

PNNL-SA-159035

Manufacturing Hybrid Copper-Aluminum Rotors for High Power Induction and Permanent Magnet Electric Motors

CRADA 475

December 2020

Piyush Upadhyay

General Motors Research & Development

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.** Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <<https://www.ntis.gov/about>>
Online ordering: <http://www.ntis.gov>

Manufacturing Hybrid Copper-Aluminum Rotors for High Power Induction and Permanent Magnet Electric Motors

CRADA 475

Abstract

December 2020

Piyush Upadhyay

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

Abstract

General Motors Research & Development (GM R&D) and Pacific Northwest National Laboratory (PNNL) will develop an electric rotor manufacturing technology with the potential of making electric motors lighter and more efficient. This will be achieved by developing a solid phase joining method to effectively join the Copper shorting bars to Aluminum end cap.

Pacific Northwest National Laboratory

902 Battelle Boulevard

P.O. Box 999

Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov