scheme 

to update 

the Hartree potential and 

the exchange-correlation potential

No

Yes

OUTPUTS

Fig. 1. Flow chart of the self-consistent quantum transport method [7]–[11].

where Γλ = i(Σλ − Σ†λ) are the coupling (ND × ND)-
matrices between the device and the leads, ND is the total
grid-points of the discretized device domain, and GD and G†D
are the retarded and advanced Green’s functions (ND ×ND)-
matrices of the coupled device with the leads (open-system
device), respectively. The retarded Green’s function matrix can
be computed using the Dyson equation

GD = [I −G0
DΣ]−1G0

D, (3)

Σ =

λL∑
λ=λ1

Σλ, (4)

and
G0
D = [E+ −H0

D]−1 =
∑
α

|φα〉〈φα|
E+ − Eα

, (5)

where Eα and |φ〉 are the eigenvalues and eigenvectors of
H0
Dφα = Eαφα, E+ = limε→0 I(E + iε) and the sum runs

over all leads L.
The electron density matrix is defined as

ρ(ri) =

λL∑
λ=λ1

∫ ∞
−∞

1

2π
GDΓλG

†
Dfλ(E)dE. (6)

Notice that all matrices involved in the above operations are
of size (ND × ND). Thus, for instance, the inversion matrix
cost in Eq. 6 is of O(N3

D), and the calculation cost of the
eigenstates of H0

D in Eq. 6 is of O(NDN
2
e ), where Ne is the

number of calculated eigenstates. To reduce the computational

cost of these intensive calculations, we utilize the Contact
Block Reduction (CBR) method [7]–[11].

The CBR is an efficient method to calculate the elec-
tronic transmission function of an arbitrarily shaped, multi-
terminal open device. Within this method, the ND grid-
points are subdivided into NC boundary grid-points with
the leads and NDi interior grid-points of the device domain
(ND = NC + NDi , NDi >> NC). Furthermore, we assume
that the real-space Hamiltonian matrix that corresponds to
this discretization only couples sites within some finite range
with one another, typically first nearest-neighbors. With this
domain discretization, the self-energy matrix Σ, the open-
system device Hamiltonian HD, and the Green’s function
matrix of the open-system device GD can be rewritten with
the following submatrices

HD =

(
HC HCDi

HDiC HDi

)
, (7)

GD =

(
GC GCDi

GDiC GDi

)
, (8)

and

Σ =

(
ΣC 0
0 0

)
=

(∑λ=λL
λ=λ1

ΣCλ 0
0 0

)
, (9)

where the size of the sub-matrices HC , GC , and ΣC is (NC×
NC), the size of the sub-matrices HCDi and GCDi is (NC ×
NDi ), and the size of the submatricesHDi andGDi is (NDi×
NDi ).

After some algebra and using the submatrices in
Eq. 7, 8, and 9, the electronic transmission from lead λ to
λ′ can be computed as

Tλλ′(E) = Tr(ΓCλGCΓCλG
†
C), (10)

where
ΓCλ = i(ΣCλ −Σ†Cλ). (11)

The Dyson equation as

GC = [I −G0
CΣC ]−1G0

C . (12)

Similarly, the electron density matrix can be computed as

ρ(ri) =

λL∑
λ=λ1

∑
α,β

∫ ∞
−∞

Ξλα,β(E)fλ(E)dE, (13)

where

Ξλα,β(E) =
1

2π

∑
α,β

Tr
[
BCΓCB

−1†
C

]
(E+ − Eα)(E− − Eβ)

(14)

and
BC = 1C − ΓCG

0
C . (15)

Importantly, note that all matrices involved within the CBR
method are now of size (NC × NC), where NDi >> NC .
Therefore, reducing considerably the computational cost of
NEGF operations.

Furthermore, Mamaluy et al. in [7] showed that by imposing
Newmann boundary conditions to the decoupled device, an



incomplete set of eigenstates is only needed to represent the
true open-system solution. The idea is to rewrite the total self-
energy matrix as

Σ(E) =
∑
λ

Σλ(E) = −K + ΣN (E), (16)

with

K =

{
Wλδij , i, j ∈ Cλ, λ = λ1, ..., λL

0, i, j /∈ Cλ, λ = λ1, ..., λL,
(17)

where Wλ is the coupling between i and j grid-points and
Cλ represents the boundary grid space of lead λ. Then, the
retarded Green’s function matrix can be rewritten as

GD(E) =(E+ −H0
D −Σ)−1 (18)

=(E+ −H0
D −K −ΣN (E))−1

=(E+ −HN
D −ΣN (E))−1,

where HN
D is independent of the energy and ΣN (E) tends

toward zero for values of E that lies not far from the band
edge. This enables us to solve the Dyson equation with HN

D

instead of H0
D and to use an incomplete set of eigenstates.

A summary of the algorithm implemented in our quantum
transport simulator is shown in Fig. 1. Firstly, the Schrödinger
equation is solved for the closed systems taking into account
the Hartree potential ψH(ri) and the exchange and correlation
potential ψXC(ri). Then, the LDOS of the open system,
ρ(ri, E), is computed by Eq. 13. The potential and the carrier
density are then used to calculate the residuum F of the
Poisson equation∣∣∣∣F [ψH(ri)]

∣∣∣∣ =
∣∣∣∣AψH(ri)− (n−ND +NA)

∣∣∣∣, (19)

where A is the matrix derived from the discretization of the
Poisson equation and ND and NA are the total donor and
acceptor doping densities arrays, respectively. If the residuum
is larger than a predetermined threshold ε, the Hartree potential
is updated using the predictor-corrector method, together with
the Anderson mixing scheme. Using the updated Hartree
potential and the corresponding carrier density, which is a
function of the change in the Hartree potential, the exchange-
correlation is computed again for the next step. Finally, we
emphasize that the convergence of highly conductive sys-
tems is very challenging. Therefore, the implementation of
the predictor-corrector method, together with the Anderson
mixing scheme is crucial for these systems to improve the
convergence.

III. RESULTS AND DISCUSSION

We apply our quantum transport framework to investigate
2D Si:P δ-layer TJ systems. The 2D TJ model, shown in Fig. 2,
consists of two semi-infinite contacts, source and drain, in
close contact with the channel. The channel is composed of a
very lightly doped Si body and Si cap with acceptors, which
embed a P δ-layer with an intrinsic gap.

We first start analyzing the conductive properties for ideal
TJs. Fig. 3 shows the I-V curves for different gap widths, as

Fig. 2. The Si:P δ-layer TJ system is composed of a Si body, a P-δ layer
with an intrinsic gap, and a Si cap

well as the I-W curves for several applied biases. For large
gap widths, we can observe in the characteristic I-V curves
the presence of peaks at low bias. These peaks can only
be explained because of the energy quantization of the free
electrons on the left and right sides of the δ-layer. Therefore,
the peak can only occur when electron quantized energies
coincide in value on both sides. From the semi-log I-W curves
we can also observe that the slope is not constant with the
gap width, as well as dependent on the applied bias. This
result indicates that the potential barrier height is not constant,
in contrast to the WBK approximation, and varies with the
gap width and the applied bias. In our previous works for
Si:P δ-layer wires [5,6], we showed that free electrons were
distributed in energy in different sub-bands (e.g. 1Γ and 2Γ
valleys). For very confined δ-layers, the contribution of these
sub-bands on the current was equal. However, our simulations
reveal a different behavior for TJs: higher-energy electrons
(i.e. electrons allocated in 2Γ valley) contribute more to the
current as shown in Fig. 4. Additionally, the contribution of
the lower-energy electrons decreases rapidly with the increase
of the gap width. Indeed, this contribution is minimal for gap
widths W > 5 nm, as seen in Fig. Fig. 4, (b).

Finally, we investigate the effect of unintentional charged
impurities in the junction gap (Fig. 5). Interestingly, our
simulations predict a strong asymmetry with the impurity
electrical sign. Positively charge impurities (e.g. P atoms) in
the intrinsic semiconductor gap dramatically affect the current
value, increasing the current by an order of magnitude for all
considered values of W . At the same time, negatively charged
impurities (B or Al atoms) reduce the current in a significantly
smaller manner.

IV. CONCLUSION

We presented an efficient self-consistent implementation of
the NEGF formalism, based on the CBR method, the predictor-
corrector approach, and the Anderson mixing scheme. Then,
we applied this framework to investigate horizontal Si:P δ-
layer TJs. First, we characterized ideal TJs and revealed
intriguing quantization effects for large gap widths. Second,
we studied the influence of unintentional charged impurities



(a)

(b)

Fig. 3. Characteristic curves for an ideal Si:P δ-layer TJ systems: (a) Current
versus applied voltage for different gap widths (W ); (b) Current versus gap
widths for different applied voltages. ND = 1014cm−2, NA = 1017cm−3,
t = 0.2 nm, L = 50 nm and H = 40 nm.

in the junction gap. Our simulations revealed that the sign
of these impurities plays an important role in the electrical
current: B-type impurities reduce slightly the current; however,
P-type impurities increase considerably the current.
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